FULL INFORMATION EQUIVALENCE IN LARGE ELECTIONS

PAULO BARELLI, SOURAV BHATTACHARYA AND LUCAS SIGA

Abstract. We study the problem of aggregation of private information in common-value elections with two or more alternatives and with general state and signal spaces. We provide conditions on the environment ensuring existence of a sequence of equilibria of the voting game that efficiently aggregates information as the population size grows to infinity. The conditions explore the geometry of partitions on the distributions over private signals induced by the common state-dependent utility of the voters. Such conditions are met generically when the signal space is rich enough relative to the state space, and fail robustly when the state space is rich relative to the signal space.

1. Introduction

The wisdom of crowds reflects the powerful idea that even when individual agents are poorly informed, society on average tends to be correct. As a result, a foundational belief in democracies is that voting provides the appropriate channel to implement the wisdom of crowds. The goal of this paper is to understand, in a common-value environment, whether the electoral outcome can reflect all the information dispersed in the electorate.

The existing literature follows an insight by Condorcet (1785): in a large common-value election, when every voter is more likely to vote correctly than incorrectly, the majority is almost surely correct by the law of large numbers. This is known as the Condorcet Jury Theorem (CJT). Subsequent work formalizes this insight in a game-theoretic framework where voters draw i.i.d. signals conditional on an unobservable state, and studies the information conveyed in equilibrium as the population grows large. In these environments it is challenging to study equilibria with finitely many voters, and even more so, to understand their limiting properties. As a result, a number of simplifying assumptions have become standard. In particular, the most common approach is to focus on environments with two states and two alternatives (see, e.g., Austen-Smith and Banks, 1996; Myerson, 1998; Wit, 1998; Duggan and Martinelli, 2001; McMurray, 2013). An alternative approach focuses on environments with strong order properties between states and signals, i.e., on environments satisfying MLPR (see, e.g., Feddersen and Pesendorfer, 1997; McMurray, 2017). It is not clear, however, whether or not the insights from this literature carry over to environments with general information structures, or when there are more than two alternatives.
2 PAULO BARELLI, SOURAV BHATTACHARYA AND LUCAS SIGA

Our work takes a different approach that enables us to answer whether information can or cannot be aggregated in environments that allow for multiple alternatives and general information structures. As in the existing literature, voters receive i.i.d. signals conditional on the state and we ask when the voting outcome with private signals approximates the outcome that would be obtained if signals were public. This property is usually referred as full information equivalence (FIE). We depart from the existing work by focusing attention to the question of feasibility as opposed to the study of limiting properties of specific equilibrium constructions. We then draw upon an insight from McLennan (1998) to complement our feasibility analysis and show that if there exists a strategy profile that achieves FIE, then there is also an equilibrium strategy profile that aggregates information. Hence the set of environments where FIE is achieved in (some) equilibrium is exactly the same as the set of environments where FIE is feasible.

Our approach explores the geometry of partitions of the space of distributions of signals conditional on the state. In particular, FIE is related to whether or not such partitions consist of convex polytopes with facets defined by hyperplanes satisfying some properties. For up to three alternatives, we are able to obtain a full characterization of the kinds of convex partitions that allow FIE: in broad terms, the corresponding three hyperplanes have to be distinct. For more than three alternatives, we provide general sufficient conditions and also an important necessary condition which is tight when the information structure is rich.

Convexity (of the elements of the partition) is the most important piece of our approach: it provides restrictions on the heterogeneity of distributions over private signals arising from states where one particular alternative is better. This can be viewed as a very general identifiability condition allowing one to infer information over states from observation of signals. In fact, one sufficient condition for FIE is exactly a rank condition on the family of conditional distributions over signals given states. An immediate corollary is that, in the case of finitely many states and signals, FIE is generically feasible whenever we have more signals than states – as, in this case, a generic matrix of conditional distributions will have full rank. In the general case, however, one cannot generically guarantee linear independence of distributions, and neither can one generically guarantee convexity of the induced partition. In fact, we show that FIE fails robustly, in the sense that it fails for an open set of environments.

A general take-away from our results is that FIE is possible if and only if the variation in private information is rich enough compared to the variation in preferences. We stress that, in contrast with the existing results on FIE which focus on positive results for specific environments (discrete or ordered state spaces), we work in general environments and identify environments where FIE does or does not obtain. A special case of our positive result is that FIE is always possible when each alternative is optimal in only a single state state of the world (and each such state is associated with a different distribution over signals, of course). Hence, the typical approach of lumping all states for which an alternative is preferred into a single aggregate state necessarily leads to false positive results, and therefore it entails serious loss of generality.
Before going to the formal conditions, we present three simple examples to illustrate how information aggregation may obtain or fail to obtain. The first two examples are about single-issue politics, followed by an example about multi-issue elections.

Example 1. Consider a setting where an incumbent a_1 competes against a challenger a_2, and suppose that each voter gets one of two signals: x or x'. First assume that they are competing on quality, and the signals x and x' are good and bad news, respectively, about a_1’s relative quality, in the sense that as the quality of candidate a_1 improves, each voter is more likely to have signal x and less likely to have signal x'. In this case, we are in a setting similar to the canonical CJT, and voting will aggregate information.

Example 2. Consider a setting where there is uncertainty about a_1’s policy position on the left-right dimension, and voters prefer to vote for a_1 only if her policies are sufficiently moderate. Now suppose that an x-signal arises more frequently for more left-leaning positions and an x'-signal arises more frequently for more right-leaning positions. Since the private signal only tells the voter about whether the position is skewed to the left or to the right and not about how extreme the position is, information aggregation is impossible for any plurality rule.\(^1\) Observe that the induced partition on distributions over signals x and x' is not convex: distributions “in the middle”, with enough weight on both x and x' are associated with moderate policies and extreme distributions are associated with extreme policies, and this latter set is obviously not convex.

The final example illustrates the difficulty of aggregating information in multi-issue settings.

Example 3. Suppose there are three possible signal realizations: x, x' and x'', and assume that preferences are defined over the population proportion of each signal, so that we have infinitely many states: one state for each vector of proportions. In this case, the only utility functions that achieve FIE are those which are linear in the proportion of each signal. For the sake of concreteness, consider a country voting in a referendum on whether to stay or leave a politico-economic union. A central tradeoff that drives voter preferences is that trade induces growth but leads to immigration as well, leading to loss of jobs for the local population. However, the tradeoff between growth and immigration depends on the extent to which immigrants contribute to the economy. Now, assume that each voter receives a signal about exactly one of these three factors, and the frequency of a signal in the population depends on the strength of the factor. Voter preferences depend on the proportion of each type of signal in the population: if the proportion of signals about growth is high enough then voters prefer to stay, and if there is a very high proportion of signals about immigration they prefer to exit. Our results say that information is aggregated if and only if the net utility from the exit option is linear in the proportion of each signal: in other words, if the tradeoff between immigration and growth is deemed to be independent of how much the immigrants contribute to the economy. A similar issue arises in case of minimum wage legislation: the tradeoff between income and employment is affected by other factors like inflation. In all these cases, the information structure is too complex to guarantee that the correct outcome will prevail, except for very special situations. In more specific terms, we see that the partition over distributions over signals induced by states will likely not be made of convex sets except for very special cases.

\(^1\)We thank Timothy Feddersen for providing us this example.
While our choice of modeling is standard in asymmetric information environments, we take a distinct approach that allows for a convenient geometric representation. We focus on the implications of preferences on the distributions of signals conditional on states. Each state is mapped to a vector on the simplex of signal distributions, and each such vector is associated with the corresponding ranking over alternatives. We observe that the expected vote share for any alternative (given a strategy) is a linear function of the vectors on the simplex, which is a direct implication of each voter having to vote only based on their own private information. As a result, the set of probability vectors for which an alternative obtains a fixed vote share is a hyperplane on the simplex over signals. This allows us to express all the conditions for FIE using separating hyperplanes on the simplex of distributions of signals.

To describe our results, suppose that there are \(k \geq 2 \) alternatives \(\{a_1, \ldots, a_k\} \) and let \(A^i \) be the set of distributions of signals in states where alternative \(a_i \) is the best choice. For up to three alternatives, Theorem 1 states that there exists a strategy that achieves FIE if and only if \(A^1 \), \(A^2 \) and \(A^3 \) are subsets of distinct elements in a 3-element convex partition of the simplex. An immediate corollary is that when there are two alternatives, the condition for FIE is that \(A^1 \) and \(A^2 \) be separated by a hyperplane.

Theorem 1 demonstrates a fundamental difficulty in aggregating information when the state space is large. Consider the case of two alternatives. Under some mild technical conditions, FIE requires that the two alternatives must obtain exactly equal vote shares for all pivotal states, that is, states around which the ranking reverses.\(^2\) Since the vote share functions are linear on the simplex, it must be the case that all pivotal states must lie on a hyperplane. In other words, a small perturbation in preferences around the pivotal states will lead to a violation of FIE. In the special case when preferences are defined over the entire simplex, FIE requires that \(A^1 \) and \(A^2 \) form a convex partition of the simplex.\(^3\)

When the state space is discrete, there might be no pivotal states and consequently we have more freedom in choosing a strategy that induces the appropriate separation. For example, suppose there are only two states and two alternatives. Since \(A^1 \) and \(A^2 \) are two singletons, they can always be separated by a hyperplane as long as they are not the same point. This tells us that the two-state formulation makes information aggregation trivial by imposing the restriction that there is exactly one distribution of signals for which a given alternative is optimal. Next, consider the case of two alternatives, three states, and three signals. It is easy to check that we can separate any two vectors on the simplex from the third one by a hyperplane, as long as the three vectors are not collinear. So, again in this case, information aggregation is essentially trivial.

In Section 4, we consider the general case of \(k > 3 \) alternatives and show that the contrast between discrete and continuous environments in the \(k \leq 3 \) case provides a sharp illustration of

\(^2\)We use the term “pivotal states” in a sense that should not be confused with pivotal events in equilibrium models of elections. In our paper, an \(ij \)-pivotal state is a state for which the conditional probability vector lies on the boundary of both \(A^i \) and \(A^j \). This definition has nothing to do with vote tallies per se. However, it turns out that strategies that achieve FIE lead to equal vote tallies for alternatives \(a_i \) and \(a_j \) in every \(ij \)-pivotal state.

\(^3\)What we mean by preferences defined over the entire simplex is that for each distribution in the simplex, there is one state for which the distribution is associated with the state.
a more general phenomenon. Our necessary condition for FIE still holds: each pair A_i^Δ and A_j^Δ must be separated by a hyperplane. Notice that this condition implies that if there is a set of pivotal states in the neighborhood of which the most preferred alternative reverses, the respective conditionals must lie on a hyperplane. However, the necessary condition is not always sufficient, and we provide two sets of sufficient conditions for FIE.

Theorem 2 strengthens the necessary condition by imposing a restriction on the family of hyperplanes that separate the sets A_i^Δ. In a nutshell, when such hyperplanes are parallel to one another, FIE can be achieved. This result is analogous to a result in Mihm and Siga (2018) in a context of competitive markets. While such parallel separation seems a very strong condition, it can be ensured whenever a rank condition is met. More precisely, Lemma 2 shows that we can obtain separation with parallel hyperplanes if the set of conditional probability vectors satisfies independence in addition to some regularity conditions. Therefore, a sufficient condition for FIE in general environments is linear independence of conditional probability vectors (Corollary 2). For discrete environments, linear independence holds generically whenever there are at least as many signals as states. In the special case that each alternative is best at one and only one state, separation with parallel hyperplanes (and consequently FIE) necessarily obtains, regardless of the number of signals.

When there are more states than signals and alternatives, linear independence fails and so we cannot hope for generic separation with parallel hyperplanes. We are led to a more refined form of separation, which we refer to as separation with star-shaped hyperplanes: roughly, the hyperplanes are allowed to not only be not parallel, but also to intersect with one another in some specific ways. More precisely, Theorem 3 establishes that FIE can be achieved if for every pair of alternatives a_i and a_j, a hyperplane on the simplex separates the vectors for which a_i is preferred over a_j from those for which a_j is preferred over a_i.4

Existence of FIE is affected by the environment in two distinct dimensions: (i) the mapping from states to preferences, and (ii) the distributions of signals given states. A reduced-form perspective is to bypass (i) by viewing the utility function as defined on the simplex of distributions over signals. We do so in the context of a large number of states: we view the state space directly as the entire simplex of distributions over signals. Under such “rich” state space, Proposition 2 provides a condition on the utility function that is equivalent to the pairwise separation condition in Theorem 3. The proposition says: (i) if the utility from each alternative is a linear function of the distributions of signals then, the environment allows FIE; and conversely (ii) for any environment that allows FIE, there exists another environment with the same top-ranked alternative for each probability vector which admits a linear utility representation.

While the linear utility representation is not a complete characterization of environments that allow FIE, it does indeed provide a tight characterization of how the simplex is partitioned into the

4Strictly speaking, Theorem 3 also requires a richness condition and an extension condition. Richness is imposed only for convenience of the analysis – the general idea carries through without richness. Extension allows us to focus on the relatively simple condition described above, without having to impose an extra and unnecessary condition, that if hyperplanes intersect they do so inside the simplex.
sets A_j in environments that allow FIE. The linearity result highlights the problem of aggregating information when voters can only condition on their private signals. When there are more than two possible signals, FIE occurs only if the “marginal rate of substitution” between proportions of any two signals is independent of the proportion of every other signal.

Section 5 establishes that feasibility translates into FIE in equilibrium. Formally, whenever an environment allows for a strategy that achieves FIE, there is a sequence of Nash equilibria in the same environment such that as the number of voters grows unboundedly, the ex-ante probability of the correct alternative being chosen converges to 1 (Theorem 4). This is analogous to McLennan (1998).\(^5\) Our result complements McLennan’s result by identifying environments when FIE can and cannot be achieved in the limit.

Finally, in Section 6, we provide two important extensions to show that our results hold in a wide range of settings that have been studied in the literature. Up to this section, we present our analysis with plurality rule, where the alternative with the most votes is selected. Theorem 5 says that a change in the voting rule to any other scoring rule (e.g., approval rule, Borda rule, etc.), allowing abstention or allowing for supermajority rules will not expand the set of environments where FIE is achieved. The other extension shows that our results can also include the case where voters have general, diverse preferences in addition to diverse information: all we need to do is to change how we interpret the primitives in order to accommodate variation in preferences in our analysis of feasibility of FIE. Thus, our (in-)feasibility results apply beyond common-value environments. However, with diverse preferences we cannot apply McLennan’s result to claim that whenever FIE is feasible, it is also achieved in equilibrium. Therefore, we only have general conditions for feasibility of FIE when preferences are diverse. Hence, while our general negative results remain true with diverse preferences, our general positive results do not.

1.1. Related Literature. Our work helps extend and better understand the existing body of work on information aggregation in several ways. We have already discussed how our paper is related to the literature that provide game theoretic proofs of CJT. In addition, our characterization can be used to identify which results are robust to small perturbations of the preference environment. Our results say that the models that use discrete formulation (typically binary state spaces) are robust.\(^6\) On the other hand, the proofs that employ continuous state spaces (e.g., Feddersen and Pesendorfer, 1997; McMurray, 2017) are heavily dependent on the particular structure, in particular the assumption of ordered state space.

There is another strand of literature that identifies sources of aggregation failure in common values environments. This includes unanimity rules (Feddersen and Pesendorfer, 1998), alternative voter motivations (e.g., Razin, 2003; Callander, 2008), cost of information acquisition (Persico, 2004; Martinelli, 2006), cost of voting (Krishna and Morgan, 2012), aggregate uncertainty (Feddersen and

\(^5\)Differently from McLennan (1998), the result remains true under asymmetric strategies provided that simple averages of such strategies converge as the electorate grows without bounds.

\(^6\)But, at the same time, our results cast doubts on the meaning of FIE in such models, because FIE may well be artificially obtained by the lumping of rich state variables into two representative states.
Pesendorfer, 1997), and so forth. Our work suggests that complexity of the information structure may itself be a barrier to information aggregation.

There are a few papers that identify perverse preference (e.g., Acharya, 2016; Bhattacharya, 2013b; Kim and Fey, 2007) or information structures (Mandler, 2012) as reasons for aggregation failure. Mandler shows that aggregation can break down in a common values model if the same signal indicates opposite states in different situations. Bhattacharya shows that aggregation will fail if a given change in signal induces the vote share of an alternative to increase for some belief over states and decrease for other beliefs. While these papers have an analogous message, our paper provides a stronger result in that we say that aggregation fails in all equilibria while they only identify particular bad equilibria in two-state environments. Moreover, the failure in these papers is a failure of voter coordination due to perverse pivotal inference. In our setting, the failure is one of feasibility.

A critique of the existing game theoretic literature is that it involves hyper-rationality of voters. In response, non-equilibrium models of voting behavior have been suggested (e.g., Feddersen and Sandroni, 2006). In contrast, our analysis does not rely on equilibrium inferences but on technical feasibility. In particular, in environments which do not allow FIE, aggregation would not be achievable even if voters commit to any strategy profile. Therefore, failure does not depend on the particular assumption on voter behavior.

One way look at the question of information aggregation in elections is to observe that while the information that voters have is potentially multidimensional, the action space is limited by the number of alternatives and the voting rule. Given this asymmetry, do we still get the correct outcome? Our work identifies the connection between preference and information for which we can still aggregate information with general state and signal spaces but a restricted action space whose cardinality is equal to that of the set of alternatives. In fact, we show that the voting rule is irrelevant for the result.

A related question is whether communication is necessary to produce the correct outcomes. In common-value environments, there is a clear incentive to share information. The common-value environments where we show that FIE fails are precisely those environments where deliberation is necessary to improve outcomes. On the other hand, in the settings where FIE is achieved through voting, deliberation is not necessary to reach informational efficiency. Coughlan (2000) can be interpreted as saying that deliberation has a role only when there is preference diversity among voters. We, on the other hand, show that it can also have a role under common preferences if information and preferences are sufficiently complex.

There is a literature on informational efficiency on different scoring rules with three alternatives. While Goertz and Maniquet (2011) and Bouton and Castanheira (2012) use diverse values, Ahn and Oliveros (2016) have a common-values model where they show that the approval rule performs weakly better than all other scoring rules. We, on the other hand, show that all scoring rules become equivalent in the limit. The implication of this result is that scoring rules matter either in small committees or under diverse preferences. The result that all non-unanimous threshold rules are equivalent is also present in Feddersen and Pesendorfer (1997) and Gerardi and Yariv (2007).
There is also a parallel literature on information aggregation in common-value auctions. While Pesendorfer and Swinkels (1997) shows FIE assuming an ordered state space and informative signals, Mihm and Siga (2018) provide a general characterization result in discrete environments. Theorem 2 in our paper draws heavily from Mihm and Siga (2018).

2. Model

Consider n players voting over k fixed alternatives in $A = \{a_1, a_2, ..., a_k\}$.\footnote{We will use the words voters and players exchangeably depending on the context.} We consider a plurality voting environment: each player chooses to vote for an alternative in A, and the alternative with the largest number of votes wins the election.\footnote{In section 6.1, we introduce a larger class of voting rules (including supermajority, approval, etc) and we show there is no loss of generality to focus on plurality within this class.} Ties, if any, are broken randomly.

All voters have the same preference. The utility of a voter from an alternative depends on an unobservable state variable $\theta \in \Theta$, where Θ is a general measurable space. The generality of this formulation allows for both discrete and continuous state spaces, and help us to compare conclusions across the two distinct environments. The common utility of each voter is given by a bounded measurable function $u : \Theta \times A \to \mathbb{R}$.

Let X be the set of signals. We also allow X to be a general measurable space.\footnote{We denote the sigma-algebra in X by \mathcal{X}. For a measure space Y, we will use $\Delta(Y)$ to denote the set of all probability measures defined on (the given sigma-algebra of) Y.} Given a state θ, each voter privately draws an independent signal $x \in X$ according to a conditional probability distribution $P(\cdot | \theta) \in \Delta(X)$.\footnote{More precisely, we assume the existence of a transition probability $P : \Theta \times X \to [0, 1]$, so that for each $\theta \in \Theta$ $P(\cdot | \theta)$ is a probability measure on X and for each $E \in \mathcal{X}$, $P(E|\cdot)$ is a measurable function on Θ.} We will abuse notation and use the same letter P to denote the prior probability on Θ.\footnote{Of course, one could start from a probability measure $P \in \Delta(\Theta \times X)$ and derive conditionals and marginals. Since we will have no use for such an underlying probability, we work directly with these concepts as primitives.}

We denote by $A_i = \{ \theta \in \Theta : u(\theta, a_i) > u(\theta, a_j) \text{ for all } j \neq i \}$ the set of states where alternative a_i is strictly preferred to all other alternatives. We assume that $P(A_i) > 0$ for all $i = 1, 2, ..., k$, that is, every alternative can be preferred ex-ante with positive probability.

A tuple $\{u, A, \Theta, X, P\}$ is defined as an environment. An environment in addition to an electorate size n defines a game. In a game, a strategy for a voter specifies a probability of voting for each alternative given each signal. We focus on symmetric strategies where voters with the same signal use the same strategy. A mixed strategy σ for a voter is a list of measurable functions $\sigma_1, \sigma_2, ..., \sigma_k$ with $\sigma_i : X \to [0, 1]$ for $i = 1, ..., k$, satisfying $\sum_{i=1}^{k} \sigma_i(x) = 1$ for all $x \in X$. In short, σ is a behavioral strategy mapping X to $\Delta(A)$, where $\sigma_i(x)$ is understood to be the probability of voting for the alternative a_i on obtaining signal x. When the context is clear we shall refer to σ as a profile of strategies, with the understanding that every player uses the same σ.\footnote{10More precisely, we assume the existence of a transition probability $P : \Theta \times X \to [0, 1]$, so that for each $\theta \in \Theta$ $P(\cdot | \theta)$ is a probability measure on X and for each $E \in \mathcal{X}$, $P(E|\cdot)$ is a measurable function on Θ.}
Given \(\sigma \), the expected vote share of alternative \(a_i \) at state \(\theta \) is given by

\[
z^\sigma_i(\theta) = \int \sigma_i(x)P(dx|\theta).
\]

Throughout the paper, we use notation consistent with \(X \) and \(\Theta \) being infinite unless otherwise specified. However, it is always understood that the integral notation is to be replaced by the summation notation when we consider \(X \) to be a finite set. Observe that \(z^\sigma_i : \Theta \to [0,1] \) is a measurable function for each \(i \) and \(\sigma \).

By the SLLN, when every voter uses the strategy \(\sigma \) then, for every \(\theta \), the realized proportion of votes for alternative \(a_i \) converges \(P(\cdot|\theta) \)-a.e. to \(z^\sigma_i(\theta) \) as \(n \to \infty \). Since our focus is on large electorates, we call \(z^\sigma_i(\cdot) \) the vote share function for alternative \(a_i \). A crucial observation for our analysis is that the vote share function for each alternative is linear in \(P(\cdot|\theta) \).

Next, we define the standard for information aggregation for a given strategy profile.

2.1. Full Information Equivalence

In a large electorate, the signal profile almost surely reveals the state. Thus, if the signal profile were publicly observed, the most preferred alternative would almost surely be elected. We say that information is aggregated by a strategy profile if, under private information, the most preferred alternative is guaranteed to win with an arbitrarily high probability in an ex-ante sense. As a formal standard for information aggregation, we adapt the idea of Full Information Equivalence defined by Feddersen and Pesendorfer (1997).

Given an environment \(\{u, A, \Theta, X, P\} \), we first define \(W_n^\sigma \), the probability of an error (overall ex-ante likelihood of the most preferred alternative not being elected) induced by a strategy \(\sigma \) in a given game with \(n \) players. If along a sequence of games as \(n \) increases without bound, keeping the environment fixed, the quantity \(W_n^\sigma \) converges to zero, we say that the strategy \(\sigma \) achieves Full Information Equivalence (FIE) and that the environment allows FIE.

For any strategy profile \(\sigma \) and electorate size \(n \), let \(z^\sigma_n \) denote the realized vector of proportion of votes for alternatives \(a_1, \ldots, a_k \). Observe that \(\theta \) and \(\sigma \) induce a probability distribution \(p^\sigma_n \) over \(z^\sigma_n \), since the signal profile is drawn according to \(P(\cdot|\theta) \) and given the realized signal profile, the profile of votes is drawn according to \(\sigma \). In fact, let us denote the random vector representing the proportion of votes for each alternative as \(y = (y_1/n, y_2/n, \ldots, y_k/n) \) where \(y_i \in \{1, \ldots, n\} \) is a random variable representing the number of votes for alternative \(a_i, i = 1, 2, \ldots, k \) and \(\sum_{i=1}^k y_i = n \). Then, given a strategy profile \(\sigma \) and a profile \(x^1, \ldots, x^n \) of signals, the probability of a vector of vote proportions \(y \) is given by

\[
p^\sigma_n(y|x^1, \ldots, x^n) = \sum_{\mathcal{B}(y)} \prod_{\ell=1}^k \prod_{m_i \in \mathcal{B}_i} \sigma_{\ell}(x^{m_i}),
\]

where \(\mathcal{B}(y) \equiv \{(B_1, \ldots, B_k) : (B_1, \ldots, B_k) \text{ is a partition of } \{1, \ldots, n\} \text{ with } |B_i| = y_i, i = 1, \ldots, k\} \), and for any set \(Z, |Z| \) is the number of elements in \(Z \). And, finally, the probability of \(y \) given \(\sigma \) and \(\theta \) mentioned above is given by

\[
p^\sigma_n(y|\theta) = \int p^\sigma_n(y|x^1, \ldots, x^n) \otimes_{m=1}^n P(dx^m|\theta).
\]
Let L^i_n denote the set of values of the vector y where the ith coordinate of y is not the unique highest, i.e., alternative a_i is not the sole winner when the realized vector of vote proportions is y. A wrong outcome is obtained if, in a state where a_i is the most preferred alternative, it fails to garner the unique maximum number of votes. Thus, the ex-ante probability of obtaining a “wrong” outcome is

$$W_n^\sigma = \sum_{i=1}^k \int_{A_i} p_n^\sigma(L^i_n|\theta) P(d\theta).$$

We say that information is fully aggregated if $W_n^\sigma \to 0$ as $n \to \infty$. That is, we say that in an environment $\{u, A, \Theta, X, P\}$, the strategy σ achieves Full Information Equivalence (FIE) if the ex-ante likelihood of error induced by σ converges to 0 as the number of voters increases unboundedly.

Next, we provide an equivalent definition of FIE which is simpler and more relevant to our analytical framework. Recall that, for a given σ, we can define the expected vote share function $z^\sigma_i(\theta)$ for each alternative a_i. Now, let us define the set of states where alternative a_i is elected almost surely by

$$A^\sigma_i = \{\theta : z^\sigma_i(\theta) > z^\sigma_j(\theta), \text{ for all } j \neq i\}.$$

We then have:

Lemma 1. A strategy σ achieves FIE if and only if

$$P(A_i \setminus A^\sigma_i) = 0.$$

for $i = 1, ..., k$.

That is, σ achieves Full Information Equivalence (FIE) if the set of states where the preferred alternative fails to win almost surely is of prior probability zero. Putting differently, σ achieves FIE if for P-a.e. $\theta \in A_i$, $z^\sigma_i(\theta) > z^\sigma_j(\theta)$ for all $i = 1, ..., k$ and $j \neq i$.\(^{12}\)

Observe that we restricted ourselves to symmetric strategies, that is, to the case that each voter uses the same common strategy σ. One can extend the definition of FIE and allow for sequences of strategies that are not necessarily composed of the same common strategy. Not much is gained by that because of the following: if an asymmetric strategy profile $(\sigma^1, ..., \sigma^n, ...)$ achieves FIE, then the symmetric strategy σ defined by

$$\sigma(x) \equiv \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \sigma^m(x) \text{ for } P(\cdot | \theta)\text{-a.e. } x$$

also achieves FIE, provided that such limit exists.

There is no guarantee that a strategy ensuring full information equivalence will exist for every environment. Accordingly, if there exists some strategy that aggregates information in a given environment, we will say that the environment allows FIE.

We now move to studying environments that allow FIE. As our characterization result will rely on hyperplanes, it will be convenient to work in the space of integrable functions with respect to a given probability measure. So we shall assume the existence of a probability measure $\lambda \in \Delta(X)$ such that $P(\cdot | \theta)$ is absolutely continuous with respect to λ for P-a.e. θ. Hence, the density $f(\cdot | \theta)$

\(^{12}\)By P-a.e. $\theta \in A_i$ we mean for all $\theta \in A_i$ except for a set of P-measure zero.
of $P(\cdot | \theta)$ with respect to λ belongs to the Banach space $L_1(\lambda)$ of (equivalence classes of) integrable functions, with the norm $\|f\| = \int |f(x)| \lambda(dx)$. Let $L_1^\Delta(\lambda) = \{f : X \rightarrow \mathbb{R}_+ : \int f(x) \lambda(dx) = 1\}$ denote the “simplex” of integrable densities. In the case that X is the finite set $\{x_1, ..., x_s\}$, we take λ to be the uniform distribution $(1/s, ..., 1/s)$, and observe that $L_1^\Delta(\lambda)$ can indeed be identified with the $s - 1$ simplex $\Delta(X) = \{(y_1, ..., y_s) \in \mathbb{R}_+^s : \sum y_t = 1\}$ via $(y_1, ..., y_s) \leftrightarrow (\frac{1}{s} y_1, ..., \frac{1}{s} y_s)$. We shall sometimes abuse terminology and refer to both $\Delta(X)$ and $L_1^\Delta(\lambda)$ simply as the simplex.

Our geometric ideas will belong to the simplex. In particular, we shall be interested in separating the sets A_i^Δ, $i = 1, ..., k$, given by

$$A_i^\Delta = \{f(\cdot | \theta) \in L_1^\Delta(\lambda) : \theta \in A_i\},$$

and we emphasize once more that A_i^Δ is simply $\{P(\cdot | \theta) \in \Delta(X) : \theta \in A_i\}$ when X is finite. We use the Borel sigma-algebra in $L_1(\lambda)$ and assume that the mapping $\theta \mapsto f(\cdot | \theta)$ is measurable both ways. As such, the sets A_i^Δ and $\{\theta : f(\cdot | \theta) \in E\}$, for E measurable in $L_1(\lambda)$, are themselves measurable. For such separation ideas, we will use hyperplanes in $L_1(\lambda)$ and their corresponding restrictions to $L_1^\Delta(\lambda)$. A hyperplane in $L_1(\lambda)$ is given by the set $\{g \in L_1(\lambda) : \int g(x) h(x) \lambda(dx) = c\}$, for some $c \in \mathbb{R}$ and bounded measurable $h : X \rightarrow \mathbb{R}$, known as the normal of the hyperplane. Our objects of interest are the restrictions of hyperplanes to the simplex,

$$H(h) = \{g \in L_1^\Delta(\lambda) : \int g(x) h(x) \lambda(dx) = 0\},$$

where we note that we gain one degree of freedom, so it is without loss to take c to be zero.\(^{13}\)

Associated with $H(h)$, we consider the (strictly) positive half-space $\tilde{H}^+(h) = \{g \in L_1^\Delta(\lambda) : \int g(x) h(x) \lambda(dx) > 0\}$, with the negative one, $\tilde{H}^-(h)$, defined analogously. We remark that, because $h \in L_\infty(\lambda)$, the hyperplane with normal h is closed in $L_1(\lambda)$ (and so is its restriction to $L_1^\Delta(\lambda)$, $H(h)$).

3. Feasibility of FIE: Up to Three Alternatives

We start with the case of up to three alternatives (i.e., $k \leq 3$). We shall be able to provide a sharp characterization of FIE. Such a result does not apply for the case with $k > 3$, so we study it separately in the following section. In addition to the characterization, $k \leq 3$ seems to be the most relevant case. For instance, the binary case ($k = 2$) is, aside from empirical relevance, the case studied by almost the entire literature on CJT, so results for the binary case are useful for comparison with the rest of the literature.

To demonstrate the condition that determines whether an environment allows FIE or not, we start with two examples in the binary ($k = 2$) case. It is obvious that even in the two-state case $\Theta = \{\theta_1, \theta_2\}$, FIE fails if $f(\cdot | \theta_1) = f(\cdot | \theta_2)$, no matter how many signals we might have. So from now on we focus on examples where this obvious lack of invertibility is not the issue. In both examples we show how FIE may fail when we depart from the two-state framework: the problem arising from the fact that the same alternative can be optimal under multiple conditional

\(^{13}\)Simply use $\tilde{h}(x) = h(x) - c$ in the place of h.
distributions over signals. Example 1 shows how the addition of a third state may make FIE infeasible, and Example 2 extends this idea to continuous states.

Given a strategy \(\sigma = (\sigma_1, \sigma_2) \), we write the difference in expected vote share between \(a_1 \) and \(a_2 \) as

\[
 z^\sigma_{12}(\theta) \equiv z^\sigma_1(\theta) - z^\sigma_2(\theta) = \int_X [\sigma_1(x) - \sigma_2(x)] P(dx|\theta) \equiv \int_X \sigma_{12}(x) P(dx|\theta)
\]

where \(\sigma_{12}(x) = \sigma_1(x) - \sigma_2(x) \) for all \(x \in X \).

In order for FIE to obtain, the function \(z^\sigma_{12}(\theta) \) should be positive in states belonging to \(A_1 \) (where \(a_1 \) is preferred) and negative in states belonging to \(A_2 \) (where \(a_2 \) is preferred).

Example 1. Suppose \(A = \{a_1, a_2\}, \Theta = \{L, M, R\} \), and \(P(\theta) = \frac{1}{3} \) for all \(\theta \in \Theta \). Assume \(a_1 \) is preferred in \(L \) and \(R \) while \(a_2 \) is preferred in \(M \). Also, \(X = \{x, y\} \), and for some \(p > \frac{1}{2} \),

\[
 P(x|L) = p, \quad P(x|M) = \frac{1}{2}, \quad \text{and} \quad P(x|R) = 1 - p.
\]

This is illustrated in Figure 1 below.

![Figure 1](image-url)

Figure 1

This environment does not allow FIE. In fact, in order for \(a_1 \) to win almost surely in both \(L \) and \(R \), the strategy \(\sigma \) must satisfy

\[
 z^\sigma_{12}(L) = p\sigma_{12}(x) + (1 - p)\sigma_{12}(y) > 0
\]

\[
 z^\sigma_{12}(R) = (1 - p)\sigma_{12}(x) + p\sigma_{12}(y) > 0
\]

Taken together, we must have \(\sigma_{12}(x) + \sigma_{12}(y) > 0 \), violating the condition for \(a_2 \) winning in state \(M \), given by

\[
 z^\sigma_{12}(M) = \frac{1}{2}\sigma_{12}(x) + \frac{1}{2}\sigma_{12}(y) < 0.
\]

The problem with information aggregation in this example is the following: In order for \(a_1 \) to win in state \(L \) (when \(x \) is the more frequent signal), voters should vote for \(a_1 \) with large enough probability if the signal is \(x \). Similarly, in order for \(a_1 \) to win in state \(R \) (when \(y \) is the more frequent signal), voters should vote for \(a_1 \) with sufficiently high probability if the signal is \(y \). As a consequence, \(a_1 \) obtains a high share of votes irrespective of the signal, and wins in state \(M \) where it is not the preferred alternative.

Example 2. Let \(A = \{a_1, a_2\}, \Theta = [0,1] \) with a uniform prior probability, \(X = \{x, y\} \), and \(\Pr(x|\theta) = \theta \). Consider two different preference environments. In the first environment, all voters prefer \(a_1 \) if \(\theta > t \) and \(a_2 \) for \(\theta < t \), for some \(t \in (0,1) \). In the second environment, for some
0 < t_1 < t_2 < 1, a_1 is preferred whenever \(\theta \in (t_1, t_2) \) and a_2 is preferred when \(\theta < t_1 \) or \(\theta > t_2 \). These are illustrated in Figure 2 below as cases (A) and (B) respectively. Case (A) allows FIE but case (B) does not. In fact, for any strategy \(\sigma = (\sigma_1, \sigma_2) \), the vote share difference function is given by

\[
z_{12}^\sigma(\theta) = \theta \sigma_{12}(x) + (1 - \theta) \sigma_{12}(y)
\]

Notice that this function is linear in \(\theta \).

For \(\sigma \) to satisfy FIE in case (A), we must have \(z_{12}^\sigma(\theta) > 0 \) for \(\theta > t \) and \(z_{12}^\sigma(\theta) < 0 \) for \(\theta < t \). Hence, any \(\sigma \) that satisfies (i) \(z_{12}^\sigma(t) = 0 \) and (ii) \(z_{12}^\sigma(\cdot) \) is strictly increasing leads to FIE. It is easy to check that we can always find some \(\sigma \) with these properties.

For FIE in case (B), we must have \(z_{12}^\sigma(\theta) > 0 \) for \(\theta \in (t_1, t_2) \) and \(z_{12}^\sigma(\theta) < 0 \) for \(\theta \in [0, t_1) \cup (t_2, 1] \). However, since \(z_{12}^\sigma(\cdot) \) is linear in \(\theta \) for every strategy \(\sigma \), there is no symmetric strategy profile that achieves FIE.

Example 2 says that the substantive interpretation of the signal matters for the property of information aggregation. Suppose voter preferences depend on candidate quality and higher proportion of \(x \) (\(y \)) signals indicate higher (lower) relative quality of candidate \(a_1 \), which is an interpretation of the first environment. This environment allows FIE. However, if voter preferences depend on whether the candidate is moderate or extreme while signals are about whether a candidate leans to the left or to the right, signals cannot be classified as each favoring one candidate. This interpretation applies to the second environment, and aggregation fails in this case.

The main idea underlying the characterization theorem is contained in Example 2. In this example, FIE depends on the convexity of the set of states for which a given alternative is preferred: in the first environment both the sets \(A_1 \) and \(A_2 \) are convex, while in the second environment the set \(A_2 \) is non-convex. Notice that in this particular example, the simplex is also the unit interval: in fact the sets \(A_i \) and \(A_\Delta^i \) are isomorphic for \(i = 1, 2 \). As we shall see below, convexity of the sets \(A_\Delta^i \) is the key feature that determines whether an environment allows FIE.

A convex 3-partition of \(\Delta(X) \) is given by a collection \(\pi = \{E_1, E_2, E_3\} \) of mutually disjoint and convex subsets of \(\Delta(X) \) such that \(E_1 \cup E_2 \cup E_3 = \Delta(X) \). Given \(\pi \), we define the \(ij \)-meet \(H_{ij}(\pi) = \overline{E_i} \cap \overline{E_j} \), where \(\overline{E} \) denotes the closure of \(E \) in the simplex (recall once more that the simplex is either the finite-dimensional simplex \(\Delta(X) \) with its canonical Euclidean norm and metric, or the closed subspace \(L_1^\lambda(\lambda) \) of the Banach space \(L_1(\lambda) \), also with its usual norm and associated metric). In addition, we define the \(ij \)-facet \(F_{ij}(\pi) \) to be equal to \(M_{ij}(\pi) \) if there exists \(g \in M_{ij}(\pi) \)
and $\varepsilon > 0$ such that $B_\varepsilon(g) \subset E_i \cup E_j$, and to be equal to the empty set otherwise. Finally, we define the \textit{ij-facet hyperplane} as $H_{ij}(\pi) = H(h)$ where $H(h)$ is a hyperplane that contains the ij-facet $F_{ij}(\pi)$, whenever such facet is not empty (if $F_{ij}(\pi) = \emptyset$, we set $H_{ij}(\pi) = \emptyset$ as well).

\textbf{Definition 1.} A convex 3-partition $\pi = \{E_1, E_2, E_3\}$ is called a \textit{restricted 3-partition} if for all $i, j, m \in \{1, 2, 3\}$, $H_{ij}(\pi) \neq H_{im}(\pi)$.

Figure 3 illustrates the concept of a restricted 3-partition for the case that $X = \{x_1, x_2, x_3\}$. The cases (A) and (B) represent restricted 3-partition, while (C) is not a restricted 3-partition: the facet hyperplanes H_{12} and H_{13} are equal. Informally, the same hyperplane separates E_1 from both E_2 and E_3.

For a given $E \subset \Delta(X)$, let \tilde{E} denote its relative interior in $\Delta(X)$. Here’s our characterization result.

\textbf{Theorem 1.} Let $k = 3$. An environment (u, A, Θ, X, P) allows FIE if and only if there exists a restricted 3-partition $\pi = \{E_1, E_2, E_3\}$ such that

$$P(\{\theta \in \Theta : f(\cdot | \theta) \in A_1^{\Delta} \setminus \tilde{E}_i\}) = 0$$

for $i = 1, 2, 3$.

In simple words, FIE is possible if and only if the images of the three sets A_1 and A_2 and A_3 in the simplex are included in a convex partition defined by three distinct hyperplanes, with probability one. The case $k = 2$ is much simpler: the required partition into two convex sets is obtained by a single hyperplane, so the characterization boils down to the following corollary.

\textbf{Corollary 1.} Let $k = 2$. An environment (u, A, Θ, X, P) allows FIE if and only if there exists a hyperplane $H(h)$ such that

$$P(\{\theta \in \Theta : f(\cdot | \theta) \in A_1^{\Delta} \setminus \tilde{H}^+(h)\}) = 0 = P(\{\theta \in \Theta : f(\cdot | \theta) \in A_2^{\Delta} \setminus \tilde{H}^-(h)\}).$$

\footnote{$B_\varepsilon(g)$ is the open ball with radius $\varepsilon > 0$ around g.}
To reiterate, when \(k = 2 \), FIE is achievable if and only if the conditionals arising in states where one alternative is preferred are separated by a hyperplane from those arising in states where the other alternative is preferred, with probability one.\(^{15}\)

Recalling that the vote share function is linear in \(P(\cdot | \theta) \), the intuition for Theorem 1 and Corollary 1 follows on the lines of Example 2. Consider \(k = 3 \) and a restricted 3-partition as in Figure 3(A). The line separating \(E_1 \) and \(E_2 \) is a hyperplane with normal \(h_{12} \) and the one separating \(E_2 \) and \(E_3 \) is a hyperplane with normal \(h_{23} \). A strategy \((\sigma_1, \sigma_2, \sigma_3)\) with \(\sigma_{12} \) proportional to \(h_{12} \) and \(\sigma_{23} \) proportional to \(h_{23} \) is easily shown to achieve FIE.\(^{16}\) If the partition is as in Figure 3(B), then one of the normals of the three hyperplanes will be a convex combination of the other two. That is, \(h_{13} = \alpha h_{12} + (1 - \alpha)h_{23} \) for some \(\alpha \in (0, 1) \). One can then verify that a strategy \((\sigma_1, \sigma_2, \sigma_3)\) with \(\sigma_{12} \) proportional to \(\alpha h_{12} \) and \(\sigma_{23} \) proportional to \((1 - \alpha)h_{23} \) achieves FIE. Conversely, if a profile \(\sigma \) achieves FIE, then by linearity of the vote share function, the differences \(\sigma_{12}, \sigma_{23} \) and \(\sigma_{31} \) must induce a convex partition of the simplex and each element \(E_i \) of the partition must contain \(A_1^3 \) with probability one.\(^{17}\)

To see why we require the condition that the convex partition cannot be “unrestricted”, suppose that the only possible convex partition generated by the sets \(A_1^3 \) are as in Figure 3(C), but \(\sigma \) achieves FIE. This would mean that \(\sigma_1 = \sigma_2 \) along the hyperplane separating \(E_1 \) from \(E_2 \), and also \(\sigma_1 = \sigma_3 \) along the same hyperplane which also separates \(E_1 \) and \(E_3 \). Therefore, we must have \(\sigma_2 = \sigma_3 \) along this hyperplane. But we also require \(\sigma_2 = \sigma_3 \) along the hyperplane separating \(E_2 \) from \(E_3 \), implying that \(\sigma_2 = \sigma_3 \) everywhere which would imply that \(a_2 \) and \(a_3 \) would have the same vote shares for all states.

\(^{15}\)The reason we can only talk about “separation with probability one” is that, at this level of generality, we could have a situation like the following simplex

![Simplex Diagram](image)

where again the dark gray region represents \(A_1^3 \) and the light gray represents \(A_2^3 \). The two dots represent mass points – that is, each represents a distribution \(\mu \) for which the set \(\{ \theta : P(\cdot | \theta) = \mu \} \) has positive \(P \)-probability. There’s obviously only one candidate hyperplane to separate these two sets, but as the dark gray and light gray mass points lie exactly on this hyperplane, one cannot separate \(A_1^3 \) and \(A_2^3 \) using our definition. And in fact, FIE is not possible, as it would require that the vote shares on both mass points be equal, but in the dark gray one \(a_1 \) is strictly preferred to \(a_2 \) and the reverse is true in the light gray one. So with positive probability we would have \(a_2 \) being chosen at the dark gray mass point and \(a_1 \) at the light gray mass point, violating FIE. We thank Satoru Takahashi for pointing this out to us.

\(^{16}\)Recall that \(\sigma_{ij}(\cdot) \equiv \sigma_i(\cdot) - \sigma_j(\cdot) \), for \(i \neq j \), and \(i, j = 1, 2, \ldots, k \).

\(^{17}\)At this point, the reader might wonder why the hyperplanes produced by \(\sigma_{12}, \sigma_{23} \) and \(\sigma_{31} \) would have a common intersection in the simplex (if they intersect at all). While we postpone the formal explanation till Section 4.2, the curious reader can, at this stage, refer to Figure 10 and the self-contained explanation following the figure.
Figure 4.

Figure 4(A) depicts the simplex in an environment with discrete states that allows FIE. The dark grey dots are distributions where, say, a_1 is preferred, while the light grey dots are distributions where a_2 is preferred. FIE is achieved since the dark grey dots are neatly separated from the light grey dots.

By contrast, in Figures 4(B) and 4(C) we demonstrate environments with continuous state spaces. In particular, we again have rich state spaces in the sense that any distribution over signals may arise. As before, a_1 is preferred in the dark grey region and a_2 in the light grey region. In Figure 4(B), FIE is achieved since there is a hyperplane separating the dark from the light grey region. Notice that the preferences and the mapping from states to distributions over signals pin down the hyperplane of separation uniquely in the continuous case unlike the discrete case in figure 4(A). On the other hand, in the environment depicted in figure 4(C), FIE fails because the light and dark grey regions are not separated by a hyperplane.

In an environment with two alternatives that achieves FIE, we can classify the set of signals X in terms of which alternative is favored. Given the hyperplane separating the simplex into two halfspaces, denote the signals with their vertices in the halfspace where a_1 (resp. a_2) is favored as belonging to group X_1 (resp. X_2). Signals in X_1 favor a_1 and those in X_2 favor a_2 in the following sense: for any signal in X_1, the strategy that achieves FIE attaches higher probability to a_1 than to a_2 ($\sigma_{12}(x) > 0$ if $x \in X_1$) and for any signal in X_2, the strategy attaches higher probability to a_2. For the environment in figure 4(A), the solid separating line shown in the figure puts vertices corresponding to signals x_1 and x_3 on the light grey side. With a strategy profile that generates the line, the higher the probability of signals x_1 and x_3, the more votes a_2 receives. However, we can alternatively draw a line that puts only the x_1 vertex on the light grey side, like the dashed line depicted, and thus x_3 favors a_1 for the strategy profile that generates this line. Therefore, in case of discrete state spaces, signals endogenously favor alternatives. In the case of a continuous state space, the classification of signals is unique as demonstrated in Figure 4(B).

Corollary 1 identifies an important connection between unidimensional and multidimensional models so far as the property of FIE is concerned. Any multidimensional environment satisfying
FIE is characterized by a direction in the simplex such that the projections of the conditional distributions along that direction induce a structure like the first environment in Example 2: there is a threshold that separates the projection of A_1^Δ from that of A_2^Δ. This direction is that of the normal to the hyperplane identified in Corollary 1.18 Notice that this condition is much weaker than the standard condition of ranking of signals by MLRP.

Continuous Environments. Let us now consider environments with enough continuity to extract sharper implications from Theorem 1. We say that an environment is continuous if: (i) Θ is a topological space; (ii) X is finite; (iii) u is continuous; and (iv) $\theta \mapsto P(\cdot | \theta) \in \Delta(X)$ is continuous, one-to-one, and with a full-dimensional range. In a continuous environment we can define pivotal states: a state θ is ij-pivotal if it is in the relevant part of the boundary of A_i and A_j, i.e., if $P(V \cap A_i) > 0$ and $P(V \cap A_j) > 0$ for every neighborhood V of θ. Let M_{ij} denote the set of ij-pivotal states. We then have the following implications of Theorem 1: if FIE is achieved and M_{ij} is non-empty for some pair (i, j), then: (i) $P(\cdot | \theta)$ must lie on the same hyperplane for all $\theta \in M_{ij}$, and (ii) $z_{ij}^\theta(\theta) = 0$ for all $\theta \in M_{ij}$. The first part imposes a strong condition on the pairs of utility functions and mappings $\theta \mapsto P(\cdot | \theta)$ for which FIE is achievable. The second part identifies the class of strategies that achieve FIE in such environments: these strategies must produce equal vote shares for the two alternatives at states around which the ranking over these alternatives flips. For concrete examples, in the first environment in Example 2, the pivotal state was t and the FIE strategy was characterized by $z_{12}(t) = 0$. On the other hand, in the second environment, there were two pivotal states t_1 and t_2 – and because the simplex is isomorphic to Θ, they are their own images in the simplex, and obviously there is no hyperplane containing both, as hyperplanes in one-dimensional spaces are points. Finally, we see in Figure 4(A) that if the environment is not continuous we need not have pivotal states, and we see in Figures 4(B) and 4(C) that in continuous environments pivotal states must all fall on a straight line in order for FIE to obtain.

Example 3 extends Example 2 from unidimensional to a multidimensional setting and illustrates the implications of FIE in rich environments.

Example 3. Let $X = \{x_1, x_2, x_3\}$, $\Theta = [0, 1]^2$ with uniform prior, and $u_{12}(\theta) = u(\theta, a_1) - u(\theta, a_2)$. Assume that the mapping $\theta \mapsto P(\cdot | \theta)$ is continuous, one-to-one, and onto. Suppose that signal x_1 is optimistic about a_1 and pessimistic about a_2, and vice-versa for the signal x_2. It is reasonable then that $u_{12}(\theta) > 0$ for θ such that $P(\cdot | \theta) = \delta_{x_1}$ and that $u_{12}(\theta) < 0$ for θ such that $P(\cdot | \theta) = \delta_{x_2}$, where δ_x is the point mass at x. It is also reasonable that along a path of indifference (the image of $\{\theta : u_{12}(\theta) = 0\}$ in $\Delta(X)$) the probabilities of x_1 and x_2 should go in opposite directions. An implication of Corollary 1 is that the image of a path of indifference in $\Delta(X)$ is a straight line. In other words, the only pairs of utility functions and mappings $\theta \mapsto P(\cdot | \theta)$ that allow FIE must send the path of indifference in Θ to a straight path in $\Delta(X)$.

To fix ideas contained in the above example, consider an electorate voting to accept or reject a proposal and that each voter gets noisy information about one of several aspects of the proposal.

18McMurray (2018) finds a result with a similar flavor and interprets it as the endogenous emergence of a single dimension of political conflict in a multidimensional world.
For concreteness, suppose that the vote is about whether to remain in a common politico-economic union or not, e.g., the “Brexit” vote in May 2016. While in reality the voters have a private value component in such situations, we make the simplifying assumption that preferences depend only on the overall proportion of the different signals. A crucial tradeoff in this vote was between the possible loss of growth versus protection of local employment. Suppose that x_1 is a signal that says that staying will be good for growth and x_2 is a signal that says there will be loss of local jobs due to migration. The stronger the likely growth effect is, the more x_1 signals are received, and the larger the likely job loss is, the more x_2 signals are received. Now, think of x_3 being a signal on a third factor, say, the extent to which migrants make a net contribution to the local economy. Clearly, voter preferences depend on the proportion of each of the three signals in the population (so the rich state space formulation is reasonable). Corollary 1 says that, in continuous environments, in order for FIE to obtain, μ_3 (the proportion of signals about net contribution of migrants) should not affect the rate at which μ_1 (the proportion of signals about growth) is traded off against μ_2 (the proportion of signals about job loss). This seems to be a strong restriction on pairs of preferences and distributions. Therefore, even under the heroic assumption of common preferences, it turns out that in continuous environments information aggregation obtains only in very special situations.

The next example is an application of Corollary 1 to a very standard case of spatial model of political competition between two alternatives. In fact, this is another multidimensional generalization of Example 2.

Example 4. We continue the metaphor of a policy proposal (alternative a_1) being voted on against a status quo (alternative a_2). There is a policy space $Y = [0, 1]^2$, in which both alternatives are located. Voters’ utility for policy y is given by $u(|y - y^*|)$, $u' < 0$, where $| \cdot |$ denotes the Euclidean norm. Thus, $y^* \in Y$ is the voters’ ideal policy and voters prefer policies closer to y^* to those further from it. The status quo is known to be located at $y_Q \neq y^*$ on the policy space. On the other hand, there is uncertainty about the location of the proposed policy: we denote the location of the proposed alternative on the policy space by the state variable $\theta = (\theta_1, \theta_2) \in [0, 1]^2$. In this setting, the voters prefer a_1 (resp. a_2) in a given state θ if $|\theta - y^*|$ is less (greater) than $|y_Q - y^*|$. Hence the boundary between A_1 and A_2 in Θ is given by

$$I = \{\theta : |\theta - y^*| = |y_Q - y^*|\}$$

which is the circumference of a circle (or part thereof). Observe that I is also the set of pivotal states M_{12}. This is illustrated in Figure 5(A).

The shape of I is entirely a property of the utility function. Suppose the prior probability of the alternative is uniform on the policy space, the signal $x = (x_1, x_2)$ is two dimensional, and $x_i \in \{0, 1\}$, with $P(x_i = 1|\theta) = \theta_i$. Thus, x_1 provides information on θ_1 and x_2 on θ_2 independently of each other. Alternatively, the ith component of the state, θ_i, can simply be thought of as the proportion of 1-signals in dimension i. Observe that we have four possible combinations of signals, so $\Delta(X)$ is the 3-dimensional simplex, as in Figure 5(B). There is no strategy profile for which FIE can be obtained in this setting. This follows by noting that there exists no hyperplane that
can separate A_1^Δ from A_2^Δ and then applying Corollary 1. Figure 5(B) illustrates this last point. The range of the mapping from Θ to the simplex is the two-dimensional manifold in gray. The boundary I is mapped to the thick curve dividing the said manifold into A_1^Δ and A_2^Δ. As the image on I in $\Delta(X)$ is an one-dimensional manifold, it could still be the case that it is contained in a two-dimensional hyperplane in $\Delta(X)$. But simple manipulations show that this is not the case.19

A more friendly way to illustrate what is involved is to consider an alternative information structure with three signals, $\{x_1, x_2, x_3\}$, and a linear mapping $\theta \mapsto P(\cdot | \theta)$, for instance $(\theta_1, \theta_2) \mapsto (\frac{\theta_1}{2}, \frac{\theta_2}{2}, 1 - \frac{\theta_1 + \theta_2}{2})$. Hence x_3 signals that θ_1 and θ_2 are small, whereas x_1 (resp. x_2) signals that θ_1 (resp. θ_2) is large. The simplex now is two-dimensional, and the image of I on $\Delta(X)$ will clearly be a curve, so FIE is not possible. This is illustrated in Figure 6(A): the gray area is the image of Θ in the simplex, and the curve therein is the image of I in the simplex.

19For instance, in the case that $A_1 = \{\theta \in [0, 1]^2 : \theta_2 > \theta_1^2\}$, the image of I contains the points $(0, 0, 0)$, $(1, 0, 0)$, $(1/8, 3/8, 1/8)$, and $(1/27, 8/27, 1/27)$, and there’s no hyperplane in \mathbb{R}^3 containing all these points.
Its clear, therefore, that in continuous environments FIE holds only in very special cases. Intuitively, because we have infinitely many states and only finitely many signals, voters have very limited private information but their preferences have a rich variation across different circumstances (states), usually leading to aggregation failure despite common preferences.

Discrete Environments. Let us now briefly move to environments with finitely many states and signals, where the implications of Theorem 1 are basically the opposite of those in continuous environments. Assume that there are \(r \) states, so \(\Theta = \{ \theta_1, \theta_2, \ldots, \theta_r \} \), and \(s \) signals, so \(X = \{ x_1, \ldots, x_s \} \). Assume further that the ranking over the two alternatives is strict at each state, and that each state \(\theta_t \) is mapped to a distinct probability distribution \(P(\cdot|\theta_t) \), denoted as \(P_t \). As the following two examples illustrate, when \(s \geq r \) (that is, when there are at least as many signals as states), then irrespective of the particular utility function, FIE obtains except for special circumstances, even when there are more than two alternatives in question. We shall develop the result more generally in the next section (Corollary 3). As the examples make it clear, the crucial difference between continuous-state and discrete-state environments is that in the former FIE might require a strategy that produces equal vote shares for the two alternatives at all pivotal states but there is no such strict requirement in the latter.

Example 5. FIE obtains whenever \(r = 2 \) and \(P_1 \neq P_2 \).

Example 6. FIE obtains if \(r = s = 3 \) and the conditionals \(\{P_1, P_2, P_3\} \) are linearly independent.

We skip the proofs as these are special cases of Corollary 3 introduced later. However, for these cases, the statements can simply be verified by inspecting the figures. Figure 7(A) illustrates the case of \(r = 2 \) and \(s = 3 \): it is always possible to pass a hyperplane separating \(P_1 \) and \(P_2 \) irrespective of their location on the simplex. Notice that this example is of independent interest given that there is a large literature that looks specifically at the case of two states and two signals.

![Figure 7](image-url)
Similarly, Figure 7(B) illustrates the case of $r = s = 3$ when the conditional distributions satisfy linear independence. It is easy to see from the figure that one can always separate any two vectors from the third by a suitable hyperplane. Figure 7(C) demonstrates the necessity of linear independence. In this case, if a_1 is preferred in θ_1 and θ_3 while a_2 is preferred in θ_2. It is easy to see from the figure that one cannot find a hyperplane that separates $\{P_1, P_3\}$ from P_2. Notice that in Example 1 also, we have aggregation failure due to the fact that the conditional distribution for which a_2 is preferred is a linear combination of the conditionals for which a_1 is preferred.

4. Feasibility of FIE: Multiple Alternatives

We have already established that due to linearity of the vote share function, if FIE is to be obtained, then the sets $\{A^\Delta_i\}_{i=1,\ldots,k}$ must be contained in a convex partition of the simplex. We have also seen that with continuous state spaces giving rise to dense sets of conditional distributions on the simplex, such convexity already restricts the set of pairs of utility functions and mappings from states to distributions that allow FIE. In this section, we explore sufficient conditions for FIE in the general case with multiple alternatives.

When $k = 2$, a convex partition of the simplex is also sufficient for FIE. When $k = 3$, convexity is almost sufficient: we only need the added restriction that the hyperplane separating A^Δ_i and A^Δ_j cannot also separate A^Δ_i and A^Δ_k. However, when $k > 3$, a restricted k-partition of the simplex into convex sets (while necessary) is not sufficient for FIE. In other words, the characterization for $k \leq 3$ does not work when we have more than three alternatives. We no longer have a complete characterization for FIE for multiple alternatives when $k > 3$.

We start the section with an example with four alternatives, showing that a restricted 4-partition of the simplex into convex sets does not guarantee FIE.

Example 7. Suppose there are three signals and four alternatives. The simplex over the signals is represented by the right angled triangle ABC, as shown in Figure 8. There is a smaller right
angled triangle DEF inside ABC, with side EF parallel to BC. The most favored alternatives for different vectors in the simplex are as follows: \(a_1\) for the trapezium ADEB, \(a_2\) for the trapezium ADFG, \(a_3\) for the 5-sided polygon GFEB, and \(a_4\) for the triangle DEF. While each \(A^\Delta_k\) is convex, FIE is not achievable in this environment. To see why, suppose strategy \(\sigma\) achieves FIE.

Now, it must be the case that along all points \(P(\cdot|\theta)\) on AD (and the entire line along AD on the simplex) \(z^\sigma_{ij}(\theta) = z^\sigma_{hk}(\theta)\). Similarly, for all points on the line along BE, \(z^\sigma_{ij}(\theta) = z^\sigma_{hk}(\theta)\). By linearity of vote shares in \(P(\cdot|\theta)\) if BE and AD intersect at \(H\) then at \(P(\cdot|\theta) = H\), \(z^\sigma_{ij}(\theta) = z^\sigma_{hk}(\theta) = z^\sigma_{hk}(\theta)\). Similarly, at \(F\) which is the intersection of DF and EF, we must have \(z^\sigma_{ij}(\theta) = z^\sigma_{hk}(\theta) = z^\sigma_{hk}(\theta)\). Again by linearity, \(z^\sigma_{ij}(\cdot) = 0\) must trace a line on the simplex, but we already know two points on this line: \(H\) and \(F\). Therefore, \(z^\sigma_{ij}(\cdot) = 0\) must be represented by the line along FH. However, for FIE we need \(z^\sigma_{ij}(\cdot) = 0\) to coincide with the line through GF, which is impossible.

To see why a restricted \(k\)-partition is not sufficient for FIE in the general case, suppose that for each pair of alternatives \((a_i, a_j)\) the sets \(A^\Delta_i\) and \(A^\Delta_j\) can be separated by a hyperplane \(H(h_{ij})\). If a strategy \(\sigma\) achieves FIE, then \(\sigma_{ij} = \sigma_i - \sigma_j\) must be proportional to \(h_{ij}\), for each pair \((i, j)\). The challenge is that we have \(kC_2\) hyperplanes \(H(h_{ij})\) and only \(k\) functions \(\sigma_1, \ldots, \sigma_k\) to match them. For \(k > 3\), we have \(kC_2 > k\), i.e., more equations than variables. To add to the problem, the hyperplanes \(\sigma_{ij}(\cdot) = 0\) are themselves linearly dependent, as are the hyperplanes \(H(h_{ij})\). The linear dependence of hyperplanes arising from \(\sigma\) come from the ranking of vote shares and that of the hyperplanes denoting preferences arise from transitivity. As long as the hyperplanes due to preferences have exactly the same restrictions as the hyperplanes generated by the strategy, we have a solvable system. This was exactly the case when \(k = 3\) where a convex partition was (almost) sufficient for FIE. However, when \(k > 3\), the hyperplanes due to preferences have fewer restrictions than the hyperplanes due to strategy for the following reason. When we need only the sets \(A^\Delta_i\) to be convex, we are imposing restrictions on preference only for the top-ranked alternative for each state. In particular, the locus of indifference between two alternatives need not be a hyperplane when neither alternative is top-ranked in the neighbourhood. On the other hand, the strategy \(\sigma\) imposes a linear vote share function for each alternative. Therefore, convexity of the sets \(A^\Delta_i\) allows more flexibility than can be explored by the strategy function. In order to ensure FIE, we need to impose more conditions on preferences beyond convexity of the sets \(A^\Delta_i\).

We shall provide two alternative sets of sufficient conditions for FIE when \(k > 3\). Informally speaking, our conditions will be respective generalizations for the situations described in Figure 3(A) and Figure 3(B). For the former, we will require that the simplex be partitioned in a very special way, so that the required hyperplanes are parallel to each other. For the latter, we will allow for a more general convex partition, but one that avoids situations like the one in Example 7. In particular, we will require that for each pair of alternatives \(a_i\) and \(a_j\), the set of conditionals for which \(a_i\) is preferred to \(a_j\) are separated by a hyperplane from those for which \(a_j\) is preferred to \(a_i\).

In a certain sense, these two conditions are relevant for two different classes of environments. Parallel separation, albeit restrictive at first sight, is guaranteed whenever the conditional distributions are linearly independent in the simplex. In particular, when the state and signal spaces are
finite and there are more signals than states, linear independence holds generically. When there are more states than signals, linear independence is no longer expected. Parallel separation is therefore too strong a condition for such environments. and therefore we require a more general (weaker) sufficient condition. Our second condition, star-shaped separation, is much more general. It allows for more complex kinds of separations. We apply it to rich environments (where parallel separation is too restrictive) to take advantage of having the entire simplex to work with.

Comparing the two sets of results, we derive the broad lesson that the property of FIE depends on a comparison of the richness of agents’ private information with the richness of the underlying preference. This lesson is already reflected in some of the examples above: FIE is non-generic when the state space is rich (Examples 3 and 4) and generic when there are at least as many signals as states (Examples 5 and 6). In this sense, one may roughly say that there is a positive result for discrete state spaces and a negative result for continuous state spaces.

4.1. Separation by Parallel Hyperplanes. Our first take on the $k > 3$ case is to consider extremely well-behaved convex partitions of the simplex. This is captured by Property PS, which requires that the sets A_i^Δ, $i = 1, ..., k$, be separated by a set of parallel hyperplanes, similarly to the case depicted in Figure 3(A). While this condition seems demanding, under some regularity conditions it is satisfied whenever the conditionals are linearly independent as we shall shortly see.

Definition 2. We say that property PS holds if there exists a bounded measurable function $h : X \to \mathbb{R}$ and real numbers $0 < c_0 < c_1 < c_2 < \cdots < c_k$ such that for all $i = 1, ..., k$, and P-a.e. $\theta \in A_i$, $\frac{1}{c_i} < \int h(x) f(x|\theta) \lambda(dx) < \frac{1}{c_i-1}$.

Following on the footsteps of Theorem 3 in Mihm and Siga (2018), we have the following

Theorem 2. If property PS holds, then there exists a strategy that achieves FIE.

The intuition for the proof is the following. Property PS ensures that for each pair of alternatives (a_i, a_j), the sets A_i^Δ and A_j^Δ are separated by (a translate of) a hyperplane H_{ij} with a common normal h. We show that we can define a strategy function σ such that $\sigma_{ij}(x) = h(x) - \frac{1}{c_i}$ for all x, and all $i \neq j$. This strategy function achieves the required separation and delivers FIE.

While the property may look very demanding, it is satisfied when the set of conditionals satisfy a notion of vector independence. We first present the regularity conditions required for this result to go through in general environments.

Definition 3. We say than an environment (u, A, Θ, X, P) is regular if: (i) Θ and X are compact metric spaces endowed with their Borel sigma-algebras; (ii) the density $f(\cdot|\theta)$ of $P(\cdot|\theta)$ with respect to λ is continuous on $X \times \Theta$.

Let us denote by \mathcal{F} the set of information structures defined over a regular environment. Observe that when the state and signal spaces are finite, these assumptions are trivially satisfied, so a discrete environment is regular. Let $\mathcal{M}(\Theta)$ denote the set of all $[-1, 1]$-valued signed measures defined on the Borel sets of Θ. Our notion with independence defined below is a strengthening of the notion of independence in McAfee and Reny (1992); theirs is akin to convex independence, whereas the following is akin to linear independence.
Definition 4. We say that $P \in \mathcal{F}$ satisfies independence when the following condition holds true:

$$\int P(\cdot | \theta) \nu(d\theta) = P(\cdot | \theta)$$

for some signed measure $\nu \in \mathcal{M}(\Theta)$ then it must be that $\nu = \delta_\theta$, where δ_θ is the point-mass concentrated at θ.

When the state space is discrete, i.e., $\Theta = \{\theta_1, \theta_2, \ldots, \theta_r\}$ and the conditional $P(\cdot | \theta_t)$ in the generic state θ_t is denoted by P_t, independence boils down to linear independence: there does not exist r scalars $\{\nu_1, \nu_2, \ldots, \nu_r\}$ with at least one not equal to zero such that

$$\sum_{t=1}^r \nu_t P_t = 0.$$

The following Lemma says that as long as the environment is regular, all we have to verify for property PS is whether the conditionals satisfy the above notion of independence.

Lemma 2. In a regular environment, if $P \in \mathcal{F}$ satisfies independence then property PS holds.

We thus have the following corollary establishing that linear independence is sufficient for a regular environment to allow FIE. Notice that independence is a property of the information structure: as long as the set of conditionals satisfies independence, FIE obtains irrespective of preferences.

Corollary 2. Assume a regular environment. If the information structure $P \in \mathcal{F}$ satisfies independence, then the environment allows FIE.

Corollary 2 allows a further, simple corollary for the case when both the state and signal space are finite.

Corollary 3. Suppose there are r states and s signals with $s \geq r \geq k$. The environment allows FIE if the conditional vectors are linearly independent.

The above Corollary generalizes Examples 5 and 6. Of course, when $s \geq r$ linear independence is a generic property. The general lesson with finite state and signal spaces and with more signals than states is that FIE obtains except for very special cases. We postpone a formal discussion of genericity of FIE till section 4.1.1.

Corollary 3 is important given the large body of work looking specifically at the case with two states ($r = 2$). It is easy to see that when there are two states, linear independence is trivially satisfied as long as $P_1 \neq P_2$, i.e., each state produces a different conditional distribution over signals.

20 Here we show that the condition for sufficiency cannot be relaxed further to convex independence from (linear) independence. Suppose $r = s = 4$ and $k = 2$. The linearly dependent conditionals $P_1 = (0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}), \ P_2 = (\frac{1}{3}, 0, 0, \frac{1}{3}), \ P_3 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0), \ P_4 = (0, 0, 0, 1)$ satisfy convex independence; assume that $A_1 = \{\theta_1, \theta_2\}$ and $A_2 = \{\theta_3, \theta_4\}$. It is clear that the sets $\{P_1, P_2\}$ and $\{P_3, P_4\}$ cannot be separated by a hyperplane. In fact, the vector $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is equal to $\frac{1}{3}P_1 + \frac{1}{3}P_2$ and also to $\frac{1}{3}P_3 + \frac{1}{3}P_4$, so it lies in the convex hull of each of these two sets; thus we cannot separate these two convex sets.
Actually, the principle underlying the result just mentioned holds true for any number of signals and it is unrelated to linear independence: if the number of states is equal to the number of alternatives, each state is associated to a distinct distribution, and for each alternative there is one state where the alternative is the best, then FIE necessarily obtains, for any number of signals (provided that there are at least two possible signals). To see why this is true, consider an environment with k alternatives, $r = k$ states, and two signals (so $s = 2$). The simplex is simply $[0, 1]$, with $p \in [0, 1]$ denoting the probability of one of the signals. Hence $P_t \in [0, 1]$ for each $\theta_t \in \{\theta_1, \ldots, \theta_k\}$. If $P_t \neq P_{t'}$ for any pair $t \neq t'$, then obviously there is a number b such that $bP_t \neq bP_{t'}$ for all t, t' (e.g. $b = 1$). Re-labeling states if necessary, it is immediate that we can find the required numbers c_0, \ldots, c_k so that property PS is satisfied using b as the required function h. We then have:

Proposition 1. In an environment with $r = k$, $s \geq 2$, and $A_i = \{\theta_i\}$ for every $i \in \{1, \ldots, k\}$, property PS holds if and only if $P_t \neq P_{t'}$ for all $t, t' \in \{1, \ldots, k\}$.

As a consequence, when for each alternative there is a unique state where it is the best alternative, FIE is guaranteed provided that the corresponding distributions are distinct, regardless of the number of alternatives and the number of signals. Thus, the typical assumption of one state per alternative in effect trivializes the question of FIE. An alternative way of putting it is that lumping all states into one aggregate state leads to false positive results about FIE.

Of course, matters are different when we have more states than alternatives and signals. Proposition 1 fails and so does linear independence, so Corollary 2 cannot offer any guidance regarding whether FIE holds or not. Moreover, there is a sense in which more states and/or fewer signals is an impediment for FIE. The point is demonstrated by the following heuristic argument due to Mihm and Siga (2018). Consider $r > s$ and $k = 2$. Then, the condition for FIE is given by Theorem 1. Now, suppose we increase the number of states r keeping the number of signals s fixed. For each additional state, we choose a random vector on the simplex as the relevant conditional distribution and assign a random alternative as the most preferred one. As states are added to the simplex in this manner, the (ex-ante) likelihood of the condition in Theorem 1 being violated increases. In fact, one can make the likelihood of FIE obtaining arbitrarily small by sufficiently increasing the number of states (see Mihm and Siga (2018), Theorem 3, for a formal statement).

The logical limit of the procedure above is to consider situations with infinitely many states and finitely many signals, for instance, by having a “rich state space” with the entire $s - 1$ simplex as the range of the mapping $\theta \mapsto P(\cdot | \theta)$. In such a situation, linear independence cannot be expected, so in Section 4.2 below we develop a weaker set of sufficient conditions for FIE which apply to rich state spaces. But let us first delve into the idea of genericity of FIE for general spaces Θ and X.

4.1.1. **Genericity of FIE.** In general environments, state and signals spaces are bound to not be finite. So generic independence (and the resulting generic FIE property) when there are more signals than states cannot be taken as an indication of prevalence of FIE. We now argue that failure of FIE might well be robust.

We demonstrate the failure of genericity of FIE with two examples. Both examples involve two alternatives in order to draw from the characterization in Corollary 1. The first example shows
that even in a discrete environment involving more states than signals, FIE can fail for an open set of environments.

Example 8. Let \(X = \{x_1, x_2, x_3\} \) and \(\Theta = \{\theta_1, \theta_2, \theta_3, \theta_4\} \). Let there be two alternatives, with \(A_1 = \{\theta_4\} \) and \(A_2 = \{\theta_1, \theta_2, \theta_3\} \). Consider an environment described by \(P : \Theta \to \Delta(X) \) such that \(P_i = e_i \) for \(i = 1, 2, 3 \), and \(P_4 = (1/3, 1/3, 1/3) \), where \(e_i \) is the coordinate vector (i.e. \(e_1 = (1,0,0) \), etc.) and \(P_i \) is short for \(P(\cdot | \theta_i) \). Hence, under \(P \), \(A_1^\Delta \) is the mid-point of the simplex, and \(A_2^\Delta \) is the union of the three vertices, as illustrated in Figure 8(A). There’s no way to separate these two sets with a single hyperplane, so FIE fails for the information structure \(P \). Now consider close-by environments, which here means that such an environment is described by \(\hat{P}_i \) is close to \(P_i \) for each \(i \) as vectors in \(\mathbb{R}^3 \) (restricted to the simplex, of course). It is clear that we can find an open set of such \(\hat{P} \)’s such that the corresponding images of \(A_1 \) and \(A_2 \) in the simplex will be close to the center and the vertices, respectively. This is illustrated in Figure 8(B), with the open balls depicted. Again, for close enough \(\hat{P} \)’s, it will not be possible to separate the corresponding sets with a single hyperplane. So FIE fails for each such \(\hat{P} \).

It is straightforward to verify that similar ideas can be applied to Example 2(B), with infinitely many states and two signals. In fact, the ideas in Example 8 already show that FIE can fail robustly for general \(\Theta \) and \(X \): it suffices to have \(\lambda \) have four atoms at the dots in 8(A). The next example presents an alternative argument for infinite \(\Theta \) and \(X \).

Example 9. Let \(\Theta \) be compact metric, \(X = [0,1] \), and \(\lambda \) be the Lebesgue measure on \([0,1] \). Let \(P : \Theta \to L^1_{\lambda}(\lambda) \) represent an environment such that \(A_1^\lambda = \{f \in L^1_{\lambda}(\lambda) : ||f - 1|| < \frac{1}{4}\} \) and \(A_2^\lambda = L^1_{\lambda}(\lambda) \setminus A_1^\lambda \). Clearly there’s no way to separate \(A_1^\lambda \) and \(A_2^\lambda \) with a hyperplane: for any bounded \(h : [0,1] \to \mathbb{R} \), we would need \(\int h(x)dx > 0 \) because \(1 \in A_1^\lambda \); hence we would have an interval \(I \subset [0,1] \) with \(h(x) > 0 \) for all \(x \in I \); now take one such interval \(I \) such that, for some \(\theta \in A_2 \), \(f(x|\theta) = \frac{1}{|I|} \mathbb{1}\{x \in I\} \), so that we would have \(\int h(x)f(x|\theta)dx > 0 \), contradicting separation. Consider the space of all environments described by \(P : \Theta \to L^1_{\lambda}(\lambda) \) such that the range of \(P \) is \(L^1_{\lambda}(\lambda) \) and endow it with the metric \(\rho(P, \hat{P}) = \sup_{\theta \in \Theta} ||f(\cdot|\theta) - \hat{f}(\cdot|\theta)|| \), where \(\hat{f} \) is the density of \(\hat{P} \). For small \(\varepsilon > 0 \), pick an \(\varepsilon \)-ball \(B_\varepsilon(P) \) around \(P \), and observe that an analogous argument
establishes that, for each \(\hat{P} \in B_\varepsilon(P) \), there is no hyperplane separating the corresponding sets \(\hat{A}_1^\Delta \) and \(\hat{A}_2^\Delta \).

The restriction to surjective information structures (that is, to \(P \) with range equal to \(L_\Delta^\Delta(\lambda) \)) in Example 9 is important. Without it, we would not necessarily be able to find an open set of \(\hat{P} \)'s for which FIE would fail. It can be interpreted as restricting to environments with rich state spaces, something we will assume in Section 4.2 below (in fact, this is exactly what property R will require).

The conclusion from Examples 8 and 9 is that FIE can fail robustly. It is important to stress the kind of independence that is required for property PS. As indicated in footnote 20 above, we need the full force of linear independence to ensure that property PS is satisfied. Applying the analysis of Gizatulina and Hellwig (2017) to our setting shows that the set of information structures satisfying convex independence is generic (under some regularity conditions). Example 9 shows that the same is not true for linear independence.

4.2. Separation with “Star-shaped” hyperplanes. In this section, we consider environments with more states than alternatives and where linear independence fails to hold, and therefore in order to guarantee FIE we need a condition more general than parallel separation. In particular, we provide conditions on environments ensuring FIE even when the state space is rich. We shall indeed only consider rich environments to take advantage of the fact that all distributions are allowed.\(^{21}\)

We have so far used several examples with rich state spaces without actually defining it. We say that a state space is rich when the environment satisfies property R, defined as follows:

Definition 5. An environment satisfies **property R** if for each \(g \in L_\Delta^\Delta(\lambda) \) there is \(\theta \in \Theta \) such that \(f(\cdot | \theta) = g(\cdot) \).

The main challenge in developing a general sufficiency condition is to rule out situations like those arising in Example 7. As we identified, the problem arises from the fact that the strategy function always generates a complete ranking of vote shares for all alternatives while convexity of the sets \(A_\Delta^\Delta \) only imposes conditions in the neighborhood of the most preferred alternative. In order to guarantee FIE, we have to impose enough additional conditions on preferences so that hyperplanes describing preferences have the same structure as the hyperplanes describing equal vote shares.

The first condition we need is that for every pair of alternatives, indifference must be described by a hyperplane on the simplex. Formally, for each pair of alternatives \(a_i \) and \(a_j \), there must be a hyperplane separating the region where \(a_i \) is preferred to \(a_j \) from the region with the opposite preference. We call this condition property H. It is a convexity restriction on the preference ranking over all alternatives for each vector on the simplex.

We need a second condition for a more subtle reason. Given a strategy, the vote share function for an alternative is a weighted sum of voting probabilities for each signal: there is actually no

\(^{21}\)Surely, it is easy to construct discrete environments with more states than signals where star-shaped separation obtains – and as a consequence FIE obtains as well – so by restricting to rich state spaces we are allowing for the most adverse situations in terms of FIE.
restriction that the weights be positive. As a consequence, the hyperplanes generated by equal vote shares have the same properties (as well as linear dependence restrictions) for all vectors that add up to one. We need to extend preferences (in particular, property H) beyond the simplex to all vectors adding up to one in order to ensure that preference hyperplanes have the same restrictions as vote share hyperplanes. We denote this as property E.

Together, properties E, H and R provide a specific kind of linear dependence on the hyperplanes that separate the simplex for each pair of alternatives which looks much like the convex partition depicted in Figure 3(B). In particular, for every three such hyperplanes, they are either parallel to each other or intersect at a single point, forming what one can call a “star-shaped” partition. However, the common intersection might be located outside the simplex, which is why we need property E. We now present a formal description of these properties and the general sufficiency result.

Definition 6. We say that property E is satisfied if: (i) there is a measure space $\tilde{\Theta} \supseteq \Theta$ and a signed measure $\tilde{\lambda}$ on the space $\mathcal{M}(X)$ of $[-1, 1]$-valued signed measures on X such that $\tilde{\lambda}(\tilde{\Theta}) = 1$ and $\tilde{\lambda}_X = \lambda$; (ii) the information structure is described by $\tilde{P}(\cdot|\theta)$ for all $\theta \in \tilde{\Theta}$, which is absolutely continuous with respect to $\tilde{\lambda}$, and coincides with $P(\cdot|\theta)$ for $\theta \in \Theta$ and the prior \tilde{P} on $\tilde{\Theta}$ coincides with P conditional on Θ, i.e., $\tilde{P}(\cdot|\Theta) = P(\cdot)$; (iii) there is a utility function $\tilde{u}: \tilde{\Theta} \times A \to \mathbb{R}$ such that $\tilde{u}|_{\Theta \times A} = u$.

In the extended environment, we consider the extended simplex $L_1^\Sigma(\tilde{\lambda}) = \{f : X \to \mathbb{R} : \int f(x)\tilde{\lambda}(dx) = 1\}$, which reduces to the set Σ of vectors that add up to one in the case of finite X, and the corresponding restriction of hyperplanes: for a given bounded measurable h, $H(h) = \{g \in L_1^\Sigma(\tilde{\lambda}) : \int g(x)h(x)\tilde{\lambda}(x) = 0\}$.

Definition 7. We say that property H is satisfied if for all pair of alternatives $a_i, a_j \in A$, there exists a bounded measurable $h_{ij} : X \to \mathbb{R}$ such that

$$\tilde{P}(\theta \in \tilde{\Theta} : \tilde{f}(\cdot|\theta) \in \mathcal{A}_{ij}^\Sigma \setminus \tilde{H}^+(h_{ij})) = 0 = \tilde{P}(\theta \in \tilde{\Theta} : \tilde{f}(\cdot|\theta) \in \mathcal{A}_{ij}^\Sigma \setminus \tilde{H}^-(h_{ij})),$$

where $\mathcal{A}_{ij} = \{\theta \in \tilde{\Theta} : \tilde{u}(\theta, a_i) > \tilde{u}(\theta, a_j)\}$, \mathcal{A}_{ij}^Σ is its image on $L_1^\Sigma(\tilde{\lambda})$, and $\tilde{f}(\cdot|\theta)$ is the density of $\tilde{P}(\cdot|\theta)$ with respect to $\tilde{\lambda}$.

The next Lemma shows that properties E, H and R impose a particular linear dependence on the set of hyperplanes $\{h_{ij}\}$ through transitivity of preferences.

Lemma 3. Suppose properties E, H, and R hold. Then, for any three alternatives $a_i, a_j, a_l \in A$, there exist positive constants $\alpha_{ij}, \alpha_{jl},$ and α_{il} such that

$$\alpha_{ij}h_{ij} + \alpha_{jl}h_{jl} = \alpha_{il}h_{il}. \quad (3)$$

What Lemma 3 establishes is that, for any three alternatives, the hyperplanes from property H must either have a common intersection (which might lie outside of the simplex) or be parallel to each other. Hence property H is a substantial weakening of property PS.
Figure 10 makes the argument graphically by contradiction. Consider three alternatives \{a_1, a_2, a_3\} and suppose the dashed lines are the hyperplanes \(H(h_{12}), H(h_{13}),\) and \(H(h_{23})\) from property H. Suppose that the result in the Lemma 3 is violated, and the three hyperplanes have three separate pairwise intersections. Note that the colored areas represent the region where an alternative is best. But then for any \(\theta\) such that the corresponding conditional lies on the inner uncolored triangle features an intransitive preference cycle: \(u(\theta, a_1) > u(\theta, a_2) > u(\theta, a_3) > u(\theta, a_1)\).

Now, we are ready to state and prove the main result of this section.

Theorem 3. If Properties E, H, and R hold, then there exists a strategy that achieves FIE.

We have argued earlier that the challenge is to choose \(k\) strategy vectors to satisfy \(kC_2\) linear equations ("match" \(kC_2\) hyperplanes). The proof consists in showing that Lemma 3 imposes sufficient dependence among these \(kC_2\) equations so that we can guarantee a solution.

We conclude this section with an important observation. With rich state spaces, properties H and E together induce an outcome that gives us even more than FIE: not only does the top-ranked alternative obtain the highest vote share, the vote share ranking mimics the entire ranking of preferences. Moreover, if either of properties H or E fails, this stronger property will not hold. In other words, suppose we want to have a stricter standard for informational efficiency whereby we insist that the entire preference ranking over alternatives be recovered from the vote shares. Our conjecture is that when the state space is rich, the two properties H and E turn out to be both necessary and sufficient.

4.2.1. Linear utility representation.

Our analysis has so far have kept the general structure of a state space \(\Theta\), a signal space \(X\) and, given an information structure, the implied distribution on the simplex for each state \(\theta \in \Theta\). An alternative approach is to view states as the distributions themselves, and define the common utility as a real-valued function defined on the simplex and alternatives. Effectively, such perspective lumps the properties of utility functions and mappings \(\theta \mapsto P(\cdot | \theta)\) into properties of one single object, the utility function directly defined on the simplex.
It is apparent that, under this alternative route, FIE is related to the linearity of the utility function in states. We now make this intuition precise.

The set of states is identified as a subset \(M \) of \(L^\Delta_1(\lambda) \) and the utility function is defined directly over \(M \), that is, \(u : M \times A \to \mathbb{R} \) is a bounded measurable function, denoted by \(u(f, a) \) with \(f \in M \) to highlight that states are themselves distributions. We shall denote by \(A(u) \) the partition \(\{ A_i^\Delta \}_{i=1,...,k} \) of the state space \(M \) induced by the utility function \(u \).

Our result is the following. If the utility from each alternative is linear in states in \(M \), then the environment allows FIE. Conversely, for every environment that allows FIE, there exists a utility function linear in states which induces the same top-ranked alternative for each state.

Proposition 2. If the utility functions is given by \(u(f, a) = \int f(x)u_a(x)\lambda(dx) \), where \(u_a \) is bounded and measurable for all \(a \in A \) and \(f \in M \) then the environment allows FIE. Conversely, if a given utility function \(u : M \times A \to \mathbb{R} \) belongs to an environment that allows FIE, then there exists another environment with the utility function \(\hat{u}(f, a) = \int f(x)\hat{u}_a(x)\lambda(dx) \), where \(\hat{u}_a \in L^\infty(\lambda) \), such that \(A(u) = A(\hat{u}) \).

This characterization is also portrayed in Example 3 and the discussion following it. An interpretation when \(M = L^\Delta_2(\lambda) \) (so that property R is satisfied) is that the marginal change in utility from an alternative with respect to the proportion of any signal is independent of the proportion of the other signals. Alternatively, along the locus of indifference of any two alternatives, the rate at which the change in the proportion of one signal compensates for the change in proportion of another signal must be constant. In this sense, the tradeoff between any two signals should be unaffected by a third signal.

Proposition 2 holds true for utility functions defined over any subset of the simplex: in particular, it applies to discrete sets \(M \) (arising from discrete state spaces) too. However, it has more intuitive value when the signal proportions can be varied continuously. In particular, when property R is satisfied, then it can be verified that linearity of the utility function is equivalent to property E and H being jointly satisfied by the environment. We shall consider rich state spaces for the rest of the discussion on linear utility representation.

We already know that properties E, H and R together are sufficient for FIE, which is also reflected in the sufficiency of linearity in Proposition 2. While such properties are not strictly necessary for FIE, the converse in the proposition tells us that for any environment satisfying FIE, there must be another environment with the same top-ranked alternative in each state, satisfying properties E and H (and hence FIE). It is also worth noting that when \(k = 2 \), FIE is indeed characterized by linear utility functions.

Figures 11(A) and 11(B) illustrate Proposition 2 for \(k = 3 \). In Figure 11(A), we present an environment which satisfies the conditions of Theorem 1, and therefore allows FIE. The separation between \(A_i^\Delta \) and \(A_j^\Delta \) is given by the solid lines when they match the separation between \(A_i^\Delta \) and \(A_j^\Delta \), together with their dashed continuations when they do not match.\(^{22}\) However, condition H is not satisfied, because the dashed portions are not linear, and thus it does not admit a linear utility function with the given properties.

\(^{22}\) \(A_{ij}^\Delta \) is the image of \(A_{ij} \) in the simplex.
representation. However, Figure 11(B) presents another environment that has the same map $A(u)$ and admits a linear utility representation.

For environments that admit linear utility representations, we can obtain a classification of signals in terms of which among a given pair of alternatives is favored. Suppose that for any two alternatives a_i and a_j, the respective (linear) utility functions are $u(f, a_i) = \int f(x)u_{a_i}(x)\lambda(dx)$ and $u(f, a_j) = \int f(x)u_{a_j}(x)\lambda(dx)$, respectively. Along the hyperplane $H(h_{ij})$ on the simplex describing indifference between a_i and a_j, we must have

$$\int f(x)[u_{a_i}(x) - u_{a_j}(x)]\lambda(dx) = 0.$$

We can then partition X into $\{X_i, X_j, X_{ij}\}$ by setting $X_i = \{x \in X : u_{a_i}(x) > u_{a_j}(x)\}$, $X_j = \{x \in X : u_{a_j}(x) > u_{a_i}(x)\}$, and $X_{ij} = \{x \in X : u_{a_i}(x) = u_{a_j}(x)\}$. Signals in X_i favor a_i and those in X_j favor a_j in the sense that a higher proportion of any signal in X_i at the expense of any signal in X_j raises the utility difference between a_i and a_j. Moreover, it can be checked that for any strategy σ that achieves FIE, it must be the case that $\sigma_{ij}(x) > 0$ if $x \in X_i$ and $\sigma_{ij}(x) < 0$ if $x \in X_j$.

5. Equilibrium analysis

Summing up, by focusing on the geometry of the conditional distributions over signals, we have established in general conditions under which FIE can and cannot be obtained. But such results deal only with the feasibility of information aggregation, in the sense of existence of some strategy profile that achieves FIE. However it is not clear whether, even in environments which allow FIE, voters have incentives to use such strategies. In order to check whether voters find it in their interest to do so, we consider voting as a game. More precisely, a game is defined as an environment $\{u, A, \Theta, X, P\}$ along with a number of players n. We fix an environment and consider a sequence of games by letting the number of voters grow. Following the logic in McLennan (1998), we show that under common preferences, any environment that allows FIE also has a sequence of Nash equilibrium profiles that achieves FIE.

Let us define the game G^n derived from the environment $\{u, A, \Theta, X, P\}$ along with a number of players n more formally. Each player’s strategy set is $\Sigma = \{\sigma : \sigma = (\sigma_1, ..., \sigma_k), \sigma_j : X \rightarrow \}$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure11.png}
\caption{Figure 11}
\end{figure}
\[0, 1] \sum_j \sigma_j(x) = 1\), the set of all behavioral strategies. Endow \(\Sigma\) with the narrow topology so that it is a compact space. We abuse notation and use the letter \(a\) to denote a profile of voter choices: \(a = (a_1, \ldots, a_n)\) where \(a_i \in A = \{a_1, \ldots, a_k\}\) for each \(i = 1, \ldots, n\). Let \(u(\theta, a)\) be the utility at a pair \((\theta, a)\), that is, \(u(\theta, a) = u(\theta, a_j)\), where \(a_j\) is the winner under the profile \(a\). Notice that all voters have the same utility function. Let \(\sigma(\theta, a)\) denote a profile of behavioral strategies. At a state \(\theta\) and profile \((x_1, \ldots, x_n)\) of signals, the (common) utility of a voter is \(\sum_a \prod_{i=1}^n \sigma_i^{(a_i|x_i)}u(\theta, a)\), where \(\sigma_i^{(a_i|x_i)} = \sigma_j^{(x_i)}\) when \(a_i = a_j\) (that is, when the choice of voter \(i\) at profile \(a\) is the alternative \(a_j\)). Hence the common ex-ante utility at the strategy profile \(\sigma(n)\) is

\[u(\sigma(n)) = \int_\Theta \int_{X^{(n)}} \sum_a \prod_{i=1}^n \sigma_i^{(a_i|x_i)}u(\theta, a) \otimes_{i=1}^n P(dx_i|\theta)P(d\theta)\]

where \(X^{(n)}\) is the set of all profiles of signals \((x_1, \ldots, x_n)\). Observe that, for each \(\theta\), the term \(\int_{X^{(n)}} \sum_a \prod_{i=1}^n \sigma_i^{(a_i|x_i)}u(\theta, a) \otimes_{i=1}^n P(dx_i|\theta)\) is continuous in profiles of strategies \(\sigma(n)\) by the definition of the narrow topology on \(\Sigma\) and by virtue of the conditional independence of signals (that is, for each \(\theta\) the “prior” \(P(\cdot|\theta)\) is the product of marginals, so information is diffuse, and the expected utility is continuous in the product of the behavioral strategies – see?). Hence, by Lebesgue Dominated Convergence, \(u(\sigma(n))\) is continuous in \(\sigma(n)\). This ends the description of \(G^n\).

Suppose that the profile \(\sigma(n)\) is a maximizer of \(u(\sigma(n))\). The existence of such a maximizer follows from compactness of \(\Sigma\) and continuity of \(u\) in \(\sigma(n)\). Following McLennan (1998), \(\sigma(n)\) is a Bayesian Nash equilibrium of the game \(G^n\). It is straightforward to restrict to profiles of symmetric strategies and ensure existence of a symmetric BNE. The next theorem tells us that the sequence \(\sigma(n)\) achieves FIE as long as the environment \(\{u, A, \theta, X, P\}\) allows FIE.

Theorem 4. If the environment \((u, A, \theta, X, P)\) allows FIE, there exists a sequence \(\sigma^n\) of Nash equilibria of the game \(G^n\) that achieves FIE., i.e., \(W_n^\sigma \to 0\) as \(n \to \infty\).

The above theorem establishes McLennan’s result in our setting: in environments where FIE is feasible, FIE can be achieved by a sequence of Nash equilibria. This result demonstrates that the failure of information aggregation in common-value environments is a failure of technical feasibility rather than that of incentive compatibility.

6. Extensions

6.1. Scoring rules. We have developed our conditions for FIE based on simple plurality rule where each voter casts her vote for one and only one alternative. However, there are other voting rules to be considered especially when there are more than two alternatives, e.g., approval voting, Borda count, etc. We show that considering these other voting rules does not expand the set of environments where we can aggregate information. In particular, the set of environments for which FIE can be achieved is the same under plurality rule with or without abstention and approval rule. Additionally, whenever FIE is achieved under Borda rule, it is also achieved under plurality rule.
Finally, when there are two alternatives, supermajority rules induce FIE if and only if the simple majority rule induces FIE.

Formally, we have an equivalence result between the plurality rule and a class of voting rules that are called scoring rules. These are rules where a voter can assign “scores” to each alternative, and the alternative with the highest score wins. This class includes approval voting as a special case. Other voting rules like the plurality rule (with or without abstention) and Borda rule can be obtained as scoring rules with restrictions on the ballot.

We follow Myerson (2002) for defining a scoring rule. Let X be a finite set of signals and V be a positive integer. A V-scoring rule is a voting procedure where a voter can assign any integer score between 0 and V to each alternative. Formally, when there are k alternatives, a voter picks a ballot which is a vector $v \in V = \{0, ..., V\}^k$, and each element of the ballot, v_j, is interpreted as the score she gives to alternative j. Ballots are aggregated by adding the scores for every alternative, and the winner of the election is the alternative with the highest total score.

Under this framework, we can define several standard voting environments by imposing restrictions on the ballot. For example, in plurality voting, the voter is allowed to assign a single point to only one of the alternatives. In approval voting, the voter’s ballot assigns one point to as many alternatives as she is willing to choose. Under the Borda Rule, a voter provides a ranking of the alternatives, and the alternative with the highest aggregate rank wins. One can reinterpret the ranks assigned by a voter as points awarded in the descending order, with the highest ranked alternative obtaining $k - 1$ and the lowest ranked one getting 0.

Definition 8. An approval voting rule is a scoring rule where $V = 1$. A plurality voting rule is a scoring rule where $V = 1$, and a ballot $v \in V$ requires $\sum_i v_i = 1$. A plurality voting with abstention rule is a scoring rule where $V = 1$, and a ballot $v \in V$ requires $\sum_i v_i \leq 1$. A borda count rule is a scoring rule where $V = k - 1$, and a ballot $v \in V$ requires that no two alternatives are assigned the same number of points.

At this point, it is important to distinguish between “pure” scoring rules and scoring rules with balloting restrictions. While approval rule belongs to the former class, plurality rule, plurality with abstention and Borda rule belong to the latter group. Notice that, for any given V, if an environment allows FIE under a V-scoring rule with balloting restrictions, it also allows FIE under the pure V-scoring rule since the strategy achieving FIE under the former rule is also available under the latter.

The next result tells us that scoring rules (with or without restrictions) cannot do more than the plurality rule in terms of delivering FIE. For “pure” scoring rules like the approval rule, FIE is achieved if and only if FIE is achieved under plurality rule. Scoring rules with restrictions (e.g., Borda Rule) achieve FIE only in environments where FIE is achieved under plurality rule. The theorem also simultaneously establishes the equivalence of all V-scoring rules as far as the property of FIE is concerned.

Theorem 5. Fix $V \in \mathbb{N}_+$. There exists a strategy that achieves FIE in a V-scoring rule without restrictions if and only if there is a strategy profile that achieves FIE in plurality voting. If there
exists a strategy that achieves FIE in a V-scoring rule with balloting restrictions, then there is a strategy profile that achieves FIE in plurality voting.

The above result comes with two caveats. First, this holds only for large elections: for finite elections, there may well be a difference. In fact, Ahn and Oliveros (2016) shows that for any finite-sized election, the plurality rule performs the best among all scoring rules. Second, our result should not be taken to mean that scoring rules are irrelevant for large elections. The main import of Theorem 5 is that these rules matter only in a world where voters have non-common preferences.

An important side-note is that the only restriction on Borda rule is that rankings have to be strict. If we allow for indifference in rankings, then Borda rule becomes a “pure” scoring rule and, by Theorem 5, equivalent to plurality rules in terms of FIE.

Theorem 5 considers scoring rules that are symmetric across alternatives. This does not cover asymmetric rules like supermajority where one alternative must obtain a larger share of votes than the other alternative in order to be declared the winner. We define as a q-rule a voting rule where, among two alternatives a_1 and a_2, the former has to obtain at least $q \in (0, 1)$ share of votes in order to win the election. The following proposition establishes that all q-rules are equivalent in terms of the set of environments that allow FIE.

Proposition 3. Fix $q \in (0, 1)$ and suppose $k = 2$. There exists a strategy that allows FIE in a q-rule if and only if there is a strategy profile that achieves FIE in plurality voting (i.e., $q = 0.5$).

6.2. Monotone Likelihood Ratio Property. In our framework, we obtain conditions on FIE with general signal and state spaces. One way to compare our result to existing work is to specialize our environment to ordered signal and state spaces. A standard informativeness assumption on signals in this setting is the Monotone Likelihood Ratio Property (MLRP), which ensures that a signal is a “sufficient statistic” of the state, in the sense that higher signals indicate higher states (see Milgrom (1981)). Feddersen and Pesendorfer (1997) assume strict MLRP condition on signals and show (albeit in a model of diverse preferences) that information is aggregated in all equilibria. Our sufficient condition for FIE adapted to this environment entertains MLRP as a special case. Let us restrict to the two alternative case, as the extension to multiple alternatives is immediate.

We start by making the following formal assumptions. Suppose $\Theta = [0, 1]$ and $X = \{(x_1, ..., x_k) : (x_1, ..., x_k) \in [0, 1]^k, \text{ with } x_1 < x_2 < \cdots < x_k\}$. The prior P over $[0, 1]$ is non-atomic and has full support. The preferences are as follows: for some $\theta^* \in (0, 1)$, a_1 is preferred for $\theta > \theta^*$ and a_2 is preferred for $\theta < \theta^*$. In this setting, MLRP is defined as the following condition on $P(\cdot | \cdot)$.

Definition 9 (Monotone Likelihood Ratio Property). The signals are said to satisfy strict MLRP if, for any two signals $x < x'$, the likelihood ratio $\frac{P(x|\theta)}{P(x'|\theta)}$ is a decreasing function of θ.

Let $F(x|\theta) = \sum_{x_j \leq x} P(x_j|\theta)$ denote the cumulative distribution function of $P(\cdot | \theta)$. Strict MLRP implies that for every x, the cumulative distribution $F(x|\cdot)$ is a decreasing function. Now consider the following property: For each $\theta' > \theta^*$ and each $\theta'' < \theta^*$, we have for all $x \in X$

$$F(x|\theta') < F(x|\theta^*) < F(x|\theta'') \quad (4)$$
As long as the property (4) is satisfied, there exists a strategy that achieves FIE. To see that, let x^* be the smallest $x \in X$ such that $F(x|\theta^*) \leq \frac{1}{2}$. Now, set $\sigma(x) = 0$ for $x \leq x^*$ and $\sigma(x) = 1$ for $x > x^*$. It is easy to verify that the strategy profile σ achieves FIE.

Note that the property (4) is weaker than strict MLRP. While strict MLRP implies that $F(x|\cdot)$ is decreasing over the entire interval $[0, 1]$, property (4) does not require $F(x|\cdot)$ to be decreasing within $(\theta^*, 1)$ or within $(0, \theta^*)$.\footnote{An analogous result is obtained by Mihm and Siga (2017), who show that, in order for information to be aggregated in common-value auctions, information must be monotone with respect to a “betweenness order”, which is strictly weaker than the ordering induced by MLRP.}

6.3. Diverse Preferences. So far we have assumed that all voters have the same preferences described by the common utility function $u(\theta, a)$. In this section we extend our basic insight to a case where the voters in the electorate may have different preferences. In this setting, our results on feasibility go through (almost exactly as before, with a different interpretation of the primitives). However, feasibility of FIE cannot guarantee information aggregation in equilibrium since McLennan’s insight fails with diverse preferences.

We maintain the assumption that all voters are ex ante identical, and draw both their information and preferences from some distribution conditional on the state. To do so, we retain the elements of the set-up and assume in addition that the private signal x is also payoff relevant. Thus, the private draw of an individual serves two functions: it is a view about the outcomes and it provides information about how others view the outcomes. We may think of $x_i = (s_i, t_i)$, where s_i is the common value component and t_i is the private value component of the preference. Notice that this is a general setting that can encompass many different environments. In particular, it admits the environments studied in Feddersen and Pesendorfer (1997) with continuous state space and Bhattacharya (2013) with just two states.

Consider, therefore, that voters’ preferences are captured by $u : \Theta \times X \times A \to \mathbb{R}$. Given u and P, we can infer the underlying “common” preference of a large electorate, as follows. First and for simplicity, let us assume that for every pair of alternatives a_i and a_j, almost every θ and $P(\cdot|\theta)$-a.e. x, $u(\theta, x, a_i) \neq u(\theta, x, a_j)$. By the SLLN, the number

$$Q_{ij}(\theta) = \int 1\{u(\theta, x, a_i) > u(\theta, x, a_j)\} P(dx|\theta)$$

represents the proportion of the electorate that prefers a_i to a_j in state θ. Hence, when $Q_{ij}(\theta) > \frac{1}{2}$, alternative a_i would get more than 50% of the votes if the state was known. We advance that in such a state the electorate prefers a_i to a_j. So we set, for each pair (i, j),

$$A_{ij} = \{\theta \in \Theta : Q_{ij}(\theta) > \frac{1}{2}\},$$

and

$$A_i = \bigcap_j A_{ij}.$$
images of the sets A_i and A_{ij} in the simplex (or in the extended simplex), we can immediately recast the definitions of restricted 3-partition and of properties PS and H, and conclude that Theorems 1, 2, and 3 and their corollaries, plus Proposition 1, remain valid in this more general setting.

Notice that since Feddersen and Pesendorfer (1997) result already tells us that information is aggregated in equilibrium, the existence of FIE strategies is trivial in their setting. More interestingly, while Bhattacharya (2013b) concentrates on showing that, for any consequential rule, there exists an equilibrium that fails to aggregate information, it can be checked that in Bhattacharya’s two-state setting, there always exists some feasible strategy that achieves FIE (see Bhattacharya (2013a)). It would therefore be very interesting to examine the conditions under which, in a general setting with diverse preferences, there exists some equilibrium sequence that aggregates information.

Observe that the proof of Theorem 4 explicitly utilizes the common value setting, and therefore does not automatically generalize to an environment with diverse preferences. In particular, we do not know the conditions under which the existence of a feasible strategy profile guaranteeing FIE also implies that FIE is achieved in some equilibrium when there is preference diversity in the electorate. We believe that this is an important open question.

7. Conclusion

The existing literature on information aggregation in large elections has largely focused on specific preference and information environments. We instead consider general environments with arbitrary preference and information structures and focus on properties of the environment allowing or precluding information aggregation. The main thrust of our analysis is the focus on the geometry of the sets of probability distributions over private signals corresponding to the partition of the state space induced by the common state-dependent utility function of the voters. In a large electorate, the frequency distribution over signals is approximately the same as the probability distribution. Thus, our question is whether the election achieves the outcome that would obtain if the entire profile of private signals were publicly known. If an environment permits a strategy profile that can induce the full information outcome with a high probability in almost all states, we say that the environment allows Full Information Equivalence (FIE). Moreover, we are interested in whether such a strategy profile is incentive compatible, i.e., it constitutes a Nash equilibrium in the underlying game.

Most of our analysis assumes the existence of a common utility function, so there is no issue of preference aggregation, only of information aggregation. We provide a complete characterization of feasibility of FIE for the case of up to three alternatives. Roughly speaking, the partition of the state space induced by the preferences is to be represented in the simplex of distributions over signals as a “nice” partition into convex polytopes with facets defined by hyperplanes. For the case of more than three alternatives, we do not have such a sharp characterization. Instead, we provide two sets of sufficient conditions. The first requires that the said hyperplanes be parallel and the second allows for more general, “star-shaped”, configurations of hyperplanes. Interestingly, the first condition holds generically when we have more signals than states. Moreover, if each alternative
is best at one and only one state, then FIE obtains regardless of the number of signals. However, with general state and signal spaces FIE can fail robustly.

We provide an affirmative answer to the implementability issue: as long as an environment allows FIE, there is a sequence of equilibria associated with ever increasing electorates that achieves FIE. There may be other equilibrium sequences that do not aggregate information—but ours is only a possibility result. A corollary is that FIE is always achieved in equilibrium in the much-studied two-state environment. Another corollary is that failure of FIE has nothing to do with equilibrium assessments over the states based on the criterion of one’s vote being pivotal in deciding the election: whenever information can be aggregated, information will be aggregated in (some) equilibrium.

We also show that in the common preference environment, the voting rule does not matter for information aggregation: as long as FIE is achieved by the majority rule, FIE is achieved under a much larger class of voting rules. On the other hand, although our feasibility results extend to the case of diverse preferences, our equilibrium results do not.

Finally, one should note that we have not allowed communication between voters in our model. If communication were to be allowed in the case of common preferences, then everyone would have incentives to share their private information. Therefore, information would trivially be aggregated. In this context, our positive results are significant. In particular, if the number of signals is larger than the number of states, then information aggregation does not require communication, in general. On the other hand, in the case of diverse preferences, it is unclear whether truthful sharing of information is incentive compatible. It would be interesting to study the role of pre-voting deliberation in aggregating information when voters do not have common preferences.

References

8. Appendix

8.1. Proof of Lemma 1.

To verify that the two definitions are equivalent, say that $P(A_i \setminus A_i^\sigma) = 0$ for all i. Then $W_n^\sigma = \sum_i \int_{A_i^\sigma \cap A_i} p_n^\sigma(E_n^i | \theta) P(d\theta)$. For each i and $\theta \in A_i^\sigma \cap A_i$, we have $z_n^\sigma(\theta) > z_n^j(\theta)$ for every $j \neq i$, and we know that the realized proportion $z_n^i(\theta)$ converges a.s. to $z_n(\theta)$. This implies $p_n^\sigma(L_n^i | \theta) \rightarrow 0$ for every θ. As this is true for every i, by Lebesgue Dominated Convergence it follows that $W_n^\sigma \rightarrow 0$ as $n \rightarrow \infty$. Conversely, if $P(A_i \setminus A_i^\sigma) > 0$ for some i, then there is a set of positive P-measure $E \subset A_i$, and an alternative j such that $z_n^j(\theta) > z_n^i(\theta)$ for all $\theta \in E$. Let $P(E) = \alpha > 0$. Then $\liminf_n p_n^\sigma(L_n^i | \theta) \geq \alpha$ because $z_n^\sigma(\theta)$ converges $P(\cdot | \theta)$-a.s. to $z^\sigma(\theta)$. By Fatou’s Lemma, W_n^σ cannot converge to 0, so FIE fails.

8.2. Proof of Theorem 1.

For the only if part. Let σ be a strategy that achieves FIE. Define $E_1 = H^+(\sigma_1 - \sigma_2) \cap H^+(\sigma_1 - \sigma_3)$, $E_2 = \hat{H}^- (\sigma_1 - \sigma_2) \cap H^+ (\sigma_2 - \sigma_3)$, and $E_3 = \hat{H}^- (\sigma_1 - \sigma_3) \cap \hat{H}^- (\sigma_2 - \sigma_3)$. We first establish that $\pi = \{E_1, E_2, E_3\}$ is a convex partition, and then establish that it is a restricted 3-partition. First, suppose that $E_1 \cup E_2 \cup E_3 \neq \Delta(X)$, so there is $g \in \Delta(X)$ and not in either of the E’s. There are two feasible cases:

- $[g \in \hat{H}^- (\sigma_1 - \sigma_2) \cap \hat{H}^- (\sigma_2 - \sigma_3) \cap H^+ (\sigma_1 - \sigma_3)]$. But if $g \in \hat{H}^- (\sigma_1 - \sigma_2) \cap \hat{H}^- (\sigma_2 - \sigma_3)$ then $g \in \hat{H}^- (\sigma_1 - \sigma_3)$, contradicting that $g \in H^+ (\sigma_1 - \sigma_3)$.
- $[g \in \hat{H}^- (\sigma_1 - \sigma_3) \cap H^+ (\sigma_2 - \sigma_3) \cap H^+ (\sigma_1 - \sigma_2)]$. But if $g \in H^+ (\sigma_2 - \sigma_3) \cap H^+ (\sigma_1 - \sigma_2)$ then $g \in H^+ (\sigma_1 - \sigma_3)$, contradicting that $g \in \hat{H}^- (\sigma_1 - \sigma_3)$.

So we conclude that $E_1 \cup E_2 \cup E_3 = \Delta(X)$. Next, as each E_i is in the complement of one another, they are mutually disjoint. And surely each E_i is convex, so π is a convex partition.

Finally, we show that π must be a restricted 3-partition. By construction, for all E_i, E_j that share a facet, $H_{ij}(\pi) = H(\sigma_i - \sigma_j)$. To show a contradiction and without loss of generality, suppose $H_{12}(\pi) = H(\sigma_1 - \sigma_2) = H(\sigma_1 - \sigma_3) = H_{13}(\pi)$. Now, $H_{12}(\pi) = H_{13}(\pi)$ implies $H_{12}(\pi) = H_{23}(\pi)$. This means that $H_{ij}(\pi)$ splits $\Delta(X)$ in the same two regions regardless of i,j. Outside of such hyperplane, there will be no ties by construction. But this then means that one of the three alternatives never wins, contradicting FIE. Indeed, we can establish one of the many (similar) cases. For all $g \in \hat{H}_{12}^+(\pi)$, a_1 beats a_2. Either $\hat{H}_{12}^+(\pi) = \hat{H}_{13}^+(\pi)$, or $\hat{H}_{12}^+(\pi) = \hat{H}_{23}^+(\pi)$. Consider the former. Then, in state θ with $f(\cdot | \theta) = g$, a_1 beats a_3. Also, either $\hat{H}_{12}^+(\pi) = \hat{H}_{23}^+(\pi)$ or $\hat{H}_{12}^+(\pi) = \hat{H}_{23}^-(\pi)$. Again, consider the former. Then a_2 beats a_3 at θ. For all \hat{g} belonging to the
other half-space and \(\theta \) with \(f(\cdot | \theta) = \hat{g} \), it has to be true that \(a_2 \) beats \(a_1 \), \(a_3 \) beats \(a_1 \), and \(a_3 \) beats \(a_2 \). But then \(a_2 \) does not win for almost every state, as we wanted to establish.

Move now to the if part. Consider a restricted 3-partition \(\pi = \{ E_1, E_2, E_3 \} \) such that \(P(\{ \theta \in \Theta : f(\cdot | \theta) \in \mathcal{A}_i^\Delta \setminus \tilde{E}_i \}) = 0 \) for \(i = 1, 2, 3 \). The are two distinct cases to consider.

Case 1: Not all \(E_i \)'s share a facet. In this case, let \(i, j \) be such that \(F_{ij}(\pi) = \emptyset \). Say it is \(i = 1 \) and \(j = 3 \), so \(E_1 \) and \(E_2 \) do share a facet. Let \(h_{12} \) be the normal of the hyperplane separating these two sets. Without loss, let \(\hat{H}^+(h_{12}) = \tilde{E}_1 \). Similarly, let \(h_{23} \) denote the normal of the hyperplane separating \(E_2 \) and \(E_3 \) such that \(\hat{H}^-(h_{23}) = \tilde{E}_3 \). We now construct a strategy \(\sigma \) that achieves FIE. Choose measurable functions \(\hat{\sigma}_i : X \to \mathbb{R}_+ \) such that \(h_{12}(x) = \hat{\sigma}_1(x) - \hat{\sigma}_2(x) \) and \(h_{23}(x) = \hat{\sigma}_2(x) - \hat{\sigma}_3(x) \). Choose \(\varepsilon > 0 \) sufficiently small such that \(\sum_i (\hat{\sigma}_i(x)) \varepsilon \leq 1 \) for every \(x \). Let \(3R(x) = 1 - \sum_i \hat{\sigma}_i(x) \varepsilon \), and set \(\sigma_i(x) = \hat{\sigma}_i(x) \varepsilon + R(x) \), so that \(\sum_i \sigma_i(x) = 1 \) for every \(x \in X \). FIE now follows from simple computations. For instance, for almost all \(\theta \in \mathcal{A}_1 \), \(z^*_1(\theta) > z^*_2(\theta) \) and also \(z^*_2(\theta) > z^*_3(\theta) \), because \(f(\cdot | \theta) \) lies on \(\hat{H}^+(h_{23}) \). Hence, \(a_1 \) wins for almost all \(\theta \in \mathcal{A}_1 \). Similar computations establish that \(a_2 \) wins for almost all \(\theta \in \mathcal{A}_2 \) and \(a_3 \) wins for almost all \(\theta \in \mathcal{A}_3 \), so FIE is verified.

Case 2: All \(E_i \)'s share a facet, so there is no pair \(i, j \) such that \(F_{ij}(\pi) = \emptyset \). Let \(h_{ij} \) be the normal of a hyperplane separating \(E_i \) and \(E_j \) such that \(\tilde{E}_i \subset \hat{H}^+(h_{ij}) \). Because \(\pi \) is a restricted 3-partition, it must be true that for all \(i, j, m \), \(H(h_{ij}) \neq H(h_{im}) \). It must also be true that for all \(i, j, m \), \(H(h_{ij}) \cap H(h_{jm}) \subset H(h_{im}) \). Indeed, suppose the inclusion does not hold, so we have \(g \in H(h_{12}) \cap H(h_{23}) \) and \(g \notin H(h_{13}) \). We can then find \(\varepsilon > 0 \) such that \(B_\varepsilon(g) \cap H(h_{13}) = \emptyset \). Then, either \(B_\varepsilon(g) \subset E_1 \cup E_2 \) or \(B_\varepsilon(g) \subset E_2 \cup E_3 \). Suppose it is the latter. Because \(g \in H(h_{12}) \cap H(h_{23}) \), the ball \(B_\varepsilon(g) \) has four regions formed by the intersection of half-spaces. In particular, either \(\tilde{E}_2 = \{ \tilde{g} \in B_\varepsilon(g) : \int h_{12}(x) \tilde{g}(x) \lambda(dx) < 0 < \int h_{23}(x) \tilde{g}(x) \lambda(dx) \} \) is strictly convex and \(\tilde{E}_3 = B_\varepsilon(g) \setminus E \) is not convex, or the other way around. Since \(\tilde{E}_1 \) not convex implies \(E_i \) is not convex, we have a contradiction. As the choice of labels is arbitrary, we conclude that, for all \(i, j, m \), \(H(h_{ij}) \cap H(h_{jm}) \subset H(h_{im}) \), and hence that the intersection of any two hyperplanes is the same. A hyperplane is a subspace of co-dimension 1 and the intersection of two hyperplanes is a subspace of co-dimension 2. Hence, the two-dimensional subspaces generated by the normals \((h_{12}, h_{13}), (h_{12}, h_{23}), \) and \((h_{13}, h_{23}) \) are the same. Hence, re-labeling if necessary, we can find scalars \(a \) and \(b \) such that \(h_{13} = ah_{12} + bh_{23} \). Switching signs if necessary, it is without loss to have \(a \) and \(b \) strictly positive. Now set \(\alpha = a/(a + b) \) and \(\tilde{h}_{13} = h_{13}/(a + b) \) to establish that \(\tilde{h}_{13}(x) = ah_{12}(x) + (1 - \alpha)h_{23}(x) \) for every \(x \in X \). Observe that \(\tilde{h}_{13} \) generates the same hyperplane as \(h_{13} \). Now pick bounded measurable \(\hat{\sigma}_i : X \to \mathbb{R}_+ \) such that \(\alpha h_{12}(x) = \hat{\sigma}_1(x) - \hat{\sigma}_2(x) \) and \((1 - \alpha)h_{23}(x) = \hat{\sigma}_2(x) - \hat{\sigma}_3(x) \) for every \(x \). As in Case 1 above, normalize \(\hat{\sigma} \) to construct a strategy \(\sigma \), and similar simple computations establish that \(\sigma \) achieves FIE.
8.3. Proof of Theorem 2.

Let \(\{\hat{\sigma}_k\}_{k=1}^K \) be such that, for every \(x \), we have
\[
\begin{align*}
\hat{\sigma}_1(x) - \hat{\sigma}_2(x) &= h(x) - c_1^{-1} \\
\hat{\sigma}_2(x) - \hat{\sigma}_3(x) &= h(x) - c_2^{-1} \\
&\quad \ldots \\
\hat{\sigma}_{k-1}(x) - \hat{\sigma}_k(x) &= h(x) - c_{k-1}^{-1}
\end{align*}
\]

Clearly, the \(\hat{\sigma} \)'s are bounded, so we can choose \(\delta \) sufficiently large so that \(\hat{\sigma}_j(x) + \delta \geq 0 \) for all \(j \) and all \(x \). By the same reason, we can choose \(\varepsilon > 0 \) sufficiently small such that \(\sum_j (\hat{\sigma}_j(x) + \delta) \varepsilon \leq 1 \) for every \(x \). Let \(R(x) = 1 - \sum_j (\hat{\sigma}_j(x) + \delta) \varepsilon \), and set \(\sigma_j(x) = (\hat{\sigma}_j(x) + \delta) \varepsilon + R(x)/k \), so that \(\sum_j \sigma_j(x) = 1 \) for every \(x \).

Then, \(\sigma = (\sigma_1, \ldots, \sigma_k) \) is a well-defined strategy. To show that \(\sigma \) achieves FIE, using property PS, consider \(\theta \in A_j \) such that \(c_j^{-1} < \int h(x) f(x|\theta) \lambda(dx) < c_{j-1}^{-1} \). We want to show that \(\int (\sigma_j(x) - \sigma_l(x)) P(dx|\theta) > 0 \) for all \(l \neq j \).\(^{25}\)

First note that
\[
\int (\hat{\sigma}_j(x) - \hat{\sigma}_l(x)) P(dx|\theta) > 0 \Rightarrow \int (\hat{\sigma}_j(x) + \delta - \hat{\sigma}_l(x) - \delta) \varepsilon P(dx|\theta) > 0
\]

\[
\Rightarrow \int [\sigma(x) + \delta] \varepsilon - [\sigma(x) + \delta] \varepsilon P(dx|\theta) > 0 \Rightarrow \int (\sigma_j(x) - \sigma_l(x)) P(dx|\theta) > 0.
\]

Analogously
\[
\int (\hat{\sigma}_j(x) - \hat{\sigma}_l(x)) P(dx|\theta) < 0 \Rightarrow \int (\sigma_j(x) - \sigma_l(x)) P(dx|\theta) < 0.
\]

Consider \(l > j \). As \(\int h(x) P(dx|\theta) > c_j^{-1} \), so \(\int (h(x) - c_j^{-1}) P(dx|\theta) > 0 \). As \(c_l > c_j \) for all \(l > j \), we have \(\int (h(x) - c_l^{-1}) P(dx|\theta) > 0 \) for all \(l > j \). Then
\[
\int (\hat{\sigma}_j(x) - \hat{\sigma}_l(x)) P(dx|\theta) = \sum_{i=j}^l \int (h(x) - c_i^{-1}) P(dx|\theta) > 0
\]

and hence
\[
\int (\sigma_j(x) - \sigma_l(x)) P(dx|\theta) > 0.
\]

Consider \(l < j \). As \(\int h(x) P(dx|\theta) < c_{j-1}^{-1} \). So \(\int (h(x) - c_{j-1}^{-1}) P(dx|\theta) < 0 \). As \(c_l < c_j \) for all \(l < j \), we have \(\int (h(x) - c_l^{-1}) P(dx|\theta) < 0 \) for all \(l < j \). Again, this means that
\[
\int (\hat{\sigma}_l(x) - \hat{\sigma}_j(x)) P(dx|\theta) = \sum_{i=l}^{j-1} \int (h(x) - c_i^{-1}) P(dx|\theta) < 0
\]

and hence
\[
\int (\sigma_l(x) - \sigma_j(x)) P(dx|\theta) < 0.
\]

As we can apply the argument above for P-a.e. \(\theta \in A_j \), FIE is verified.

\(^{25}\)Observe that here and in the rest of the argument we will not make use of the densities \(f(\cdot|x) \), so strictly speaking the result is true even when there’s no underlying probability measure \(\lambda \).
8.4. Proof of Lemma 2.

Consider a sequence of finite subsets Θ^m of Θ such that (i) $\Theta^m \subset \Theta^{m+1}$, (ii) $\Theta^m \rightarrow \Theta$ in Hausdorff sense, and (iii) the densities $f(\cdot|\theta)$ are independent, for all $\theta \in \Theta^m$. We can do this because P satisfies independence. In fact, if for any finite set \{\theta_1, ..., \theta_L\} the densities $f(\cdot|\theta_\ell)$, $\ell = 1, ..., L$ were not independent, we would have $\sum_{\ell = 1}^{L} f(x|\theta_\ell)\alpha_\ell = 0$ for every x with some of the weights α_ℓ being non-zero. Without loss, let $\alpha_1 \neq 0$. Then $\sum_{\ell = 1}^{L} f(x|\theta_\ell)\hat{\alpha}_\ell = f(x|\theta_1)$, with $\hat{\alpha}_1 = \alpha_1 + 1$ and $\hat{\alpha}_\ell = \alpha_\ell$, for $\ell = 2, ..., L$. But then, setting ν to be $\sum_{\ell = 1}^{L} \delta_{\hat{\alpha}_\ell}$, where δ_ℓ is the point mass at θ_ℓ, we would have $\int f(x|\theta_\ell)\nu(d\theta) = f(x|\theta_1)$ for every x, which implies that $\int P(\cdot|\theta)\nu(d\theta) = P(\cdot|\theta_1)$, which in turn implies that $\hat{\alpha}_1 = 1$, or $\alpha_1 = 0$, and $\alpha_\ell = 0$ for $\ell = 2, ..., L$ by independence of P.

Fix a list $0 < c_0 < c_1 < c_2 < \cdots < c_{k-1} < c_k$. We want to show that property PS holds. Let $\hat{c}_i = c_i^{-1} + \varepsilon$, for $\varepsilon > 0$ smaller than the difference between any two c_i and c_j. By independence, for each m there is $h^m \in L_\infty(\lambda)$ (in fact, we can choose h^m to have range in $[-1,1]$) such that

$$\int h^m(x)f(x|\theta)\lambda(dx) = \hat{c}_i, \text{ for all } \theta \in A^m_i,$$

where $A^m_i = \Theta^m \cap A_i$.

By Alaoglu’s theorem (Aliprantis and Border (2006), Theorem 6.21), the so constructed sequence h^m has a weak*-convergent subsequence, so let h be its limit. As $A^m_i \subset A^{m'}_i$ for $m' > m$, for each $\theta \in A^m_i$ we have

$$\int h(x)f(x|\theta)\lambda(dx) = \hat{c}_i.$$

As A^m_i converges to A_i, for each such $\theta \in A_i$ we must also have $\int h(x)f(x|\theta)\lambda(dx) = \hat{c}_i$. Indeed, there must exist a sequence θ^m with $\theta^m \in A^m_i$ such that $\theta^m \rightarrow \theta$. As $f(x|\theta^m) \rightarrow f(x|\theta)$ for each $x \in X$, by Lebesgue Dominated Convergence we have

$$\int h(x)f(x|\theta^m)\lambda(dx) \rightarrow \int h(x)f(x|\theta)\lambda(dx).$$

Property PS is therefore verified.

8.5. Proof of Lemma 3.

Let $I = H(h_{ij}) \cap H(h_{jm}) \subset L_1^\infty(\lambda)$. Suppose first that I is non-empty, so there is $\theta \in \Theta$ with $\hat{f}(\cdot|\theta) \in I$. But then $\tilde{\nu}(\theta, a_i) = \hat{u}(\theta, a_j) = \hat{u}(\theta, a_m)$, hence $\hat{f}(\cdot|\theta) \in H(h_{im})$ as well. Hence, as in the proof of Theorem 1, there are positive scalars α_{ij} and α_{jm} such that $h_{im} = \alpha_{ij} h_{ij} + \alpha_{jm} h_{jm}$. Suppose instead I is empty. This is true whenever $H(h_{ij})$ and $H(h_{jm})$ are parallel, in which case there are always positive scalars satisfying equation (3).

8.6. Proof of Proposition 1.

We shall prove the case of finitely many signals – the argument for a general X is analogous and indicated below. The only if part is immediate: if $P_1 = P_2$ then property PS can’t be satisfied.

For the if part we proceed by induction. As X has s elements, the normal h of a hyperplane is a vector $\alpha \in \mathbb{R}^s$. Suppose that for some such α, $\alpha \cdot P_1 = \alpha \cdot P_2$, where “.” denotes inner product. Because $P_1 \neq P_2$, there must exist an entry $j \in \{1, ..., s\}$ such that $P_1(j) \neq P_2(j)$. Setting
α’(i) = α(i) for all $i \neq j$ and $α’(j) = α(j) + ε$ for $ε > 0$ small we obtain $α’ \cdot P_t \neq α’ \cdot P_2$. Now suppose that for $k < k$ we have already established the existence of $α$ such that $α \cdot P_t \neq α \cdot P_2 t’$ for all $t, t’ < k$ and $t \neq t’$. Now say that there is $ℓ < k$ such that $α \cdot P_t = α \cdot P_2$. Similarly to the previous reasoning, because $P_{t} \neq P_{k}$, there must exist an entry j such that $P_t(j) \neq P_{k}(j)$, and we can find $ε > 0$ such that $α’$ defined as $α’(i) = α(i)$ for all $i \neq j$ and $α’(j) = α(j) + ε$ satisfies $α’ \cdot P_t \neq α’ \cdot P_2$ for all $t, t’ \leq ℓ$. This concludes the induction and establishes the existence of a vector $α \in \mathbb{R}^s$ such that $α \cdot P_t \neq α \cdot P_2$ for every $t, t’, t \neq t’$. Re-labeling states if necessary, it is immediate to find the required constants $c_0, ..., c_k$ establishing property PS when the function h is the vector $α$.

The argument for a general X follows on the same lines, using the set E of positive measure of signals for which $f(x|θ_t) \neq f(x|θ_0)$ for all $x \in E$ in the place of the entry j to modify the corresponding normal $h(\cdot)$ appropriately.

8.7. Proof of Theorem 3.

Consider the system,

\begin{equation}
α_{ij} h_{ij} + α_{j} h_{jl} = α_{i} h_{il} \text{ for all } i, j, l
\end{equation}

Lemma 3 guarantees that the equations is well defined. The number of equations in the system (5) is given by kC_3. Notice that h_{ij} are parameters of the equation given by the extended preferences. We will show that the system in (5) has a non trivial solution for the variables $α$’s. Furthermore, if the solution is non trivial, all $α$’s are strictly positive. To show this last assertion, suppose instead that there exists some $α_{ij} = 0$, then $h_{jl} = ch_{il}$, for some constant c, so $H_{jl} = H_{il} \neq H_{ij}$. But this is not possible because the first equality implies that there exist some $θ$ such that $u(θ, a_i) = u(θ, a_j) = u(θ, a_l)$ but the second inequality implies that $u(θ, a_i) \neq u(θ, a_j)$ for all $θ$.

The number of variables $α$’s is kC_2. For $k < 6, kC_2 > kC_3$ and therefore the system has a non trivial solution. However, for $k \geq 6$, there are more equations than unknowns. We need to show that there are sufficiently many linearly dependent equations so that the system has a solution.

Consider the subsystem of equations in which we fix an alternative, that without loss of generality we will call alternative 1, and we will combine with all the other possible combinations of the remaining two alternatives. This is the set of equations containing all equations in which alternative 1 is present. The number of equations in this subsystem is given by $(n-1)C_2 < nC_2$ and contains all $α$’s, and therefore it has a non trivial solution. It only remains to show that any equation in the system given by (5) can be generated using this subsystem. For simplicity of exposition, and without loss of generality, consider an equation with alternatives $(2, 3, 4)$:

\begin{equation}
α_{23} h_{23} + α_{34} h_{34} = α_{24} h_{24}
\end{equation}
This equation will not be contained in our subsystem because alternative 1 is not present. Consider the following three equations from our subsystem:

\begin{align*}
\alpha_{12} h_{12} + \alpha_{23} h_{23} &= \alpha_{13} h_{13} \\
\alpha_{12} h_{12} + \alpha_{24} h_{24} &= \alpha_{14} h_{14} \\
\alpha_{13} h_{13} + \alpha_{34} h_{24} &= \alpha_{14} h_{14}
\end{align*}

We do the following operation: equations (7) minus equation (8) plus equation (9) and we note that this is equal to equation (6). Since the choice of alternatives is without loss of generality this arguments establishes that our subsystem generates the full system.

Let $\Upsilon = \{ h_{1j} \}_{j>1}$. For all $h_{1j} \in \Upsilon$ let τ_1, and τ_j be such that $\tau_1 - \tau_j = \alpha_{1j} h_{1j}$. There are n variables τ’s and $n-1$ equations so this system has a solution.

As in the proofs of Theorems 1 and 2, we can now normalize τ to yield a symmetric mixed strategy profile. To show that this strategy aggregates information we need to show that if alternative a_i is the best, then the strategy selects alternative a_i over a_j, for any $a_j \in A$.

Consider the simplest case where alternative 1 is the best alternative. By construction, for all $j \neq 1$,

\[
 u(\theta, a_1) > u(\theta, a_j) \iff \int h_{1j}(x) f(x|\theta) \lambda(dx) > 0 \\
 \iff \int (\tau_1(x) - \tau_j(x)) f(x|\theta) \lambda(dx) > 0 \\
 \iff \int (\sigma_1(x) - \sigma_j(x)) f(x|\theta) \lambda(dx) > 0.
\]

Thus, a_1 obtains more votes than any alternative a_j. The same relationship holds with weak inequality and equality.

Consider now the case where alternative $a_i \neq a_1$ is the best alternative. Then

\[
 u(\theta, a_i) > u(\theta, a_j) \iff \int h_{ij}(x) f(x|\theta) \lambda(dx) > 0 \\
 \iff \int (\alpha_{1j} h_{1j}(x) - \alpha_{1i} h_{1i}) f(x|\theta) \lambda(dx) > 0 \\
 \iff \int (\tau_1(x) - \tau_j(x) - \tau_1(x) + \tau_i(x)) f(x|\theta) \lambda(dx) \\
 = \int (\tau_i(x) - \tau_j(x)) f(x|\theta) \lambda(dx) > 0 \\
 \iff \int (\sigma_i(x) - \sigma_j(x)) f(x|\theta) \lambda(dx) > 0.
\]

Thus, a_i obtains more votes than any alternative a_j. Therefore, the strategy always chooses the right alternative in a large election and this concludes the proof.

Without loss, we can take \(u_a \in L^A_1(\lambda) \) for each \(a \in A \), by taking positive affine transformations if needed. Let \(\sigma \) be given by \(\sigma_i(x) = u_{a_i}(x) \), so that \(u(f, a_i) > u(f, a_j) \) if and only if \(z_i^\sigma(f) > z_j^\sigma(f) \), so \(\sigma \) achieves FIE. For the converse, simply set \(\hat{u}_{a_i} = \sigma_i \) for every \(a_i \).

Recall that, for a given symmetric profile of strategies \(\sigma \), \(p_n^\sigma(y|\theta) \) denotes the probability of a vector of proportions \(y \), given \(\theta \). The definition readily extends to asymmetric profiles \(\sigma^{(n)} \). The probability that an alternative \(a_j \) wins the election given \(\sigma^{(n)} \) and \(\theta \), denoted by \(q_n^{\sigma^{(n)}}(a_j|\theta) \), is then

\[
q_n^{\sigma^{(n)}}(a_j|\theta) = \sum_{y \in E_n^0} p_n^{\sigma^{(n)}}(y|\theta) + \sum_{m=1}^{k-1} \sum_{y \in E_n^m} \frac{1}{m+1} p_n^{\sigma^{(n)}}(y|\theta)
\]

where \(E_n^0 \) is the set of proportions \(y \) where \(y_j = y_i \) for all \(i \neq j \) and \(E_n^m \) is the set of proportions \(y \) where \(y_j = y_i > y_\ell \) for all \(\ell \neq i, j \) and for exactly \(m \) indices \(i \). In words, \(E_n^0 \) is the set where \(a_j \) gets strictly more votes than all other alternatives and \(E_n^m \) is the set where \(a_j \) is tied at the top with exactly \(m \) other alternatives, in which case \(a_j \) wins with probability \(\frac{1}{m+1} \). Observe that, with such definition in hands, we can write \(u(\sigma^{(n)}) \) as

\[
 u(\sigma^{(n)}) = \int_\Theta \sum_{j=1}^k u(\theta, a_j)q_n^{\sigma^{(n)}}(a_j|\theta)P(d\theta).
\]

For each size \(n \) of electorate, consider a symmetric profile of strategies \(\sigma \) (recall our notation that \(\sigma \) without a superscript denotes both a single strategy and a profile where each voter uses the same strategy). For each \(\theta \), the proportion of votes for \(a_j \) converges to \(z_j^\sigma(\theta) \) with \(P(\cdot|\theta) \)-probability one as \(n \to \infty \). Hence, \(q_n^\sigma(a_j|\theta) \) converges for each \(\theta \), so Lebesgue Dominated Convergence implies that \(u(\sigma^\infty) = \lim_{n \to \infty} u(\sigma^{(n)}) \) is well defined.

Observe that if the symmetric profile \(\hat{\sigma}^\infty \) achieves FIE, then \(u(\hat{\sigma}^\infty) \) is the maximum attainable value: for \(P \)-almost every \(\theta \in A_j \), the alternative \(a_j \) wins; the claim is now verified because \(u(\sigma^n) \) is linear in \(u(\theta, a_j) \).

For each finite electorate \(\{1, \ldots, n\} \), choose \(\sigma^{(n)} \) as a maximizer of \(u(\sigma^{(n)}) \). We know such profile is an equilibrium of the corresponding game \(G^n \). We also know that \(u(\hat{\sigma}^\infty) \) is the maximum feasible value of the ex ante utility. Hence

\[
 u(\hat{\sigma}^\infty) \geq u(\sigma^\infty) = \lim_n u(\sigma^n) \geq \lim_n u(\hat{\sigma}^n) = u(\hat{\sigma}^\infty),
\]

establishing the result. In fact, if \(W_n^{\sigma^n} \) were not to converge to zero, then we would have to have, say, \(P(A_j|A_j^\sigma^\infty) > 0 \) for some \(j \). That is, a set of positive measure in \(A_j \) where an alternative \(a_i \neq a_j \) wins under \(\sigma^\infty \), whereas we know that no such set exists for \(\hat{\sigma}^\infty \). But then \(u(\hat{\sigma}^\infty) > u(\sigma^\infty) \), contradicting what we just established.

Suppose, an environment allows FIE for some \(q \in (0,1) \) and let \(\sigma(\cdot) \) be the strategy that achieves FIE, with the interpretation that \(\sigma(x) \) is the probability of voting for \(a_i \) given signal \(x \in X \). Now consider any other \(q' \in (0,1) \). Replacing \(\sigma(\cdot) \) by \(\sigma'(\cdot) = q' + \epsilon(\sigma(\cdot) - q) \), we can ensure that the
strategy σ' achieves FIE given voting rule q'. We make ϵ small enough to ensure $\sigma'()$ is a valid strategy function.

8.11. Proof of Theorem 5.

Fix $V \in \mathbb{N}_+$. Let $\sigma^V_j : V \times X \to [0,1]$, with $\sum_v \sigma^V_j(v, x) = 1$ for all $x \in X$ and all j, be a symmetric mixed strategy in a V-scoring rule, where $\sigma^V_j(v, x)$ is the probability that a player with signal x assigns $v \in V$ points to alternative a_j.

First, notice that the strategy set under plurality rule is a subset of that under any V-scoring rule without restriction, hence whenever FIE is achieved under plurality rule, it is also achieved under a V-scoring rule without restriction.

Next, we show that whenever FIE is achieved under a V-scoring rule with or without restrictions, it is also achieved under the plurality rule. Let $\sigma^{\text{sum}}_j(x) = \sum_{v \in V} v \sigma^V_j(v, x)$ be the expected number of points assigned to alternative j by a voter with signal x, and $\sigma^{\text{sum}}(x) = (\sigma^{\text{sum}}_1(x), ..., \sigma^{\text{sum}}_k(x))$.

Choose $\epsilon > 0$ sufficiently small such that $\sum_{j=1}^k \epsilon \sigma^{\text{sum}}_j(x) \leq 1$, for all $x \in X$. Define $R(x) = 1 - \sum_{j=1}^k \epsilon \sigma^{\text{sum}}_j(x)$, and let $\sigma^{\text{PV}}_j(x) = \epsilon \sigma^{\text{sum}}_j(x) + \frac{R(x)}{k}$. We want to show that $\sigma^{\text{PV}}_j(x)$ is a well defined plurality voting rule and that it chooses the same alternative as σ^V for all θ almost surely for n sufficiently large. By construction, $\sigma^{\text{PV}}_j(x) \in [0,1]$, and for all x,

$$
\sum_j \sigma^{\text{PV}}_j(x) = \sum_{j=1}^k \left(\epsilon \sigma^{\text{sum}}_j(x) + \frac{1 - \sum_{l=1}^k \epsilon \sigma^{\text{sum}}_l(x)}{k} \right) = \sum_j \epsilon \sigma^{\text{sum}}_j(x) + 1 - \sum_j \epsilon \sigma^{\text{sum}}_j(x) = 1.
$$

Next we show that plurality voting chooses the same alternative as the V-scoring rule. First, note that in state θ the expected number of points received by alternative j is given by

$$
\int \sigma^{\text{sum}}_j(x) P(dx|\theta).
$$

Then, as the population grows large, the difference in votes between alternative i and j, given θ under V-scoring rule is given by

$$
\int \sigma^{\text{sum}}_i(x) P(dx|\theta) - \int \sigma^{\text{sum}}_j(x) P(dx|\theta)
$$

Since $\sigma^{\text{PV}}_j(x)$ is an affine transformation of $\sigma^{\text{sum}}_j(x)$ the above difference is positive if and only if the following difference is positive:

$$
\int \sigma^{\text{PV}}_i(x) P(dx|\theta) - \int \sigma^{\text{PV}}_j(x) P(dx|\theta).
$$

This latter expression is the expected difference in votes between alternative i and j. For n large, if i wins in a V-scoring rule, i wins in plurality voting.

Department of Economics, University of Rochester, Email: paulo.barelli@rochester.edu.

Department of Economics, Royal Holloway University of London, Email: sourav.bhattacharya@rhul.ac.uk.

Division of Social Science, New York University Abu Dhabi, Email: lucas.siga@nyu.edu.