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Abstract. The Murnaghan–Nakayama rule is a combinatorial rule for the char-

acter values of symmetric groups. We give a new combinatorial proof by explic-

itly finding the trace of the representing matrices in the standard basis of Specht

modules. This gives an essentially bijective proof of the rule. A key lemma is an

extension of a straightening result proved by the second author to skew-tableaux.

Our module theoretic methods also give short proofs of Pieri’s rule and Young’s

rule.

1. Introduction

In this article we give a new combinatorial proof of the Murnaghan–Nakayama

rule for the values of the ordinary character χλ of Sn canonically labelled by the

partition λ of n ∈ N. To state the rule, we require the following definitions.

Let `(λ) denote the number of parts of λ. Given partitions µ and λ of m and m+n

respectively, we say that µ is a subpartition of λ, and write µ ⊆ λ, if `(µ) ≤ `(λ)

and µi ≤ λi for 1 ≤ i ≤ `(µ). We define the skew diagram [λ/µ] to be the set of

boxes

{(i, j) : 1 ≤ i ≤ t and µi < j ≤ λi},

and call λ/µ a skew partition. We define row k (resp. column k) of λ/µ to be the

subset of [λ/µ] of boxes whose first (resp. second) coordinate equals k. Let ht(λ/µ)

be one less than the number of non-empty rows of [λ/µ]. We define a border strip

to be a skew partition whose skew diagram is connected and which contains no four

boxes forming the partition (2, 2).

Theorem 1.1 (Murnaghan–Nakayama rule). Given m,n ∈ N, let ρ ∈ Sm+n be an

n-cycle and let π be a permutation of the remaining m numbers. Then

χλ(πρ) =
∑

(−1)ht(λ/µ)χµ(π),

where the sum is over all µ ⊂ λ such that |µ| = m and λ/µ is a border strip.

Before we continue we provide an example of the Murnaghan–Nakayama rule,

showing how it can be applied recursively to calculate single character values.
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Figure 1. The border strips of size 5 (solid) and 2 (dashed) removed

to compute χ(4,4,4)(σ) in Example 1.2.

Example 1.2. Let σ = (1, 2)(3, 4, 5, 6, 7)(8, 9, 10, 11, 12) ∈ S12. We evaluate

χ(4,4,4)(σ). Taking ρ = (8, 9, 10, 11, 12), we begin by removing border strips of size 5

from (4, 4, 4). As shown in Figure 1 there are two such strips, namely (4, 4, 4)/(4, 3)

and (4, 4, 4)/(3, 3, 1), of heights 1 and 2, respectively. Therefore by the Murnaghan–

Nakayama rule

χ(4,4,4)(σ) = (−χ(4,3) + χ(3,3,1))
(
(1, 2)(3, 4, 5, 6, 7)

)
.

Two further applications of the Murnaghan–Nakayama rule to each summand now

show that χ(4,4,4)(σ) = (χ(2) + χ(2))
(
(1, 2)

)
= 1 + 1 = 2.

As Stanley notes in [13, page 401], the Murnaghan–Nakayama rule was first

proved by Littlewood and Richardson in [7, §11]. Their proof derives it, essentially

as stated in Theorem 1.1, as a corollary of the older Frobenius formula [3, page

519, (6)] for the characters of symmetric groups. (For a modern statement of the

Frobenius formula see [13, (7.77)] or [4, (4.10)].) Later Murnaghan [10, page 462,

(13)] gave a similar but independent derivation of the rule. Murnaghan’s paper was

cited by Nakayama [11, page 183], who gave a more concise proof, still from the

Frobenius formula. James gave a different proof in [5, Ch. 11] using the relatively

deep Littlewood–Richardson rule. More recently, elegant involutive proofs have

been given by Mendes and Remmel [9, Theorem 6.3] using Pieri’s rule and Young’s

rule and by Loehr [8, §11] using his labelled abacus representation of antisymmetric

functions.

The starting point for our proof is Corollary 2.9 of Theorem 2.2 below, which

states that χλ(πρ) =
∑

µ χ
µ(π)χλ/µ(ρ), where χλ/µ is the ordinary character of the

skew Specht module Sλ/µ defined in §2.1. By this corollary, it suffices to show that

if ρ is an n-cycle then

(1.1) χλ/µ(ρ) =

{
(−1)ht(λ/µ) if λ/µ is a border strip of size n

0 otherwise.

We do this by explicitly computing the trace of the matrix representing the n-cycle

ρ in the standard basis (see Theorem 2.1) of Sλ/µ. In the critical case where λ/µ

is a border strip, we show that there is a unique basis element giving a non-zero

contribution to the trace. This gives a new and essentially bijective proof of the

Murnaghan–Nakayama rule.
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Theorem 2.2 is the main result in [6]. The proof in [6] constructs skew Specht

modules as ideals in the group algebra of Sn over a field. Our proof using poly-

tabloids instead generalizes James’ proof of the modular branching rule for Specht

modules [5, Ch. 9]. In this way we obtain a stronger isomorphism for integral mod-

ules that replaces the lexicographic order used in [5] and [6] with the dominance

order.

In §2.1 and §2.2 we define λ/µ-polytabloids and state Theorem 2.1, which says

that the set of standard λ/µ-polytabloids is a Z-basis of Sλ/µ. In §2.3 we prove

Theorem 2.2 and deduce Corollary 2.9. In §3 we use Theorem 2.2 to give short

module-theoretic proofs of Pieri’s rule and Young’s rule. In §4 we prove Lemma

4.3, which gives a necessary condition for a standard polytabloid to appear with a

non-zero coefficient when a given λ/µ-polytabloid is written as a linear combination

of standard polytabloids. This generalises Proposition 4.1 in [14] to skew tableaux.

In §5 we use Lemma 4.3 to give a bijective proof of (1.1) when λ/µ is a border strip.

We then deal with the remaining case in §6 by a short argument using Pieri’s rule

and Young’s rule.

2. Background

2.1. Skew tableaux and skew Specht modules. Fix m, n ∈ N. Let λ be a

partition of m+n and let µ be a subpartition of λ of size m. We define a λ/µ-tableau

t to be a bijective function t : [λ/µ] → {1, 2, . . . , n}, and call t a skew tableau of

shape λ/µ. We call (i, j)t the entry of t in position (i, j). Thus a λ/µ-tableau can

be visualized as a filling of the boxes [λ/µ] with distinct entries from {1, . . . , n}.
We draw skew diagrams using the ‘English convention’ in which the largest part

appears at the top of the page: thus the top row is row 1, and so on. The conjugate

partition of λ is the partition λ′ whose diagram [λ′] is obtained by reflecting [λ] in

its leading diagonal. Equivalently, λ′j = |i : λi ≥ j|.
There is a natural action of Sn on the set of λ/µ-tableaux defined by (i, j)(tσ) =(

(i, j)t
)
σ for σ ∈ Sn. Given a λ/µ-tableau t, let R(t) (resp. C(t)) be the sub-

group of Sn consisting of all permutations that setwise fix the entries in each row

(resp. column) of t. We define an equivalence relation v on the set of λ/µ-tableaux

by t v u if and only if there exists π ∈ R(t) such that u = tπ. The λ/µ-tabloid {t}
is the equivalence class of t. A short calculation shows that Sn acts on the set of

λ/µ-tabloids by {t}σ = {tσ}.
Generalizing the usual definitions to skew partitions, we say that a λ/µ-tableau

is row standard if the entries in its rows are increasing when read from left to right,

and column standard if the entries in its columns are increasing when read from

top to bottom. A tableau t that is both row standard and column standard is a

standard tableau.
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Let Mλ/µ be the ZSn-permutation module spanned by the λ/µ-tabloids. We

define the λ/µ-polytabloid e(t) ∈Mλ/µ by

e(t) =
∑

σ∈C(t)

sgn(σ){t}σ.

If t is a standard tableau then we say that e(t) is a standard polytabloid. The

skew Specht module Sλ/µ is then the ZSn-module spanned by all λ/µ-polytabloids.

Taking µ = ∅ this is the Specht module Sλ, defined over Z. By definition, χλ is

the character of Sλ ⊗Z C, and more generally, χλ/µ is the character of Sλ/µ ⊗Z C.

2.2. Garnir relations and the Standard Basis Theorem. If σ ∈ Sn then an

easy calculation shows that

(2.1) e(t)σ = e(tσ).

Hence Sλ/µ is cyclic, generated by any λ/µ-polytabloid. Moreover given τ ∈ C(t)

then

(2.2) e(t)τ = sgn(τ)e(t)

so Sλ/µ is spanned by the λ/µ-polytabloids e(t) for t a column standard λ/µ-

tableau. Let t̃ be the unique column standard λ/µ-tableau whose columns agree

setwise with t and let εt ∈ {+1,−1} be defined by e( t̃ ) = εte(t). We call t̃ the

column straightening of t.

Suppose that (i, j) and (i, j + 1) are boxes in [λ/µ]. Given a λ/µ-tableau t, let

X = {(i, j)t, (i+ 1, j)t, . . .}

be the set of entries in column j of t weakly below box (i, j), and let

Y = {. . . , (i− 1, j + 1)t, (i, j + 1)t}

be the set of entries in column j + 1 of t weakly above box (i, j + 1). Let CX,Y be

the set of all products of transpositions (x1, y1) . . . (xk, yk) for x1 < . . . < xk and

y1 < . . . < yk where {x1, . . . , xk} ⊆ X and {y1, . . . , yk} ⊆ Y are non-empty k-sets.

We define the Garnir element for X and Y by

(2.3) GX,Y = 1 +
∑

σ∈CX,Y

sgn(σ)σ ∈ ZSX∪Y .

Restated, replacing ideals in the group ring ZSn with polytabloids, (3.8) in [2]

implies that

(2.4) e(t)GX,Y = 0.

Similarly restated, Theorem 3.9 in [2] is as follows.

Theorem 2.1 (Standard Basis Theorem).

(i) Any λ/µ-polytabloid can be expressed as a Z-linear combination of stan-

dard λ/µ-polytabloids by applications of column relations (2.2) and Garnir

relations (2.4).

(ii) The ZSn-module Sλ/µ has the set of standard λ/µ-polytabloids as a Z-basis.
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We remark that the proofs of Theorem 7.2 and 8.4 in [5], for Specht modules

labelled by partitions, but defined using polytabloids, generalize easily to prove (2.4)

and Theorem 2.1 exactly as stated above. We give a small example of Garnir

relations in Example 2.8 below.

2.3. A filtration for Specht modules. We require the following notation. Given

finite groups G and H, a ZG-module U and a ZH-module V , we denote by U � V
the Z[G ×H]-module given by the outer tensor product (see [1, (43.1)]) of U and

V . The induction and restriction of modules and characters, defined as in [1, §12D,

§43], are denoted by ↑ and ↓, respectively.

Fix throughout this section m, n ∈ N and a partition λ of m + n. Let S(m,n) =

S{1,2,...,m} × S{m+1,m+2,...,m+n}. We shall prove the following theorem.

Theorem 2.2 ([6, Theorem 3.1]). The restricted Specht module Sλ↓S(m,n)
has a de-

scending chain of ZS(m,n)-submodules whose successive quotients are isomorphic to

Sµ � Sλ/µ, where each subpartition µ of λ of size m occurs exactly once.

Suppose that λ has first part c. Given a λ-tableau t we define the m-shape of

t to be the composition (γ1, . . . , γc) such that γj equals the number of entries in

column j of t not exceeding m. Let � denote the dominance order on compositions

of the same size, defined by δ � γ if and only if `(δ) ≤ `(γ) and
∑k

i=1 δi ≥
∑k

i=1 γi
whenever 1 ≤ k ≤ `(δ). For each composition γ such that `(γ) ≤ c we define

V �γ = 〈e(t) : t a column standard λ-tableau of m-shape δ where δ � γ〉Z.

Note that the definition of the m-shape agrees with the notation b(y) in the proof

of [6, Theorem 3.1]. We require the following total ordering on the set of column

standard λ-tableaux, defined implicitly in [5, page 30].

Definition 2.3. Let u and t be column standard λ-tableaux. We write u > t if and

only if the greatest entry appearing in a different column in u to t appears further

right in u than t.

For instance, the > order on column standard (2, 2)-tableaux is

1 3
2 4

> 1 2
3 4

> 2 1
3 4

> 1 2
4 3

> 2 1
4 3

> 3 1
4 2

.

Note that here, as in general, the greatest tableau under > is standard. Several

times below we use that if x > y and x is to the left of y in the column standard

tableau u then ũ(x, y) > u.

Proposition 2.4. Let u be a column standard λ-tableau of m-shape γ. Then e(u)

is equal to a Z-linear combination of standard λ-polytabloids e(t) where each t has

m-shape µ′ for some partition µ such that µ′ � γ.
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Proof. If u is standard then γ is a partition, and there is nothing to prove. If u is

not standard then there exists (i, j) ∈ [λ] such that (i, j)u > (i, j + 1)u. Let X and

Y be as defined in (2.3). By (2.4) we have

0 = e(u) +
∑

σ∈CX,Y

εuσ sgn(σ)e(ũσ)

where ũσ and εuσ ∈ {+1,−1} are as defined at the start of §2.2. Let σ ∈ CX,Y .

Since the minimum of X exceeds the maximum of Y , we have x > y for each

transposition (x, y) in σ. Hence ũσ > u. Write δ for the m-shape of ũσ. If there

are exactly k transpositions (x, y) in σ such that x > m ≥ y, then δj = γj + k,

δj+1 = γj+1− k and δj′ = γj for j′ 6= j, j + 1. Hence δ� γ. The lemma now follows

by induction on the ≥ and � orders. �

Corollary 2.5. Let µ be a subpartition of λ of size m. Then V �µ′ is a ZS(m,n)-

submodule of Sλ with Z-basis given by the standard λ-tableaux of m-shape ν ′ such

that ν ′ � µ′.

Proof. Since the standard λ-polytabloids are linearly independent by Theorem 2.1(ii),

it follows immediately from Proposition 2.4 that V �µ′ has a Z-basis as claimed. If

π ∈ S(m,n) and s is a standard λ-tableau of m-shape ν ′ then sπ also has m-shape ν ′,

as does s̃π. By (2.2) and Proposition 2.4, e(sπ) = ±e(s̃π) ∈ V �ν′ ⊆ V �µ′ . Hence

V �µ′ is a ZS(m,n)-module. �

Given a µ-tableau u with (as usual) entries {1, . . . ,m} and a λ/µ-tableau v with

entries {m+ 1, . . . ,m+ n}, let u ∪ v denote the λ-tableau defined by

(i, j)(u ∪ v) =

{
(i, j)u if (i, j) ∈ [µ]

(i, j)v if (i, j) ∈ [λ/µ].

Clearly every λ-tableau of m-shape µ′ is of this form. We shall show that the action

of S(m,n) on standard λ-polytabloids is compatible with this factorization. We

require the following lemma and proposition, which are illustrated in Example 2.8

below.

Lemma 2.6. Let µ be a subpartition of λ of size m. Let u be a column standard

µ-tableau and let v be a λ/µ-tableau. Let (i, j) ∈ [µ] be a box such that

m ≥ (i, j)u > (i, j + 1)u.

Let r = µ′j so (r, j) is the lowest box in column j of u, and define

X = {(i, j)u, (i+ 1, j)u, . . . , (r, j)u, (r + 1, j)v, . . .},
Y = {. . . , (i− 1, j + 1)u, (i, j + 1)u},
X? = {(i, j)u, (i+ 1, j)u, . . . , (r, j)u}.



A PROOF OF THE MURNAGHAN–NAKAYAMA RULE 7

Let CX?,Y = {σ ∈ CX,Y : xσ = x for all x ∈ X\X?}. Then

0 = e(u ∪ v) +
∑

σ?∈CX?,Y

sgn(σ?)e(u ∪ v)σ? +
∑

σ∈CX,Y \CX?,Y

sgn(σ)e(u ∪ v)σ

where

(i) for each σ?, we have e(u ∪ v)σ? = e(uσ? ∪ v) and ũσ? > u;

(ii) for each σ, e(u ∪ v)σ is a Z-linear combination of polytabloids e(s) for

standard tableaux s of m-shape ν ′ where ν ′ � µ′.

Proof. Since GX,Y = 1 +
∑

σ?∈CX?,Y
sgn(σ?)σ? +

∑
σ∈CX,Y \CX?,Y

sgn(σ)σ, the dis-

played equation follows from (2.4). Since CX?,Y ⊆ S{1,...,m}, (i) follows from the

observation after Definition 2.3. Take σ ∈ CX,Y \CX?,Y and let w = (u∪ v)σ. Since

σ involves a transposition (x, y) with x > m ≥ y, the statistic k in the proof of

Proposition 2.4 is non-zero. Hence the m-shape of e(w̃) is δ for some composition

δ with δ�µ′. The statement of Proposition 2.4 now implies that e(w̃) is a Z-linear

combination of standard polytabloids e(s) for s of m-shape ν ′ where ν ′ � δ. Hence

ν ′ � µ′, as required for (ii). �

Proposition 2.7. Let µ be a subpartition of λ of size m. Let u be a column standard

µ-tableau and let t be a standard λ/µ-tableau. If e(u) =
∑

S αSe(S) where the sum

is over all standard µ-tableaux S and αS ∈ Z for each S then

e(u ∪ t) ∈
∑
S

αse(S ∪ t) +
∑
ν′�µ′

V �ν′ .

Proof. If u is standard the result is obvious. If not, there exists a box (i, j) ∈ [µ]

such that m ≥ (i, j)u > (i + 1, j)u. Let X? and Y be as in Lemma 2.6. By

Lemma 2.6(ii) we have

e(u ∪ t) ∈ −
∑

σ?∈CX?,Y

sgn(σ?)e(u ∪ t)σ? +
∑
ν′�µ′

V �ν′ .

Using Lemma 2.6(i), the result now follows by induction on the ≥ order. �

We also need the analogous lemma in which u is a λ/µ-tableau, (i, j) ∈ [λ/µ]

and (i, j)u > (i, j + 1)u > m, and Y ? = {(r, j + 1)u, . . . , (i, j + 1)u} where now r =

µ′j+1 + 1, and the relevant sets of coset representatives are CX,Y ? and CX,Y \CX,Y ? .

It implies the analogous proposition in which e(t ∪ v) is straightened, where t is a

standard µ-tableau and v is a column standard λ/µ-tableau. The proofs are entirely

analogous.

The following example makes explicit the statements of Lemma 2.6 and Propo-

sition 2.7.

Example 2.8. Let u, t and u ∪ t be the skew tableaux shown below.

u = 1 2
4 3

, t =
5
7

6 8
, u ∪ t =

1 2 5
4 3 7
6 8

.
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As 4 = (2, 1)(u∪ t) > (2, 2)(u∪ t) = 3, to straighten u∪ t we define X = {4, 6} and

Y = {2, 3}. The relation e(u ∪ t)GX,Y = 0 gives

e(u ∪ t) =− e

 1 3 5
2 4 7
6 8

+ e

 1 2 5
3 4 7
6 8


+ e

 1 3 5
2 6 7
4 8

− e
 1 2 5

3 6 7
4 8

− e
 1 4 5

2 6 7
3 8

 .

In the notation of Lemma 2.6, we have X? = {4}. The standard polytabloids in

the top and bottom lines come from the permutations in CX?,Y and CX,Y \CX?,Y ,

respectively. Furthermore, the 4-shape of each polytabloid in the top line is (2, 2)

and in the bottom line is (3, 1). Therefore

e(u ∪ t) ∈ −e

 1 3 5
2 4 7
6 8

+ e

 1 2 5
3 4 7
6 8

+ V �(3,1),

as expected from Proposition 2.7.

Proof of Theorem 2.2. We start by proving that there is a ZS(m,n)-module isomor-

phism
V �µ′∑

ν′�µ′ V
�ν′

φ∼= Sµ � Sλ/µ.

By Corollary 2.5, the module on the left-hand side has a Z-basis given by the set

of standard λ-tableaux of m-shape µ′. Therefore the linear extension φ of the map

e(s ∪ t)φ = e(s) ⊗ e(t), where s ∪ t is a standard λ-tableau of m-shape µ′, is a

well-defined Z-linear morphism. Since the tensors e(s) ⊗ e(t) for s a standard µ-

tableau and t a standard λ/µ-tableau form a basis for Sµ � Sλ/µ, φ is a Z-linear

isomorphism.

To show that φ is a ZS(m,n)-module homomorphism, it suffices to consider the

actions of S{1,...,m} and S{m+1,...,m+n} separately. Let π ∈ S{1,...,m} and let s ∪ t be

a standard λ-tableau. Observe that ˜(s ∪ t)π = s̃π ∪ t and ε(s∪t)π = εsπ. Suppose

that e(s̃π) =
∑

S αSe(S) where the sum is over all standard µ-tableaux S. On the

one hand (
e(s)⊗ e(t)

)
π = −εsπ

∑
S

αSe(S)⊗ e(t).

On the other hand, by Proposition 2.7 we have

e(s ∪ t)π ∈ −εsπ
∑
S

αSe(S ∪ t) +
∑
ν′�µ′

V �ν′ .

The argument is entirely analogous for the action of S{m+1,...,m+n}.

We now write ≥ for the lexicographic order of compositions. We define V ≥µ
′

in

a similar way to V �µ′ , replacing the condition δ � µ′ with δ ≥ µ′. Since ν ′ � µ′

implies that ν ′ ≥ µ′, replacing every instance of � with ≥ in Proposition 2.4 and
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Corollary 2.5 implies that V ≥µ
′

is also a ZS(m,n)-module. Moreover, V ≥µ
′

has a

Z-basis given by the standard λ-tableaux of m-shape ν ′ such that ν ′ ≥ µ′, and so

there is an isomorphism

V ≥µ
′∑

ν′>µ′ V
≥µ′
∼=

V �µ′∑
ν′�µ′ V

�ν′
∼= Sµ � Sλ/µ.

Therefore the modules V ≥µ
′
, where µ ranges over all subpartitions of λ of size m,

give the required chain of submodules. �

Corollary 2.9. Let ρ ∈ Sm+n be an n-cycle and let π be a permutation of the

remaining m numbers. Then

χλ(πρ) =
∑
µ

χµ(π)χλ/µ(ρ)

where the sum is over all subpartitions µ of λ of size m.

Proof. By taking a suitable conjugate of πρ we may assume that π ∈ S{1,...,m} and

ρ ∈ S{m+1,...,m+n}. Taking characters in Theorem 2.2 gives

(2.5) χλ
y
S(m,n)

=
∑
µ

χµ × χλ/µ

where the sum is over all subpartitions µ of λ of size m. Now evaluate both sides

at πρ. �

3. Pieri’s rule and Young’s rule

A skew partition λ/µ is a vertical (resp. horizontal) strip if [λ/µ] has at most

one box in each row (resp. column). Given n ∈ N, we write sgnSn
for the character

and the CSn-module afforded by the sign representation of Sn

Theorem 3.1 (Pieri’s rule). Let λ be a partition of m + n. If µ is a subpartition

of λ of size m then

〈χλ
y
Sm×Sn

, χµ × sgnSn
〉 =

{
1 if λ/µ is a vertical strip

0 otherwise.

Proof. By Maschke’s Theorem (see [1, (10.8)]) and (2.5), applied to a suitable con-

jugate of Sm × Sn, it suffices to prove that the multiplicity of sgnSn
as a direct

summand of Sλ/µ ⊗Z C is 1 if λ/µ is a vertical strip and otherwise 0. For this we

use the corresponding idempotent E = 1
n!

∑
τ∈Sn

τ sgn(τ) ∈ CSn.

If λ/µ is not a vertical strip then it contains boxes (i, j), (i, j+1) in the same row.

If t is a λ/µ-tableau then {t}(1 − (x, y)) = 0 where x = (i, j)t and y = (i, j + 1)t.

Since E = 1
n!

(
1 − (x, y)

)∑
π π sgn(π), where the sum is over a set of right coset

representatives for the cosets of 〈(x, y)〉 in Sn, it follows that Mλ/µE = 0. Hence

Sλ/µE = 0 as required.
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Suppose that λ/µ is a vertical strip, and let t be a λ/µ-tableau. Let Y1, . . . , Yc
be the sets of entries in each column of t. Let G = SY1×· · ·×SYc and let π1, . . . , πd
be a set of right coset representatives for the cosets of G in Sn. Observe that{

(Y1πj , . . . , Ycπj) : 1 ≤ j ≤ d
}

is the complete set of set compositions of {1, . . . , n} into c non-empty parts of sizes

|Y1|, . . . , |Yc|. Let M = |Y1|! . . . |Yc|!. By (2.2), e(t)τ = sgn(τ)e(t) for each τ ∈ G.

The observation now implies that

e(t)E =
M

n!

d∑
i=1

sgn(πi)e(tπi)

is non-zero and depends on t only up to a sign. Hence the multiplicity of sgnSn
in

Sλ/µ is 1. This completes the proof. �

For example, the unique submodule of S(2,1,1)/(1)⊗ZC affording sgnS3
is spanned

by e(t)E = 1
3e(t)−

1
3e
(
t(1, 2)

)
+ 1

3e
(
t(1, 3, 2)

)
where

t =
1

2
3

, t(1, 2) =
2

1
3

, t(1, 3, 2) =
3

1
2

.

The following lemma is also used in §6.

Lemma 3.2. Let λ be a partition of m+ n and let µ be a subpartition of λ of size

m. If ψ is a character of Sn then

〈χλ/µ, ψ〉Sn =
〈
χλ, χµ × ψ

xSm+n

Sm×Sn

〉
Sm+n

.

Proof. By Frobenius reciprocity (see [1, Theorem 38.8]) and Corollary 2.9,

〈χλ, χµ × ψ
xSm+n

Sm×Sn
〉 = 〈χλ

ySm+n

Sm×Sn
, χµ × ψ〉

= 〈
∑
ν

χν × χλ/ν , χµ × ψ〉

where the sum runs over all partitions ν of m such that ν ⊂ λ. The only non-zero

summand is 〈χµ × χλ/µ, χµ × ψ〉 = 〈χλ/µ, ψ〉. �

Using Lemma 3.2 we immediately obtain the more usual statement of Pieri’s

rule that if ν is a partition of n then (χν × sgnS`
) ↑Sn+`

Sn×S`
=
∑

κ χ
κ where the sum

is over all partitions κ of n + ` such that κ/ν is a vertical strip. Multiplying by

the sign character using the basic result that χν × sgnSn
= χν

′
(see for instance [5,

(6.6)]) then gives Young’s rule: (χν × 1S`
)↑Sn+`

Sn×S`
=
∑

κ χ
κ where the sum is over all

partitions κ of n+ ` such that κ/ν is a horizontal strip.

Remark 3.3. A similarly explicit proof of Young’s rule can be given, using a similar

argument to the proof of Theorem 3.1. To reduce to horizontal strips, observe that

if t is a standard λ/µ-tableau with boxes (i, j) and (i+1, j) then e(t)
(
1+(x, y)

)
= 0

where x = (i, j)t and y = (i+ 1, j)t.
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4. The dominance lemma for skew tableaux

The dominance order for tabloids is defined in [5, Definition 3.11], or, in a way

more convenient for us, in [12, Definition 2.5.4]. We extend it to compare row

standard skew tableaux of shape a fixed skew partition.

Definition 4.1. Let t be a row standard λ/µ-tableau where |λ/µ| = n. Given

1 ≤ y ≤ n, we define sh≤y(t) to be the composition β such that

βi =
∣∣{x : x ∈ row i of t, x ≤ y}

∣∣
for 1 ≤ i ≤ `(λ). If s is another row standard λ/µ-tableau, then we say that s

dominates t, and write s � t, if sh≤y(s) � sh≤y(t) for all y ∈ {1, . . . , n}, where on

the right-hand side � denotes the dominance order of compositions defined in §2.3.

Example 4.2. The � order on the row standard (3, 2)/(1)-tableaux is shown below,

with the largest tableau at the top.

1 2
3 4

1 3
2 4

2 3
1 4

1 4
2 3

2 4
1 3

3 4
1 2

Given a λ/µ-tableau t, we define its row straightening t to be the unique row

standard λ/µ-tableau whose rows agree setwise with t. We extend the dominance

order to λ/µ-tabloids by setting {s}� {t} if and only if s� t.

Lemma 4.3 (Dominance Lemma). If t is a column standard λ/µ-tableau then t is

standard and

e(t) = e(t) + w,

where w is a Z-linear combination of standard polytabloids e(s) such that s� t.

We first show that t is standard. Suppose, for a contradiction, that there exist

boxes (i, j) and (i+ 1, j) ∈ [λ/µ] such that (i, j)t > (i+ 1, j)t. Define

R = {(i, k)t : j ≤ k ≤ λi}
S = {(i+ 1, k)t : µi+1 < k ≤ j}.
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Since

(i+ 1, µi+1 + 1)t < . . . < (i+ 1, j)t < (i, j)t < . . . < (i, λi)t

we have x > y for each x ∈ R and y ∈ S. But since |R|+ |S| = λi − µi+1 + 1, the

pigeonhole principle implies that there exist x ∈ R and y ∈ S lying in the same

column of the column standard skew tableau t, a contradiction.

The next two lemmas generalise Lemmas 3.15 and 8.3 in [5] to skew tableaux.

Lemma 4.4. Let t be a λ/µ-tableau. Let x, y ∈ {1, . . . , n} be such that x < y. If

x is strictly higher than y in t then t(x, y) � t.

Proof. Let x be in row k of t and let y be in row ` of t. By hypothesis, k < `. Let

z ∈ {1, . . . , n}. If x ≤ z < y then

sh≤z(t(x, y))k = sh≤z(t)k − 1

sh≤z(t(x, y))` = sh≤z(t)` + 1.

Whenever i 6∈ {k, `} or z < x or y ≤ z we have sh≤z(t(x, y))i = sh≤z(t)i. It

easily follows from these equations and the definition of the dominance order for

compositions that t(x, y) � t. �

Lemma 4.5. Let t be a column standard λ/µ-tableau. Then e(t) = {t}+w, where

w is a Z-linear combination of λ/µ-tabloids {s} such that {s}� {t}.

Proof. The proof of Lemma 8.3 in [5] still holds, replacing Lemma 3.15 in [5] with

our Lemma 4.4. �

Proof of Lemma 4.3. Let e(t) =
∑

s αse(s) where the sum is over all standard λ/µ-

tableaux and αs ∈ Z for each s. Let u be a standard tableau maximal in the

dominance order such that αu 6= 0. Applying Lemma 4.5 to e(u) gives

e(u) = {u}+ w�{u},

where w�{u} is a Z-linear combination of λ/µ-tabloids each dominated by {u}. By

Lemma 4.5 and the maximality of u, there is no other standard λ/µ-tableau s with

αs 6= 0 such that e(s) has {u} as a summand. Therefore the coefficient of {u} in

e(t) is αu. Applying Lemma 4.5, now to e(t), gives

e(t) = {t}+ w�{t},

where w�{t} is a Z-linear combination of λ/µ-tabloids each dominated by {t}. In

particular {t}� {u}, and so we have that t = u by the maximality of u. Hence

e(t) = αte(t) + w,

where w is a Z-linear combination of standard polytabloids e(v) for standard

tableaux v such that v � t. It follows that {t} cannot be a summand of w in

the equation immediately above. Since the coefficient of {t} in e(t) is 1, we have

αt = 1. �
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We isolate the following corollary of Lemma 4.3.

Corollary 4.6. Let s be a standard λ/µ-tableau, and let u be a column standard

λ/µ-tableau. Suppose that there exists x ∈ {1, 2, . . . , n} such that the boxes contain-

ing 1, 2, . . . , x− 1 are the same in s and u, and x is lower in u than s. If

e(u) =
∑

αve(v),

where the sum is over all standard λ-tableaux v, then αs = 0.

Proof. By assumption, sh≤z(s) = sh≤z(u) if 1 ≤ z < x. As x is in a lower row in u

than in s, we have sh≤x(u) 7 sh≤x(s). Now apply Lemma 4.3. �

5. The Murnaghan–Nakayama rule for border strips

In this section we give a bijective proof that χλ/µ(ρ) = (−1)ht(λ/µ) when λ/µ is

a border strip of size n and ρ is the n-cycle (1, 2, . . . , n). This deals with one of the

two cases in (1.1). Our proof shows that the matrix representing ρ in the standard

basis of Sλ/µ has a unique non-zero entry on its diagonal. The relevant standard

tableau is defined as follows.

Definition 5.1. Let λ/µ be a border strip of size n. Say that a box (i, j) ∈ [λ/µ] is

columnar if (i+ 1, j) ∈ [λ/µ]. We define the standard λ/µ-tableau tλ/µ as follows:

(i) assign the numbers {1, . . . , z} in ascending order to the z columnar boxes

of λ/µ, starting with 1 in row 1 and finishing with z in the row above the

bottom row;

(ii) then assign the numbers {z+ 1, . . . , n} in ascending order to the n− z non-

columnar boxes, starting with z+ 1 in column 1 and finishing with n in the

rightmost column.

For example, t(5,3,3)/(2,2), t(5,3,2)/(2,1) and t(5,1,1)/∅ are respectively

1 6 7
2

3 4 5
,

1 6 7
2 5

3 4
and

1 4 5 6 7
2
3

where 1 and 2 are the entries in columnar boxes in each case. We remark that there

are no columnar boxes if and only if λ/µ is a horizontal strip, as defined in §3.

As useful pieces of notation, we define x− and x+ for x ∈ {1, . . . , n} by x− = x−1

and

x+ =

{
x+ 1 if 1 ≤ x < n

1 if x = n.

Thus xρ = x+ for all x ∈ {1, . . . , n} and 1− = 0. Given a λ/µ-tableau t, we define

t+ by (i, j)t+ =
(
(i, j)t)+. By (2.1), e(tρ) = e(t+).

We say that a standard λ/µ-tableau t such that e(t) has a non-zero coefficient in

the unique expression of e(t+) as a Z-linear combination of standard polytabloids



14 JASDEEP KOCHHAR AND MARK WILDON

is trace-contributing. Since χλ/µ(ρ) is the trace of the matrix representing ρ in the

standard basis, it suffices to prove the following proposition.

Proposition 5.2. Let λ/µ be a border strip. The unique trace-contributing λ/µ-

tableau is tλ/µ. The coefficient of e(tλ/µ) in e(t+λ/µ) is (−1)ht(λ/µ).

The proof of Proposition 5.2 is by induction on the number of top corner boxes

of λ/µ, as defined in Definition 5.3 below. The necessary preliminaries are collected

below. We then prove the base case, when λ/µ = (n− `, 1`) for some ` ∈ N0; this

gives a good flavour of the general argument. In the remainder of this section we

give the inductive step.

We assume, without loss of generality, that µ1 < λ1 and µ`(λ) = 0, so the non-

empty rows of λ/µ are 1, . . . , `(λ) and column 1 of λ/µ is non-empty. We can do

this since the character indexed by a skew diagram is equal to the character indexed

by the same skew diagram with its empty rows and columns removed.

5.1. Preliminaries for the proof of Proposition 5.2. For Z⊆{1, . . . , n} and t

a row standard λ/µ-tableau we define shZ(t) to be the composition β such that

βi =
∣∣{x : x ∈ row i of t, x ∈ Z}

∣∣
for 1 ≤ i ≤ `(λ). Set sh<y(t) = sh{1,...,y−}(t). We also use sh≤y(t), as already

defined in Definition 4.1.

Definition 5.3. Let λ/µ be a border strip. We say that column j of λ/µ is singleton

if it contains a unique box. We define a top corner box to be a box (i, j) ∈ [λ/µ] such

that (i, j − 1), (i− 1, j) 6∈ [λ/µ] and a bottom corner box to be a box (i, j) ∈ [λ/µ]

such that (i+ 1, j), (i, j + 1) 6∈ [λ/µ].

Lemma 5.4. Let λ/µ be a border strip and let t be a λ/µ-tableau. If columns j

and j+ 1 of λ/µ are singleton, with their unique box in row i, then e(t) = e(t)(x, y)

where x = (i, j)t and y = (i, j + 1)t.

Proof. This follows immediately from the Garnir relation (2.4), taking X = {x}
and Y = {y}. �

In fact, all the Garnir relations that we use can be reduced to single transposi-

tions. Let x and y be entries in adjacent columns of a column standard tableau,

with x left of y and x > y. We say that (x, y) is a Garnir swap if at least one of

these column is not singleton, and otherwise that (x, y) is a horizontal swap.

Lemma 5.5. Let t be a trace-contributing border strip tableau. Then t can be

obtained from t̃+ by iterated horizontal swaps, Garnir swaps and column straight-

enings. If in such a sequence 1 moves, then 1 moves either left or down.

Proof. The first claim is immediate from Theorem 2.1(i). The second follows from

Corollary 4.6 taking x = 1. �
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Given X ⊆ {1, 2, . . . , n}, we define X+ = {x+ : x ∈ X}. We also define minX

to be the minimum of X, and maxX to be the maximum of X. The following

combinatorial result on the map x 7→ x+ is used several times to restrict the possible

entries of trace-contributing tableaux.

Lemma 5.6. Let X be a set of natural numbers such that 1, n 6∈ X. Also suppose

that b, c are not contained in X. We have {b+} ∪ X+ = X ∪ {c} if and only if

b+ = minX, c = maxX+ and X = {b+, . . . , c−}.

Proof. Since minX 6∈ X+ we have minX = b+. Similarly, since maxX+ 6∈ X

we have maxX+ = c. Suppose for a contradiction that X is a proper subset of

{b+, . . . , c−}. Setting

d = min({b+, . . . , c−}\X)

we see that since b+ = minX ∈ X, we have d > b+. The minimality of d implies

that d− ∈ X and so d ∈ X+; since d < c and {b+}∪X+ = X ∪{c}, we have d ∈ X,

a contradiction. The converse is obvious. �

Finally, as a notational convention, when we specify a set, we always list the

elements in increasing order. In diagrams the symbol ? marks an entry we have no

need to specify more explicitly.

5.2. Base case: one top corner box. In this case µ = ∅ and λ = (n − `, 1`)
for some ` ∈ N0. If ` = 0 then there is a unique standard (n)-tableau and the

result is clear. Suppose that ` > 0 and let t be a standard (n − `, 1`)-tableau

with entries {1, y1, . . . , y`−1, c} in column 1. (By our notational convention, 1 <

y1 < . . . < y`−1 < c.) If c = n then t̃+ is standard with first column entries

{1, 1+, y+1 , . . . , y
+
r−1}. Hence, assuming that t is trace-contributing, we have c < n.

After a sequence of horizontal swaps applied to t̃+ we obtain the tableau shown

below.

1+ 1 ? . . . ?

y+1
...

y+`−1

c+

A Garnir swap of 1 with 1+ or any y+i gives, after column straightening and a se-

quence of horizontal swaps, a standard tableau having c+ in its bottom left position.

We may therefore assume, by Lemma 5.5, that 1 is swapped with c+. After col-

umn straightening, which introduces the sign (−1)`, a sequence of horizontal swaps

gives the standard tableau having {1, 1+, y+1 , . . . , y
+
`−1} in its first column. Thus if

t is trace-contributing then {1+, y+1 , . . . , y
+
`−1} = {y1, . . . , y`−1, c}. By Lemma 5.6,
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{y1, . . . , y`−1, c} = {2, . . . , ` + 1}. Therefore t = t(n−`,1`) and the coefficient of

e(t(n−`,1`)) in e(t+
(n−`,1`)) is (−1)`, as required.

5.3. Inductive step. Let δ(i) ∈ N
`(λ)
0 denote the composition defined by δ(i)i = 1

and δ(i)k = 0 if k 6= i.

Proposition 5.7. Let λ/µ be a border strip, and let t be a standard λ/µ-tableau.

Let c ∈ N and suppose that either c = 1 or c > 1 and the entries 1, . . . , c− and n

lie in the same column of t. Let (i, j) be the box of t containing c, and let (i′, j′) be

the box of t̃+ containing c. If t is a trace-contributing tableau, then i = i′.

Proof. By hypothesis, the highest c− entries in column j′ of t and t̃+ are 1, . . . , c−.

Let s = t̃+. Setting β = sh<c(t) = sh<c(s) we have sh≤c(t) = β + δ(i) and

sh≤c(s) = β + δ(i′). By Lemma 4.3, the hypothesis that t is trace-contributing

implies that sh≤c(s) � sh≤c(t). Therefore i ≥ i′.
If j = j′ then either c = 1 and 1 is at the top of the column of t which has n at

its bottom, or c > 1 and c is immediately below c− in both s and t. In either case

i = i′.

We may therefore suppose, for a contradiction, that i > i′ and j < j′. By

hypothesis the box (i, j) of t containing c is the top corner box in row i. Let (i, `)

be the bottom corner box in row i; note that ` ≤ j′, as shown in the diagram below.

(i′,j′)

...

. . .

...

...

(i,`)(i,`−1). . .(i,j)

By the hypothesis that t is trace-contributing and Lemma 5.5 there is a sequence

of horizontal swaps, Garnir swaps, and column straightenings from t̃+ to t. Suppose

that in such a sequence an entry b < c is moved. If b is the first such entry moved

in this sequence, and u is the tableau obtained after column straightening, then, by

Corollary 4.6 applied with x = b, the coefficient of e(t) in e(u) is zero. Therefore

the entries {1, . . . , c−} are fixed and c is the smallest number moved. Take such a

sequence and stop it immediately after the first swap in which c enters row i. Let v

be the column standard tableau so obtained, and let u be its immediate predecessor.

When c enters row i of v, it is swapped with the entry, d+ say, in box (i, ` − 1)

of u. Observe that the entries in boxes strictly to the left of column ` are the same

in t̃+ and u, since no swap in the sequence from t̃+ to u involves an entry in these
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columns. Let a+ be the entry in box (i, `) of u. Thus the column standard tableau

u is as shown overleaf and v = ˜u(c, d+).

...

c

...

a+d+. . .c+ row i

... col `

col j

Note that d+ > a+ since otherwise u is standard with respect to all boxes weakly

to the left of column `, and so d+ cannot be moved in a Garnir swap.

To complete the proof we require the following critical quantity. Let r be maximal

such that entries c, . . . , r are strictly to the left of column ` in the original tableau t.

If r = d then, since d > a, a is strictly to the left of column ` in t; this is impossible

since a+ appears in column ` in u. Therefore r < d. Since d is in position (i, `− 1)

of t and r ≥ c, it follows that c 6= d. Moreover, the entries c+, . . . , r+ are in the

same boxes in t+ and v.

Claim. We have v 6� t. Proof of claim. Let sh{c+,...,r+}(u) = δ. By hypothesis

and our stopping condition on swaps, if q ≤ r then the box of q+ in u is the box of

q in t. Hence sh{c,...,r}(t) = δ. Since d > r and d is in position (i, `− 1) of t, we see

that r+ is not in row i of t. By maximality of r, the row of t containing r+ is row h

for some h < i. Clearly the row of c in v is i. Therefore sh{c,...,r+}(v) = δ+ δ(i) and

sh{c,...,r+}(t) = δ + δ(h). Since 1, . . . , c− are in the same positions in both v and t,

it follows that

sh≤r+(t) � sh≤r+(v)

which implies the claim.

It now follows from Lemma 4.3, as before, that e(t) does not appear in e(v), a

final contradiction. This completes the proof. �

Corollary 5.8. If t is a trace-contributing tableau then either 1 and n are in the

same column of t, or 1 and n are in the top row of t.

Proof. Let 1 and n be in positions (i, j) of t and (i′, j′) of t, respectively. If column

j′ is singleton then n is the top right entry of t and, taking c = 1 in Proposition 5.7,

we get i = i′; thus 1 and n are in the top row of t. Otherwise, when we column

straighten t+ to obtain t̃+, the entry 1 in position (i′, j′) moves up to position (i′′, j′)

where i′′ < i′. Again taking c = 1 in Proposition 5.7, we get i = i′′. Since (i′′, j′)

is the top corner box in its row, and so is (i, j), we see that j = j′. Hence 1 and n

are in the same column of t. �
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Proof of Proposition 5.2. We now complete the inductive step of the proof.

Suppose that λ/µ has more than one top corner box, and that t is a trace-

contributing λ/µ-tableau. Let 1 be in position (i, j) of t and in position (i′, j′) of

t̃+. By Proposition 5.7, we have i = i′.

Case (1). Suppose that 1 and n lie in the same row of t. By Corollary 5.8, this

is the top row. Let the entries in the top row be {1, x1, . . . , xk−1, n}, and let the

entries in the column of 1 be {1, y1, . . . , y`−1, c}.
Straightening the top row of t+ by a sequence of k−1 horizontal swaps moves 1+

and 1 into adjacent positions, giving the tableau u shown below.

1+ 1 x+1
. . . x+k−1

y+1
...

y+`−1

c+. . .

As in the base case, the only Garnir swap that can lead to t is (1, c+), which

introduces the sign (−1)`. Let v = ˜u(1, c+), as shown below.

1 c+ x+1
. . . x+k−1

1+

y+1
...

y+`−1
. . .

By Lemma 5.5 and Corollary 4.6, v can be straightened by a sequence of horizon-

tal swaps, Garnir swaps and column straightenings which either fix 1, and so leave

invariant the content of its top row, or move 1 into a lower row, giving a tableau,

w say, such that, e(t) does not appear in e(w). Since e(t) has a non-zero coefficient

in e(v), we have

{c+, x+1 , . . . , x
+
k−1} = {x1, . . . , xk−1, n}.

Lemma 5.6 implies that c+ = x1 = n − k + 1, x+k−1 = n and {x1, . . . , xk−1} =

{n− k + 1, . . . , n− 1}. Thus t and v have top row entries {1, n− k + 1, . . . , n}.
Let T and V be the tableaux obtained from t and v by deleting all but the top

corner box in their top rows. This removes entries {n− k + 1, . . . , n}. Let λ?/µ be

the common shape of T and V . Observe that T has greatest entry n− k = c in the

bottom corner box of its rightmost column and that V is the column straightening of

T †, where † is defined as + on tableaux, but replacing n with n− k. By induction,
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T = tλ?/µ, and since t has n − k + 1, . . . , n in its top row, we have t = tλ/µ.

Moreover, the coefficient of e(T ) in e(T †) is (−1)ht(λ
?/µ), Since ht(λ?/µ) = ht(λ/µ),

the coefficient of e(t) in e(t+) is (−1)ht(λ/µ), as required.

Case (2). If Case (1) does not apply then, since i = i′, 1 and n are in the same

column of s and so j = j′. Take c maximal such that 1, 2, . . . , c− are in column j of

t. Suppose that in column j of t, the entry immediately below c− equals d for some

d < n. By Proposition 5.7, the row of c in t is the same as the row of c in t̃+. It

follows that c = d, which contradicts the maximality of c unless column j of t has

entries 1, 2, . . . , c−, n, as shown below.

1

2

c−

...

nc . . .

. . .

...

. . . row i = i′

col j

By Lemma 5.5 there is a sequence of horizontal swaps, Garnir swaps and column

straightenings from t̃+ to t. As seen in the proof of Proposition 5.7, it follows easily

from Lemma 4.3 that 1, . . . , c− do not move. Let X be the set of entries of t lying

strictly to the right of column j. These entries become X+ in t̃+, which is standard

with respect to these columns. No permutation in our chosen sequence can involve

a entry in one of these columns. Hence X+ = X, and so X = ∅.

We have shown that j is the rightmost column of t, and that t agrees with tλ/µ in

this column. Let T be the tableau obtained from t by deleting all but the bottom

corner box in column j and subtracting c− from each remaining entry. Thus the

top row of T has entries 1, . . . , n − c− and n − c− is its greatest entry. Let T

have shape λ?/µ?. By induction, T = tλ?/µ? , and hence t = tλ/µ. Let T † be

defined as T+, but replacing n with n − c−. By induction, the coefficient of e(T )

in e(T †), is (−1)ht(λ
?/µ?). Since ht(λ?/µ?) + c− = ht(λ/µ), and the sign introduced

by column straightening t+ is (−1)c
−

, the coefficient of e(t) in e(t+) is (−1)ht(λ/µ),

as required. �

6. Proof of Theorem 1.1

Let λ/µ be a skew partition of size n and let ρ ∈ Sn be an n-cycle. In order to

complete the proof of Theorem 1.1, we must show that χλ/µ(ρ) = 0 if λ/µ is not a

border strip. We require the following two lemmas.
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Lemma 6.1. Let 0 ≤ ` ≤ n. If

〈χλ, χµ × 1S`
× sgnSn−`

xSm+n

Sm×S`×Sn−`
〉 > 0

then [λ/µ] has no four boxes making the shape (2, 2).

Proof. By the versions of Pieri’s rule and Young’s rule proved at the end of §3, the

hypothesis implies that λ is obtained from µ by adding a horizontal strip of size `

and then a vertical strip of size n−`. If two boxes from a horizontal strip are added

to row i then at most one box can be added below them in row i+ 1 by a vertical

strip. The result follows. �

Lemma 6.2. If λ is a partition of n and ρ is an n-cycle then χλ(ρ) 6= 0 if and only

if λ = (n− `, 1`) where 0 ≤ ` < n.

Proof. Write CentSn(ρ) for the centraliser subgroup of ρ in Sn. By a column or-

thogonality relation (see [1, (31.13)])∑
λ

χλ(ρ)2 = |CentSn(ρ)| = n,

and the sum is over all partitions λ of n. By (1.1) in the case proved in §5, we have

χ(n−`,1`)(ρ) = (−1)`−1 for 0 ≤ ` < n. Therefore the partitions (n − `, 1`) give all

the non-zero summands. �

Proposition 6.3. Let λ/µ be a skew partition of size n and let ρ ∈ Sn be an

n-cycle. If λ/µ is not a border strip then χλ/µ(ρ) = 0.

Proof. If [λ/µ] is disconnected then it is clear from the Standard Basis Theorem

(Theorem 2.1(ii)) that Sλ/µ is isomorphic to a module induced from a proper Young

subgroup Sn−` × S` of Sn. Since no conjugate of ρ lies in this subgroup, we have

χλ/µ(ρ) = 0.

In the remaining case [λ/µ] has four boxes making the shape (2, 2). By either

Pieri’s rule or Young’s rule, we have

〈1S`
× sgnSn−`

↑Sn
S`×Sn−`

, χ(n−`,1`)〉 = 1.

Hence

〈χλ, χµ × 1S`
× sgnSn−`

xSm+n

Sm×S`×Sn−`
〉 ≥ 〈χλ, χµ × χ(n−`,1`)xSm+n

Sm×Sn
〉

= 〈χλ/µ, χ(n−`,1`)〉

where the equality follows from Lemma 3.2. By Lemma 6.1 the left-hand side is 0.

It follows that 〈χλ/µ, χ(n−`,1`)〉 = 0 for 0 ≤ ` < n. By Lemma 6.2, this implies the

result. �
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