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Abstract

Let Σr be the symmetric group acting on r letters, K be a field of
characteristic 2, and λ and µ be partitions of r in at most two parts.
Denote the permutation module corresponding to the Young subgroup
Σλ, in Σr, by Mλ, and the indecomposable Young module by Y µ. We
give an explicit presentation of the endomorphism algebra EndK[Σr ](Y

µ),
using the idempotents found by Doty, Erdmann and Henke in [1].

1 Introduction

Permutation modules of symmetric groups, arising from actions on set parti-
tions, are of central interest in the representation theory of symmetric groups.
They also provide a link with the representation theory of general linear groups,
via Schur algebras.

Let K be a field of prime characteristic p, and let n and r be positive integers.
For each partition λ of r with at most n parts, letMλ be the permutation module
of the symmetric group Σr of degree r, corresponding to the set partition λ. The
indecomposable summands of the modules Mλ are known as Young modules,
where Y µ is the unique summand of Mλ that contains Sµ. The module Mλ

is in general a direct sum of Young modules Y µ, and if Y µ occurs as a direct
summand of Mλ, then µ ≥ λ in the dominance order of partitions. The p-
Kostka number, [Mλ : Y µ], is the number of indecomposable summands of Mλ

isomorphic to Y µ, and therefore

Mλ ∼=
⊕
µ≥λ

[Mλ : Y µ]Y µ.

The paper [1] studies the endomorphism algebra of Mλ, denoted SK(λ),
when K has characteristic 2 and λ has at most two parts. In this case, SK(λ) is
commutative, and its primitive idempotents are unique. The main result of [1]
is the explicit construction of all primitive idempotents of SK(λ), establishing
a one-to-one correspondence with the 2-Kostka numbers, explicitly: the idem-
potent corresponding to [Mλ : Y µ] generates the endomorphism algebra of the
Young module, Y µ.

In this paper, we study the endomorphism algebra of Y µ as the subalgebra of
SK(λ) that is generated by the primitive idempotent constructed in [1]. We show
that the algebra structure of EndK[Σr](Y

µ) depends only on its dimension as a
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K-vector space, but not on the partition µ. The dimension of the endomorphism
algebra of Y µ, where µ is a partition of r in at most two parts, is known (see
[2]).

We will give an explicit presentation of EndK[Σr](Y
µ) by giving generators

and relations for this algebra. For a precise description, see Theorem 3.7. The
result of Theorem 3.7 may be surprising since the submodule structure of these
Young modules can get more and more complicated for large r, as can be seen for
example in [3]. As a representative for a t-dimensional endomorphism algebra,
one can take the endomorphism algebra of Y (t−1,t−1); we see in Example 3.8
that this module is isomorphic to M (t−1,t−1).

2 Background

Doty and Giaquinto found presentations of the Schur algebras SK(n, r) in terms
of the universal enveloping algebras of the Lie algebras gln. We assume that
n = 2, which is the case when λ is a partition of r in at most two parts i.e.
λ = (λ1, λ2). Based on the results in [4], the paper [1] determines a basis and a
multiplication formula for the endomorphism algebra of Mλ. We will summarise
what we need, for details we refer to [1].

2.1 The canonical basis for SK(λ)

Definition 2.1. Let K be a field of arbitrary characteristic p i.e. p ≥ 0. The
algebra SK(λ) := EndK[Σr](M

λ) has basis

{b(i) : i ∈ Z and 0 ≤ i ≤ λ2}.

We will refer to this basis as the canonical basis of SK(λ) and the multiplication
of these basis elements is given by:

b(i) · b(j) =

i∑
k=0

(
j + k

i

)(
j + k

k

)(
m+ j + i

i− k

)
b(j + k),

where m := λ1 − λ2, and we set b(a) = 0 for a > λ2. Here the coefficients are
taken modulo p when the field K has characteristic p > 0.

2.2 Notation

For an integer a with p-adic expansion a =
∑s
i=0 aip

i, where 0 ≤ ai ≤ p−1 for all
i, we write a = [a0, a1, . . . , as]. We also have for non-negative integers m and n,
with respective p-adic expansions m = [m0,m1, . . . ,ms] and n = [n0, n1, . . . , nt],
where s, t ≥ 0, that: (

m

n

)
≡p

max{s,t}∏
i=0

(
mi

ni

)
.
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We refer to the right hand side of the above as the p-adic expansion of the
binomial coefficient.

In a field K of positive characteristic p, the following holds:

Lemma 2.2. [1, Lemma 3.7] Let i = [i0, i1, . . . , is]. Then b(i) =
∏s
t=0 b(it · pt)

in SK(λ).

It can then be proved that the algebra SK(λ) can be generated by the el-
ements b(p0), b(p1), . . . , b(pt), where t is the unique natural number such that
pt ≤ λ2 < pt+1. For the case when p = 2, the result is immediate; for i with
binary expansion [i0, i1, . . . , is] the coefficients it, where 0 ≤ t ≤ s, are 0 or 1.

2.3 The idempotents em,g

From now on, we assumeK is a field of characteristic 2. Let λ and µ be partitions
of r in at most two parts i.e. λ = (λ1, λ2) and µ = (µ1, µ2), where µ ≥ λ in the
dominance order of partitions. Define m := λ1 − λ2 and g := λ2 − µ2, and so
given r, from m and g, we can completely determine λ and µ. It is known (see
[2]) that Y µ is a direct summand of Mλ if and only if

B(m, g) :=

(
m+ 2g

g

)
6≡2 0.

In [1], the binary expansion of B(m, g) is used to construct an element of SK(λ),
denoted em,g. We begin by defining the index sets Im,g and Jm,g as follows:

Im,g := {u : gu = 0 and (m+ 2g)u = 1},

Jm,g := {u : gu = 1 and (m+ 2g)u = 1}.
For a natural number t, define elements of SK(λ) by:

em,g :=
∏

u∈Jm,g

b(2u)
∏

u∈Im,g

(1− b(2u)),

em,g≤t
:=

∏
u∈Jm,g,u≤t

b(2u)
∏

u∈Im,g,u≤t

(1− b(2u)).

If u is contained in Im,g ∪ Jm,g, we say that b(2u) is involved in em,g. We can
form a correspondence between the factors of em,g and the binomial coefficients
that are factors in the binary expansion of B(m, g), as follows:(

(m+2g)u
gu

) (
1
1

) (
1
0

) (
0
0

) (
0
1

)
Factor of em,g b(2u) 1− b(2u) 1 0

.

Therefore em,g is equal to 0 if and only if
(

0
1

)
is a factor in the binary expansion

of B(m, g). This happens if and only if B(m, g) equals 0 modulo 2. By [2], this
is precisely the case when Y µ is not a summand of Mλ. In [1], it is proved that
the em,g are the primitive orthogonal idempotents in SK(λ), i.e. the following
holds:
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Theorem 2.3 (Idempotent Theorem). [1] Fix m ≥ 0. The set of elements em,g,
with B(m, g) 6= 0 modulo 2, and m + 2g ≤ r give a complete set of primitive
orthogonal idempotents for SK(λ).

Theorem 2.3 then implies:

Theorem 2.4. [1, Theorem 7.1] Let λ = (λ1, λ2) and µ = (µ1, µ2) be partitions
of r, such that Y µ is a direct summand of Mλ. Define

m := λ1 − λ2 and g := λ2 − µ2.

Then em,g is the idempotent element of SK(λ), such that em,gM
λ = Y µ.

We also recall the following lemma from [1], which is used when finding a
minimal set of generators of EndK[Σr](Y

µ).

Theorem 2.5 (Orthogonality Lemma). [1] Suppose that
(

(m+2g)s
gs

)
=
(

0
0

)
, then

e2
m,g · b(2s)2 = 0.

3 The algebra EndK[Σr](Y
µ)

In this section, we will see that the generators of the endomorphism algebras
of EndK[Σr](Y

µ) have a notion of size. This will determine the elements of
the algebra that are zero. Letting k = {1, 2, . . . , k}, we introduce the following
definitions:

Definition 3.1. Let A be a commutative algebra with fixed generators

{x1, . . . , xk},

such that these generators have square zero. Let ∅ 6= I ⊂ k and x :=
∏
i∈I xi, so

that x is a monomial in the generators. We also require that x has no repeated
factors. Define the function φ as follows:

φ(x) = φ

(∏
i∈I

xi

)
:=
∑
i∈I

2i.

Definition 3.2. Let A be a commutative algebra with fixed generators

{x1, . . . , xk},

such that these generators have square zero. Let I and J be non-empty subsets
of k, and define x :=

∏
i∈I xi and y :=

∏
j∈J xj , so that x and y are monomials

in the generators. We again require that x has no repeated factors and y has
no repeated factors. Define the ordering � on such elements x and y as follows:

x � y if and only if φ(x) ≤ φ(y),

with φ as in Definition 3.1. One can see that for a fixed k, this is a total order,
and we define |x| as the position of x in the ascending chain in this total order.
We give an example of this below:
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Example 3.3. Let A be a commutative algebra with fixed generators

{x1, x2, x3},

such that these generators have square zero. Then the distinct products in these
three generators with no repeated factors are given by the set

{x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}.

From Definition 3.1, we obtain

φ(x1) = 2, φ(x2) = 4, φ(x3) = 8,

φ(x1x2) = 6, φ(x1x3) = 10, φ(x2x3) = 12, and φ(x1x2x3) = 14.

Then from Definition 3.2, we have:

x1 � x2 � x1x2 � x3 � x1x3 � x2x3 � x1x2x3,

and so for example we write |x2x3| = 6.

Let λ = (λ1, λ2) and µ = (µ1, µ2) be partitions of r, and K be a field of
characteristic 2. We have that the algebra EndK[Σr](Y

µ) is generated by the
non-zero elements of the set

{em,gb(2k) : 1 ≤ 2k ≤ λ2},

where em,g is the idempotent of SK(λ) such that em,gM
λ = Y µ. To find a

minimal set of generators, we prove the following lemma:

Lemma 3.4 (Involvement Lemma). If b(2i) is involved in em,g, then either
em,gb(2

i) = em,g or em,gb(2
i) = 0.

Proof. We prove this for all b(2i) by induction on i.
Assume first that i = 0, and let m = [m0, . . . ,ms] be the binary expansion

of m. Suppose that b(20) = b(1) is involved in em,g, then (m + 2g)0 = 1. In
binary for all g ≥ 0, we have (2g)0 = 0 and so m0 = 1. By [1, Example 4.1], we
have b(1)2 = m0b(1) = b(1). We distinguish two cases:

• If the factor corresponding to u = 0 in the definition of em,g is b(1), then
for em,g = x · b(1):

em,g · b(1) = x · b(1)2

= x · b(1)
= em,g.

• If the factor corresponding to u = 0 in the definition of em,g is 1 − b(1),
then for em,g = x · (1− b(1)):

em,g · b(1) = x · (1− b(1)) · b(1)
= x · (b(1)− b(1)) = 0.
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Therefore the result holds for i = 0.
Now let i > 0, and let the result hold for all b(2k), such that k < i. Consider

em,g · b(2i), where b(2i) is involved in em,g. By construction of em,g, either b(2i)
is a factor of em,g or 1− b(2i) ≡2 1 + b(2i) is a factor of em,g. Therefore if, for
some x ∈ SK(λ), we have:

em,g = x · b(2i) or em,g = x · (1 + b(2i)),

then
em,gb(2

i) = x · b(2i)2 or x · (b(2i) + b(2i)2),

respectively. By [1, Lemma 4.2], for the v such that 0 ≤ v ≤ i and v is maximal
with respect to mv−1 = 0 in the binary expansion of m, one of the following
holds:

• The factor corresponding to u = i in the definition of em,g is b(2i): As

b(2i)2 = b(2i)[mi · 1 +

i−1∑
k=v−1

b(2k)2],

we have:

em,gb(2
i) = x · b(2i)2

= x[b(2i)[mi · 1 +
∑i−1
k=v−1 b(2

k)2]]

= em,g[mi · 1 +
∑i−1
k=v−1 b(2

k)2].

• The factor corresponding to u = i in the definition of em,g is 1 + b(2i): As

b(2i) + b(2i)2 = b(2i)[1 +mi · 1 +

i−1∑
k=v−1

b(2k)2],

we have:

em,gb(2
i) = x · (b(2i) + b(2i)2)

= x[b(2i)[1 +mi · 1 +
∑i−1
k=v−1 b(2

k)2]]

= em,g[1 +mi · 1 +
∑i−1
k=v−1 b(2

k)2].

Note that if em,gb(2
i) = em,g, then em,gb(2

i)2 = em,g, and if em,gb(2
i) = 0, then

em,gb(2
i)2 = 0.

By the induction hypothesis, for v−1 ≤ k ≤ i−1 such that b(2k) is involved
in em,g, either em,gb(2

k)2 = em,g or em,gb(2
k)2 = 0. For b(2k) not involved

in em,g, the factor
(

(m+2g)k
gk

)
of the binary expansion of

(
m+2g
g

)
satisfies the

condition of the Orthogonality Lemma. Therefore in all cases:

em,gb(2
i) = em,g · (sum of 1’s and 0’s).

This is equal to em,g or 0 as we are in a field of characteristic 2, and so the
result holds by induction.
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It follows from the Involvement Lemma that the generators of the algebra
EndK[Σr](Y

µ) are the em,gb(2
i) such that b(2i) is not involved in em,g. These

are precisely the non-zero elements of the set

T := {em,gb(2s) : (m+ 2g)s = 0}. (1)

As
(
m+2g
g

)
is non-zero, the generators of the algebra EndK[Σr](Y

µ) satisfy
the conditions of the Orthogonality Lemma. It follows that the generators of
EndK[Σr](Y

µ) all have square zero, and so for k equal to the cardinality of the
set T , the algebra EndK[Σr](Y

µ) is isomorphic to a quotient of

K[x1, . . . , xk]/(x2
i : i = 1, . . . , k). (2)

Definition 3.5. Let i = [i0, i1, . . . , is]. We call the set

Si := {u : iu 6= 0}

the support of the basis element b(i) of SK(λ).

We note that defining the support of b(i) in this way gives a bijection between
the canonical basis elements of SK(λ) and the subsets of {1, 2, . . . , λ2}, via the
map b(i) 7→ Si.

We now fix em,g. Consider em,g as a linear combination of the elements in
the canonical basis of SK(λ). By the construction of em,g, a basis element b(i)
occurs in this linear combination only if it is a product of elements b(2u) such
that (m+ 2g)u = 1, i.e. if u is an element of Si, then (m+ 2g)u = 1. Therefore
the support of b(i) is contained in Im,g ∪ Jm,g.

Theorem 3.6 (Basis Theorem). Let K be a field of characteristic 2. Suppose
that r is a postive integer, and let µ = (µ1, µ2) be a partition of r. The algebra
EndK[Σr](Y

µ) has basis given by the non-zero elements in the set

S := {em,gb(j) : the support of b(j) is disjoint from Im,g ∪ Jm,g},

where m and g are such that em,gM
λ = Y µ.

Proof. We first show that the set S spans the algebra EndK[Σr](Y
µ). Suppose

that j is contained in Im,g ∪ Jm,g. Then by the Involvement Lemma, we have
that either

em,gb(2
j) = em,g or em,gb(2

j) = 0.

As b(i)b(0) = b(i) and hence em,g = em,gb(0), in both of the above cases
em,gb(2

j) can be expressed as a linear combination of the elements in the set S.
Consider a non-zero element em,gb(i) of EndK[Σr](Y

µ). If we write
em,gb(i) as a linear combination of the elements in the canonical basis of SK(λ),
then all b(l) that occur in this linear combination can be written as:

b(l) = b(k)b(j). (3)

7



Using the binary expansion of l, we construct this factorisation such that the
basis element b(k) has support contained in Im,g ∪ Jm,g and disjoint from the
support of b(j). By construction, the support of b(l) is then the disjoint union
of the support of b(k) and the support of b(j). For the b(l) = b(k)b(j) in the
linear combination of em,gb(i), as em,g is an idempotent element of SK(λ), we
have that em,gb(i) equals the sum of the elements

em,gb(k)b(j).

Repeatedly using the Involvement Lemma and that em,g is an idempotent, we
have em,gb(k) = em,g or em,gb(k) = 0. Therefore em,gb(i) can be written as
a linear combination of the set S, and so the elements of S span the algebra
EndK[Σr](Y

µ).
It therefore remains to show that the elements of the set S are linearly

independent. From the decomposition of the basis elements described in (3), it
follows that if i 6= j and both em,gb(i) and em,gb(j) belong to the set S, then
the linear combinations of these two elements in terms of the canonical basis of
SK(λ) have no basis elements in common. Hence S is linearly independent.

We now prove the following result:

Theorem 3.7. Let K be a field of characteristic 2. Suppose that r is a positive
integer and A = EndK[Σr](Y

µ), where µ = (µ1, µ2) is a partition of r. If A has

dimension n and k is the unique non-negative integer such that 2k−1 < n ≤ 2k,
then A is isomorphic as a K-algebra to

B := K[x1, . . . , xk]/({x2
i : i = 1, . . . , k} ∪R),

where
R := {x = xr1xr2 . . . xrlxk : ri 6= rj and |x| ≥ n}

and |x| is as in Definition 3.2.

Proof. Using the discussion on the algebra A leading to (2), the dimension n of
A satisfies n ≤ 2k, where k is the size of the set T in (1). We label the elements
in T as:

em,gb(2
ai), a1 < a2 < . . . < ak.

Consider an element em,gb(i) 6= 0, where b(i) has b(2ak) as a factor. Such an
element is non-zero if and only if the following two conditions hold:

(i) The support of b(i) is disjoint from Im,g ∪ Jm,g.

(ii) The term b(l) occurring in the expansion of em,gb(i) with smallest l satisfies
l ≤ λ2.

By (1), each generator of EndK[Σr](Y
µ) has disjoint support from Im,g ∪ Jm,g.

Therefore a product of these generators with no repeated factors, em,gb(j), also
does. If j < i, then the smallest b(l) occurring in the expansion of em,gb(j) also
satisfies l ≤ λ2. Therefore em,gb(j) is non-zero.
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As em,gb(2
ak) is non-zero, using the labelling b(2ai) 7→ xi, the algebra A has

a proper subalgebra isomorphic to

K [x1, . . . , xk−1] /(x2
1, . . . , x

2
k−1),

of dimension 2k−1. This subalgebra does not contain xk, and so we must have
that 2k−1 < n.

The squares of the generators of A are zero, and the multiplication of the
generators of A is commutative. We therefore have a well-defined algebra map:

θ : K[x1, x2, . . . , xk]/(x2
i ) −→ A,

where θ(xi) := em,gb(2
ai), and this is surjective.

If em,gb(i) is in the basis S from Theorem 3.6, then b(i) is uniquely a product
of distinct b(2aj ). We therefore obtain a natural linear ordering on the basis
elements of A, using the natural order on the integers that are sums of distinct
2aj . We note that the map θ preserves the linear order on the generators of
K [x1, . . . , xk], as defined in Definition 3.2. By counting dimensions and using
the basis theorem, it follows that the kernel of θ is the ideal:

({x2
i : i = 1, . . . , k} ∪R),

for
R := {x = xr1xr2 . . . xrlxk : ri 6= rj and |x| ≥ n},

where |x| is as in Definition 3.2, and so the result follows.

As an immediate consequence of this theorem, we see that for partitions
γ = (γ1, γ2) and µ = (µ1, µ2), and K a field of characteristic 2, the algebras
EndK[Σr](Y

γ) and EndK[Σr](Y
µ) are isomorphic if and only if they have the

same dimension.

Example 3.8. Let λ = (n−1, n−1). Let µ = (µ1, µ2) be a partition of 2(n−1).
Writing g = λ2 − µ2, we obtain:(

m+ 2g

g

)
=

(
2g

g

)
,

as m = λ1 − λ2 = 0. This binomial coefficient is non-zero modulo 2 if and only
if g = 0. Therefore the identity element of SK(λ) is a primitive idempotent in
SK(λ) and M (n−1,n−1) ∼= Y (n−1,n−1) by the definition of the Young modules.
Therefore by Definition 2.1, the algebra EndK[Σr](Y

(n−1,n−1)) has dimension n,
with basis given by

{1, b(1), . . . , b(n− 1)}.

By (1), the generators of EndK[Σr](Y
(n−1,n−1)) are

{b(2i) : 1 ≤ 2i ≤ n− 1}.
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Labelling these generators as

b(2i) 7→ xi+1 for i = 0, . . . , k − 1, (4)

we recall from the proof of Theorem 3.7 that EndK[Σr](Y
(n−1,n−1)) contains a

proper subalgebra isomorphic to

K[x1, . . . , xk−1]/(x2
i : i = 1, . . . , k − 1),

of dimension 2k−1. As b(2k−1) is also a basis vector of EndK[Σr](Y
(n−1,n−1)),

there are only n− (2k−1 + 1) other possible basis vectors for the endomorphism
algebra of Y (n−1,n−1). Using the labelling defined in (4), the remaining n −
(2k−1 + 1) basis vectors will be products of generators with xk as a factor. By
Definition 2.1, an element b(i) is zero if and only if i > n − 1. Therefore the
images of the monomials that are zero in EndK[Σr](Y

µ), with em,gb(2
ak) as a

factor, are given by the set:

R := {xr1xr2 . . . xrlxk : ri 6= rj and
l∑
i=1

2ri−1 + 2k−1 > n− 1},

and so EndK[Σr](Y
(n−1,n−1)) is isomorphic to the algebra:

K[x1, . . . , xk]/({x2
i : i = 1, . . . , k} ∪R).

Corollary 3.9 (Dimension Theorem). Let µ = (µ1, µ2) be a partition of r. If
the algebra A = EndK[Σr](Y

µ) has dimension n, then A is isomorphic to the
algebra

K[x1, . . . , xk]/({x2
i : i = 1, . . . , k} ∪R),

where R is such that

R = {xr1xr2 . . . xrlxk : ri 6= rj and

l∑
i=1

2ri−1 + 2k−1 > n− 1}.

Proof. This follows from Theorem 3.7 and Example 3.8.
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