
Jan Wanot, 100878319
CS1830/CS1831 – 2017/2018 Individual Report

1. User manual
• General information:

o Game can be run from the linked CodeSkulptor website.

o In case the graphics are not loaded and errors appear, one should try running the

game several times until all the images are cached.

o Game was programmed with Python 3 in mind, but it also runs in Python 2

without any problems.

• Basic controls:

o Movement: w forward, s backward, a strafe left, d strafe right.

o Click in order to shoot, holding the mouse button fires automatically.

o Press “E” or “Q” in order to toggle your weapon between a handgun and a rifle.

• User interface:

• Enemies:

o Simple bug: Walks towards the player at a slow but constant pace. Can

be maneuvered to get stuck behind walls and obstacles. Dies in two hits, awards

100 points.

o Shielded bug: Similar to the simple bug, but is equipped with an

energy shield on the front that deflects all bullets fired by the player. Can only be

defeated if the player ricochets the bullet off a wall to hit its behind. Dies in just

one successful hit and awards a whopping 300 points (plus ricochet bonus).

o Bonus points: Any enemy killed by a bullet that

bounced off a wall, a tree, or another enemy first will award you an additional

350 points of ricochet bonus!

• Pickups:

o Handgun ammo: Gives player additional 50 bullets for the pistol.

o Rifle ammo: Gives player additional 250 bullets for the rifle.

o Med kit: Refills player health.

• Trees:

The trees inside the central area of the level are fully interactable. The both block

the player and reflect bullets, as well as giving some shade to the monsters,

allowing them to ambush and attack from hiding.

2. Development

The primary idea for the game that came up during our first meeting was by Tom, who wanted to

make a simple twin stick/top down shooter game. It was during that first meeting we found the first

graphics to use, as well as to assign everyone with responsibilities. We worked on that idea in the

following weeks, culminating in the first prototype I made for the lab, which was just a simple level

with placeholder background with working player-wall collision. We then refined it, adding new

features and graphics(such as the enemies made by Johnathan, or the HUD made by Lantana), and

then merged it with the menu and high score system that was worked on all this time by Luke.

While some of the graphics in the game are original and made by me (such as most of the level

background, menu background and the modified shield enemy sprites), most of it are free game

development assets from the internet. Here is a list of sources we have used:

 https://opengameart.org/content/lpc-beetle

https://opengameart.org/content/animated-top-down-survivor-player

https://yukikootomiye.deviantart.com/art/Sprites-Heart-Life-641296172

https://icons8.com/icon/15822/chevron-right

http://cgtextures.com/

https://www.turbosquid.com/3d-models/free-max-model-red-telephone-box/877648

https://free3d.com/3d-model/road-barrier-34045.html

https://opengameart.org/content/zombie-ui-pack

https://opengameart.org/content/trees-and-bushes

Almost all the code we have written is original. However, we have borrowed several simple classes

from our moodle labs and examples.

Vector class: http://py3.codeskulptor.org/#user301_dZJL5znAdk_0.py

Parts of the Sprite class: http://py3.codeskulptor.org/#user301_OUMtkJ0mk0ZuRcu.py

The Line class (and parts of the particle class for the bullets):

http://py3.codeskulptor.org/#user301_6s8FN8P1OH_0.py

https://opengameart.org/content/lpc-beetle
https://opengameart.org/content/animated-top-down-survivor-player
https://yukikootomiye.deviantart.com/art/Sprites-Heart-Life-641296172
https://icons8.com/icon/15822/chevron-right
http://cgtextures.com/
https://www.turbosquid.com/3d-models/free-max-model-red-telephone-box/877648
https://free3d.com/3d-model/road-barrier-34045.html
https://opengameart.org/content/zombie-ui-pack
https://opengameart.org/content/trees-and-bushes
http://py3.codeskulptor.org/#user301_dZJL5znAdk_0.py
http://py3.codeskulptor.org/#user301_OUMtkJ0mk0ZuRcu.py
http://py3.codeskulptor.org/#user301_6s8FN8P1OH_0.py

3. Code

Camera-related

viewDisplacement = (0, 0)

CAMERA_SPEED = 5

def cameraUp():

 global viewDisplacement

 if viewDisplacement[1]+CAMERA_SPEED <= 0 :

 viewDisplacement = (viewDisplacement[0], viewDisplacement[1] +

CAMERA_SPEED)

def cameraDown():

 global viewDisplacement

 if viewDisplacement[1]-CAMERA_SPEED >= -2143 :

 #print(viewDisplacement[1])

 viewDisplacement = (viewDisplacement[0], viewDisplacement[1] -

CAMERA_SPEED)

def cameraRight():

 global viewDisplacement

 if viewDisplacement[0]-CAMERA_SPEED >= -1283 :

 #print(viewDisplacement[0])

 viewDisplacement = (viewDisplacement[0] - CAMERA_SPEED,

viewDisplacement[1])

def cameraLeft():

 global viewDisplacement

 if viewDisplacement[0]+CAMERA_SPEED <= 0 :

 viewDisplacement = (viewDisplacement[0] + CAMERA_SPEED,

viewDisplacement[1])

def isInrange(position):

 return ((position[0]+viewDisplacement[0]) > 0) and

((position[0]+viewDisplacement[0]) < 960) and

((position[1]+viewDisplacement[1]) > 0) and

((position[1]+viewDisplacement[1]) < 740)

As I was tasked with level design in the group, one of my first challenges was how to allow for a game

which playing field is bigger then the canvas on which we can draw. CodeSkuptor has no “camera”

settings or options that we could adjust as far as I knew (maybe pygame does but I did not look into

it since we were discouraged from using it), so I decided to just think about some other way in which

this effect could have been achieved. I decided that the displacement of the “camera” from the right

top corner of the screen would be stored as a tuple, and every time an object would be drawn, its

position variable would be subtracted to give the adjusted position for drawing on screen, as follows:

 if self.adjusted:

 canvas.draw_image(self.image, centreSource, self.frameSize,

(self.pos.getP()[0]+Camera.viewDisplacement[0],

self.pos.getP()[1]+Camera.viewDisplacement[1]), self.frameSize,

self.rotation)

#(code taken from the sprite class)

This solved the problem for sprites, as when the camera is moved all of them have just the right

relative position on the canvas compared to where then would normally be. The one thing left would

be to ensure that the background would work just the same, which I had achieved by utilizing the

parameters of the draw_image function intended for work with sprite sheets:

canvas.draw_image(BCKG, (CANVAS_CENTRE[0]-Camera.viewDisplacement[0],

CANVAS_CENTRE[1]-Camera.viewDisplacement[1]), CANVAS_DIMS, CANVAS_CENTRE,

CANVAS_DIMS)

I would then have the camera follow the player with a certain margin of freedom (adjustable with a

constant):

CAMERA_SENSITIVITY = 0.4

def updateCamera():

 if (player.pos.x+Camera.viewDisplacement[0]) <

(CANVAS_DIMS[0]*CAMERA_SENSITIVITY):

 Camera.cameraLeft()

 elif (player.pos.x+Camera.viewDisplacement[0]) > (CANVAS_DIMS[0] -

(CANVAS_DIMS[0]*CAMERA_SENSITIVITY)):

 Camera.cameraRight()

 if (player.pos.y+Camera.viewDisplacement[1]) <

(CANVAS_DIMS[1]*CAMERA_SENSITIVITY):

 Camera.cameraUp()

 elif (player.pos.y+Camera.viewDisplacement[1]) > (CANVAS_DIMS[1] -

(CANVAS_DIMS[1]*CAMERA_SENSITIVITY)):

 Camera.cameraDown()

This setup works for the most part, but in some things require slight adjusting later on so that hey

work properly. For instance, while writing the fireBullet function much later I would have to account

for this in order to get a proper direction to the cursor:

 def fireBullet(self,position):
 if len(self.bullets) < 8 and not player.hasShot:
 self.bullets.add(Bullet(player.pos.copy(),
 Vector(player.pos.x-

position[0]+Camera.viewDisplacement[0],player.pos.y-

position[1]+Camera.viewDisplacement[1]).normalize()*-20,
 5,
 1,
 "yellow",
 self.bullets))

Another part of the code that I am fond of is the level geometry and collisions. The visible

background is just an image, but I prepared a set of coordinates for all the lines that make up for so

that the collisions match it perfectly:

Collsion data for the level

MAPDATA = [((0,0),(0,2547)),

 ((0,2547),(448,2547)),

 ((448,2547),(448,2112)),

 ((448,2112),(576,1984)),

 ((576,1984),(1344,1984)),

 ((1344,1984),(1472,2112)),

 ((1472,2112),(1472,2547)),

 ((1472,2547),(1920,2547)),

 ((1920,2547),(1920,1408)),

 ((1920,1408),(1280,1408)),

 ((1280,1408),(1280,960)),

 ((1280,960),(1920,960)),

 ((1920,960),(1920,0)),

 ((1920,0),(1152,0)),

 ((1152,0),(1312,384)),

 ((1312,384),(960,608)),

 ((960,608),(608,384)),

 ((608,384),(768,0)),

 ((768,0),(0,0)),

 ((512, 1280),(576,1408)),

 ((576,1408),(448,1472)),

 ((448,1472),(384,1344)),

 ((384,1344),(512, 1280))]

 This big array of tuples of tuples is then converted into a much nicer array of Line objects with the

following code:

def makeLines(array):

 arrayOfLines = []

 for lines in array:

arrayOfLines.append(Line(Vector(lines[0][0],lines[0][1]),Vector(lines[1][0]

,lines[1][1])))

 return arrayOfLines

lines = makeLines(MAPDATA)

This array is used for checking if a play, enemy or a bullet can move in a given direction. The player

will be stopped and bullets are reflected along the normal of the wall in the proper manner, but an

enemy will “slide” across the wall realistically in players direction as if looking for a way around,

thanks to the following code:

def applyVelocity(self, vel):

 global lines

 vect = vel.copy().add(self.pos)

 for line in lines:

 if (line.distanceTo(vect) < line.thickness + self.radius and

 line.covers(vect)):

 vel -= line.normal * vel.dot(line.normal)

 self.pos.add(vel)

One feature that I came up with was when I realized that the middle “park” area of the map is very

empty, and realized that by changing the order in which the draw functions of some objects are

called in the draw handler I can have some objects be drawn on top of the others. From there, I got

an idea to make a simple tree object that could be given a varied scale and rotation, and placed in

specific spots to provide variety and added challenge (as it would hide enemy spawn points). I even

made it so that each tree had a small collision-only “trunk” dependant on its scale that blocks player

movement and reflects bullets realistically.

Trees!

TREEMAGE =

simplegui.load_image('http://personal.rhul.ac.uk/zeac/123/game/tree.png')

class Tree:

 def __init__(self, pos, scale, rotation):
 self.pos = pos
 self.scale = scale
 self.radius = 5*scale
 self.rotation = rotation

 def vect(self):
 return Vector(self.pos[0], self.pos[1])

 def draw(self, canvas):
 canvas.draw_image(TREEMAGE,
 (TREEMAGE.get_width()//2,

TREEMAGE.get_height()//2),
 (TREEMAGE.get_width(), TREEMAGE.get_height()),

(self.pos[0]+Camera.viewDisplacement[0],self.pos[1]+Camera.viewDisplacement

[1]),
 (TREEMAGE.get_width()*self.scale,

TREEMAGE.get_height()*self.scale),
 self.rotation)

treesArray = [Tree((594, 923), 2, 45),
 Tree((1038, 921), 1.5, 123),
 Tree((965, 1140), 1.7, 78),
 Tree((670, 1210), 3, 56),
 Tree((320, 968), 1, 145),
 Tree((963, 1347), 1.75, 156)]

def checkForTree(tree, vect, radius):
 d = vect.copy().sub(tree.vect()).length()
 return d <= radius + tree.radius

The bullets themselves were also written by me as I handled collisions in the team, although Tom

helped with the AllBullets class. I borrowed a lot of the vector operations and ideas on how to handle

the physics from some of the moodle lessons, although I also figured out how to do a few things (like

getting the normal vector from a bullet-tree collision by subtracting their positional vector and

normalising them). Generally the bullet class itself if a heavily modified version of a Particle class

from one of the moodle examples. The function for updating all the bullets was written completely

by me though:

def updateBounces():

 for bullet in bullets.bullets:

 for line in lines:

 if (line.distanceTo(bullet.pos) < line.thickness +

bullet.radius and

 line.covers(bullet.pos)):

 if not bullet.hasBouncedBefore:

 bullet.bounce(line.normal)

 bullet.hasBouncedBefore = True

 else:

 bullet.remove()

 for tree in treesArray:

 if checkForTree(tree, bullet.pos, bullet.radius):

 if not bullet.hasBouncedBefore:

 bullet.bounce(tree.vect().sub(bullet.pos).normalize())

 bullet.hasBouncedBefore = True

 else:

 bullet.remove()

One piece of the code that I liked were the UpdateObjects and DrawObjects functions. At one point

in code each object type (enemies, trees, bullets, items, etc.) would have its own update function

that would be called in the update handler (tied to the timer, as all of our updates are tied to a timer

and we could have easily implemented a pause feature if we didn’t forget about it), and it worked

the same way for the draw functions. At one point I realized it was a little tedious, so I just created a

generalized object updating/drawing functions that could be drawn with any container of objects

and would just update and draw each:

def updateObjects(iterator):

 if not isinstance(iterator, (list,)):

 #shallow copy to prevent set being modified during iteration

 temp = iterator.copy()

 else:

 temp = iterator

 for item in temp:

 item.update()

def drawObjects(canvas, iterator):

 if not isinstance(iterator, (list,)):

 #shallow copy to prevent set being modified during iteration

 temp = iterator.copy()

 else:

 temp = iterator

 for item in temp:

 item.draw(canvas)

The check there was due to the fact that the “dynamic” objects like enemies items and bullets used

sets, while the “static” ones like trees and spawners would use arrays as they did not need to be

removed or modified in any way. For safety I made it so that the functions would iterate on a shallow

copy of a set, so that it would not be modified during iteration. This didn’t cause any problems in

CodeSkulptor, but when I tried running my code on actual python on my computer it gave me errors

so I wanted to play it safe.

I was also responsible for writing several other classes in the game, such as the enemy spawners,

items and their spawners, text messages that pop up for two seconds when a ricochet is scored or

item is picked up, and for implementing a rate of fire in the weapon class, as well as some other

smaller tweaks, but the only other piece of code that I am particularly fond of are the two lines of

code that are responsible for the “cutscene” when a new game starts:

 Camera.viewDisplacement = (-650, 0)

 player = Player(Vector(954, 1890))

4. Reflection

While I am overall happy with how the game had turned out to be, it does have a few critical

shortcomings that I really wish we could have finished before we had submitted it. A lot of them are

simply due to the fact that I retired and decided to do the OOP assignment during the last few hours

before the deadline, when the rest of my team was struggling to get the game working in time and

had problems with some of my code I could have helped them out with. This is why our game over

screen does not appear when the player runs out of lives, for instance, forcing upon the player an

honour system where he needs to press “o” after he runs out of lives to submit his high score.

Another, unrelated thing that I regret is not reading into the project specification enough in regards

to some of the way the game was supposed to be coded. Aspects like abiding strictly to the OOP

approach (which, as I found in many cases, is something not as obvious with Python as it is with

Java), using vectors in place of tuples for coordinates and employing interaction classes for physics

were all things that not only slipped past my attention, but were something that I had in many cases

explicitly avoided and was quietly annoyed when my teammates employed them (thankfully I don’t

recall ever actually ““correcting”” them in any case). Had I actually realized this, our code would

probably be much better received and maybe it would even improve it in many cases.

One aspect I regret, not related to coding at all, was that one person who was registered to

technically be in our group actually did not participate or show up even once. As a result, we have

technically been a five-person group having to make game that would look good enough by a six-

person group standards, which added additional pressure. But it is not really something that I feel

like could have been foreseen or avoided in any way.

5. Course evaluation
I have had a very positive experience with this course. It introduced me to Python, which I expect to

be quite useful for me in the future, as well as to some aspects of how video games work on

technical level (which may also prove to be useful to me). In general, unlike a lot of the OOP labs and

assignments we are doing from other subjects, the project allowed me to work more freely

independently, and to find solutions to problems I set before myself on my own, which I thought was

very motivating and quite pleasant as far as programming things goes. Since it was a lot bigger and

unrestricted then other assignments I’ve had, it also showed the necessity to plan my code ahead

and keep in maintainable in order not to get lost in it. The fact that it was a group project also learnt

me a few things about working in a team as a programmer, keeping code styles consistent between

team members, integrating modules with each other, and so on.

6. Suggestions

I feel like this course was pretty alright. If there was one thing I had a problem with it would have

probably been the restrictions we had related to having to keep OOP approach at all points and

things like that (using interaction classes, ect.), but I suppose these are justified since we need to

learn good practice and so on. The only other suggestion I have is maybe to have the groups be

assembled a little earlier and have them show off a prototype earlier as well, since it wasn’t really

until that point that we have started our work for real.

