CONTENTS

I INTRODUCTION

1.1 Historical Overview
 1.1.1 The interaction of radiation with matter
 1.1.2 Nuclear magnetic resonance
 1.1.3 The first observations of NMR
 1.1.4 Pulsed NMR
 1.1.5 Scope of this book

1.2 Nuclear Magnetism
 1.2.1 Magnetic moments
 1.2.2 Nuclear magnetic moments
 1.2.3 Energy splitting and resonance
 1.2.4 Uses of NMR

1.3 Two Views of Resonance
 1.3.1 The damped harmonic oscillator
 1.3.2 Time response
 1.3.3 Frequency response
 1.3.4 Linearity and superposition
 1.3.5 Fourier duality

1.4 Larmor Precession
 1.4.1 Spin equation of motion
 1.4.2 Precession
 1.4.3 Quantum versus classical treatment
 1.4.4 Behaviour of real systems - relaxation

1.5 Typical Signal Size
 1.5.1 The induced voltage
 1.5.2 Initial conditions
 1.5.3 A typical system
 1.5.4 Other considerations
II THEORETICAL BACKGROUND

2.1 Paramagnetism and Curie’s Law
- 2.1.1 Paramagnetism
- 2.1.2 Calculation of magnetisation
- 2.1.3 Curie’s law
- 2.1.4 Magnetic susceptibility
- 2.1.5 Conditions for linearity

2.2 Relaxation
- 2.2.1 Equilibrium states
- 2.2.2 The relaxation process
- 2.2.3 Spin interactions
- 2.2.4 Spin-lattice and spin-spin relaxation
- 2.2.5 The Bloch equations

2.3 Classical and Quantum Views
- 2.3.1 The Heisenberg equation
- 2.3.2 Equation of motion for μ
- 2.3.3 Evaluation of commutators
- 2.3.4 Expectation values

2.4 The Rotating Frame
- 2.4.1 The equivalence principle
- 2.4.2 Transformation to the rotating frame
- 2.4.3 The fictitious field

2.5 Rotating and Oscillating Fields
- 2.5.1 Rotating and counter-rotating components
- 2.5.2 The effective field
- 2.5.3 Resonant transverse field
- 2.5.4 90° and 180° pulses

2.6 The Dynamic Magnetic Susceptibility
- 2.6.1 Complex susceptibility
- 2.6.2 Dynamic magnetic susceptibility
- 2.6.3 The transverse relaxation function
- 2.6.4 Response to linearly polarised field

III DETECTION METHODS

3.1 The CW Method
- 3.1.1 Frequency and time domains
- 3.1.2 Detection of CW NMR
- 3.1.3 Q meter detection
- 3.1.4 Saturation
3.2 The Pulsed NMR Spectrometer
3.2.1 Outline of a pulsed NMR system
3.2.2 Pulse programmer
3.2.3 The transmitter
3.2.4 The receiver
3.2.5 Display of signals

3.3 Magnets
3.3.1 Basic requirements
3.3.2 Homogeneity
3.3.3 Time stability
3.3.4 Maximum field
3.3.5 Large volume magnets

3.4 The Sample Probe and Noise Considerations
3.4.1 Introduction
3.4.2 Electrical Noise
3.4.3 The NMR Probe
3.4.4 Signal to noise ratio
3.4.5 Recovery time
3.4.6 The Ernst angle

3.5 Refinements to the CW method
3.5.1 Measuring nuclear susceptibility
3.5.2 The Robinson oscillator
3.5.3 Lock-in detection of CW NMR
3.5.4 Modulation distortion

IV CLASSICAL VIEW OF RELAXATION

4.1 Transverse Relaxation in Solids
4.1.1 Local magnetic fields
4.1.2 Solution to equations of motion
4.1.3 Relaxation times
4.1.4 Shape of the free induction decay

4.2 Motion and Transverse Relaxation
4.2.1 Averaging of the local fields
4.2.2 The equations of motion
4.2.3 Gaussian distribution of phases
4.2.4 The autocorrelation function

4.3 Consequences of the model
4.3.1 The correlation time
4.3.2 Exponential relaxation
4.3.3 Gaussian relaxation
4.3.4 Conditions for Gaussian/exponential decay

4.4 Spin Echoes
4.4.1 Recovery of lost magnetisation
4.4.2 Effects of a 180° pulse
4.4.3 Formation of a spin echo
4.4.4 T_2 and T_{2}^{*}

4.5 Diffusion and its Measurement
4.5.1 Echo relaxation function
4.5.2 Diffusion autocorrelation function
4.5.3 Cubic echo decay
4.5.4 Rapid diffusion

4.6 Measuring Relaxation Times
4.6.1 Measurement of T_{2}^{*}
4.6.2 Measurement of T_2
4.6.3 Pulse errors
4.6.4 Measurement of T_1
4.6.5 Techniques when T_1 is long
4.6.6 Accurate adjustment of the spectrometer
4.6.7 Data processing and curve fitting

V QUANTUM TREATMENT OF RELAXATION

5.1 Introduction
5.1.1 Relaxation and resonance
5.1.2 The equilibrium state
5.1.3 The present approach

5.2 Expectation Values of Quantum Operators
5.2.1 Expectation values: statement of the problem
5.2.2 Systems in equilibrium.
5.2.3 Time independence of equilibrium quantities
5.2.4 Systems not in equilibrium

5.3 Behaviour of Magnetisation in Pulsed NMR
5.3.1 The Hamiltonian.
5.3.2 Some approximations.
5.3.3 90° and 180° pulses.

5.4 The Relaxation Functions of NMR
5.4.1 Relaxation of longitudinal and transverse magnetisation
5.4.2 Complex form for transverse relaxation.
5.4.3 The interaction picture
5.4.4 The relaxation functions

5.5 The Dipolar and Other Interactions
5.5.1 The dipole-dipole interaction.
5.5.2 The dipolar Hamiltonian.
5.5.3 Like spins.
5.5.4 Electron-nucleus interactions
5.5.5 Quadrupole interactions: classical picture
5.5.6 Quadrupole interactions: quantum expressions
5.5.7 Chemical shifts: basic ideas
5.5.8 Isotropic chemical shift
5.5.9 Anisotropic chemical shift

VI DIPOLAR LINESHAPE IN SOLIDS

6.1 Transverse Relaxation: Rigid Lattice Linshape
6.1.1 Introduction
6.1.2 A pair of spins
6.1.3 Pake’s doublet
6.1.4 Gypsum monocrystal
6.1.5 Three and more spins

6.2 A Class of Sovable Systems
6.2.1 Local field models
6.2.2 The relaxation function
6.2.3 A model interaction
6.2.4 Magnetically dilute solids
6.2.5 Dilute solids in n dimensions

6.3 The Method of Moments
6.3.1 Rationale for the moment method
6.3.2 Formal expression for moments.
6.3.3 Calculation of dipolar moments
6.3.4 Special shapes and their moments
6.3.5 A second look at magnetically dilute solids
6.3.6 Real systems
6.3.7 Widom’s theorem

6.4 Memory functions and related methods
6.4.1 The memory equation
6.4.2 Laplace transformation
6.4.3 Moment expansions
6.4.4 Relations between moments of F(t) and Φ(t)
6.4.5 Gaussian Memory Function
6.4.6 Exponential Memory Function

Chapter VII RELAXATION IN LIQUIDS
7.1 **Transverse relaxation - moments**
- 7.1.1 Relaxation in liquids
- 7.1.2 Interaction picture
- 7.1.3 Moments and motion
- 7.1.4 Descriptions of motion
- 7.1.5 Semi-classical expressions for moments
- 7.1.6 Conclusion

7.2 **Cumulant Expansion Treatment of Relaxation**
- 7.2.1 Introduction To The Method.
- 7.2.2 Evaluation of the terms
- 7.2.3 Transverse correlation functions
- 7.2.4 Longitudinal correlation functions
- 7.2.5 Properties of \(G_m(t) \)

7.3 **The Relaxation Times**
- 7.3.1 Adiabatic \(T_2 \)
- 7.3.2 Longitudinal relaxation
- 7.3.3 Non-adiabatic \(T_2 \)
- 7.3.4 Behaviour of the relaxation times
- 7.3.5 The frequency shift

7.4 **Dipolar \(J(\omega) \) and \(G(t) \)**
- 7.4.1 Rotation of a diatomic molecule
- 7.4.2 Rotation of polyatomic molecules
- 7.4.3 Relaxation by translational diffusion
- 7.4.4 Low frequency behaviour
- 7.4.5 High frequency limiting behaviour

7.5 **Some General Results**
- 7.5.1 Scaling treatment of relaxation
- 7.5.2 The \(T_1 \) minimum
- 7.5.3 Moments and transverse relaxation – revisited
- 7.5.3 \(T_1 \) sum rules and moments

Chapter VIII SOME CASE STUDIES

8.1 **Calcium fluoride lineshape**
- 8.1.1 Why calcium fluoride?
- 8.1.2 Overview
- 8.1.3 Moment calculations
- 8.1.4 Abragam’s approximation function
- 8.1.5 Experimental measurements on CaF\(_2\)
- 8.1.6 Theories of lineshape and relaxation
- 8.1.7 Engelsberg and Lowe’s data
8.2 Glycerol
8.2.1 Motivation
8.2.2 Relaxation mechanisms
8.2.3 Experimental measurements
8.2.4 High and low frequencies
8.2.5 The T_1 minimum

8.3 Exchange in Solid Helium-3
8.3.1 Introduction
8.3.2 Measurements of T_2
8.3.3 Zero point motion
8.3.4 Exchange
8.3.5 Relaxation
8.3.6 Traditional treatment
8.3.7 Spin diffusion
8.3.8 Moment calculations
8.3.9 The hydrodynamic limit
8.3.10 Spin diffusion measurements
8.3.11 Approximating the dipolar correlation functions
8.3.12 Multiple-spin exchange

IX THE DENSITY OPERATOR AND APPLICATIONS

9.1 Introduction to the density operator
9.1.1 Motivation and definition
9.1.2 Properties of the full density operator
9.1.3 Equation of motion - von Neumann’s equation
9.1.4 The reduced density operator
9.1.5 Physical meaning of the reduced density operator
9.1.6 Properties of the reduced density operator
9.1.7 Equation of motion for the reduced density operator
9.1.8 Example: Larmor precession

9.2 Thermal equilibrium
9.2.1 The equilibrium density operator
9.2.2 Ensemble average interpretation
9.2.3 A paradox
9.2.4 Partial resolution
9.2.5 Macroscopic systems
9.2.6 External equilibrium
9.2.7 Spin systems

9.3 Spin Dynamics in Solids
9.3.1 The concept of spin temperature
9.3.2 Changing the spin temperature
9.3.3 The spin temperature hypothesis
9.3.4 Energy and entropy
9.3.5 Adiabatic demagnetisation
9.3.6 Dipole fields
9.3.7 High field case
9.3.8 Free induction decay
9.3.9 Provotorov equations

9.4 **In the Rotating Frame**
9.4.1 The basic ideas
9.4.2 Relaxation in the rotating frame
9.4.3 Spin locking
9.4.4 Zero time resolution

9.5 **Density Operator Theory of Relaxation**
9.5.1 Historical survey
9.5.2 Master equation for the density operator
9.5.3 Cumulant expansion of the density operator
9.5.4 An example

X NMR IMAGING

10.1 **Basic principles**
10.1.1 Spatial encoding
10.1.2 Field gradients
10.1.3 Viewing shadows
10.1.4 Discussion
10.1.5 Spatial resolution

10.2 **Imaging methods**
10.2.1 Classification of methods
10.2.2 Sensitive point and sensitive line methods
10.2.3 Shaped pulses - selecting a slice
10.2.4 Back projection
10.2.5 Iterative reconstruction

10.3 **Fourier reconstruction techniques**
10.3.1 Fourier imaging in two dimensions
10.3.2 Fourier imaging in three dimensions
10.3.3 Fourier zeugmotography
10.3.4 Relaxation
10.3.5 Spin warp imaging
10.3.6 Two dimensional spin echo imaging

10.4 **Gradient echoes**
10.4.1 Creation of gradient echoes
10.4.2 Two dimensional gradient echo imaging
10.4.3 Three dimensional gradient echo imaging
10.4.4 Echo planar imaging

10.5 Imaging other parameters
10.5.1 The effect of relaxation
10.5.2 Imaging T_2
10.5.3 Imaging T_1
10.5.4 Imaging diffusion
10.5.5 Flow

APPENDIXES

A Fourier transformation
A.1 The real Fourier transform
A.2 The complex Fourier transform
A.3 Table of Fourier transform relations
A.4 Symmetry properties of Fourier transforms
A.5 Dirac’s delta function
A.6 Heaviside’s step function
A.7 Kramers - Kronig relations

B Random functions
B.1 Mean behaviour of fluctuations
B.2 The autocorrelation function
B.3 A paradox
B.4 The Wiener-Kintchine theorem
B.5 Quantum treatment of fluctuations
B.6 Thermal equilibrium and stationarity

C Interaction picture
C.1 Heisenberg and Schrödinger pictures
C.2 Interaction picture
C.3 General case

D Magnetic fields and canonical momentum
D.1 The problem
D.2 Change of reference frame
D.3 Canonical momentum

E Alternative classical treatment of relaxation
E.1 Introduction
E.2 Equations of motion
E.3 Adiabatic T_2
E.4 Treatment of T_1
E.5 Non-adiabatic T_2
E.6 Spectral densities

F \(G_n(t) \) for rotationally invariant systems
 F.1 Introduction
 F.2 Rotation of spherical harmonics
 F.3 Simplification

G \(P(\Omega, \Omega_0, t) \) for rotational diffusion
 G.1 Rotational diffusion
 G.2 General solution
 G.3 Particular solution