UNIVERSITY OF LONDON

MSc/MSci EXAMINATION 2022

For Students of the University of London

DO NOT TURN OVER UNTIL TOLD TO BEGIN

PH4211: STATISTICAL MECHANICS PH5211: STATISTICAL MECHANICS PH5911: STATISTICAL MECHANICS PAPER FOR FIRST SIT/RESIT CANDIDATES

Time Allowed: TWO AND A HALF hours

Answer **THREE** questions No credit will be given for attempting any further questions

Approximate part-marks for questions are given in the right-hand margin

The total available marks add up to 120

All College-approved Calculators are permitted

©Royal Holloway University of London 2022

Page 1 of 6

2021-22

GENERAL PHYSICAL CONSTANTS

Permeability of vacuum	μ_0	=	4π	\times	10^{-7}	$H m^{-1}$
Permittivity of vacuum	$\frac{\varepsilon_0}{1/4\pi\varepsilon_0}$	=	$8.85 \\ 9.0$	× ×	10^{-12} 10^{9}	$F m^{-1}$ m F^{-1}
Speed of light in vacuum	c	=	3.00	×	10^{8}	${\sf m} \; {\sf s}^{-1}$
Elementary charge	e	=	1.60	×	10^{-19}	С
Electron (rest) mass	$m_{ m e}$	=	9.11	×	10^{-31}	kg
Unified atomic mass constant	$m_{ m u}$	=	1.66	×	10^{-27}	kg
Proton rest mass	$m_{ m p}$	=	1.67	×	10^{-27}	kg
Neutron rest mass	$m_{ m n}$	=	1.67	×	10^{-27}	kg
Ratio of electronic charge to mass	$e/m_{ m e}$	=	1.76	×	10^{11}	$C \ kg^{-1}$
Planck constant	h	=	6.63	×	10^{-34}	Js
	$\hbar = h/2\pi$	=	1.05	×	10^{-34}	Js
Boltzmann constant	$k_{\rm B}$	=	1.38	\times	10^{-23}	$J \ K^{-1}$
Stefan-Boltzmann constant	σ	=	5.67	\times	10^{-8}	$\mathrm{W}~\mathrm{m}^{-2}~\mathrm{K}^{-4}$
Gas constant	R	=	8.31			$J \operatorname{mol}^{-1} K^{-1}$
Avogadro constant	N_{A}	=	6.02	×	10^{23}	mol $^{-1}$
Gravitational constant	G	=	6.67	\times	10^{-11}	$N m^2 kg^{-2}$
Acceleration due to gravity	g	=	9.81			${\sf m}\;{\sf s}^{-2}$
Volume of one mole of an ideal gas at STR	5	=	2.24	×	10^{-2}	m ³
One standard atmosphere	P_0	=	1.01	×	10^{5}	$N m^{-2}$

NEXT PAGE

Page 2 of 6

- 1. (a) Explain what is meant by the *order parameter* in the context of phase transitions and describe the difference in the behaviour of the order parameter for *first-order* and *second-order* transitions.
 - (b) What is the order parameter for a *ferromagnet*?
 - (c) When the Landau theory of phase transitions is applied to the ferromagnetic transition the free energy is expressed as a polynomial of the form

$$F = F_0 + F_2 \varphi^2 + F_4 \varphi^4$$

where φ is the order parameter.

Explain why the power series is terminated and explain why there are no odd powers of φ in the expansion.

(d) Show that in the ordered phase the order parameter is given by

$$\varphi = \sqrt{\frac{-F_2}{2F_4}}.$$

Discuss the sign and temperature dependence of the quantities in this equation, and show that this leads to a *second order* transition.

- (e) How will the application of an external magnetic field modify the Landau free energy polynomial?
- (f) In the Ising model the order parameter is a scalar. By sketching F as a function of φ show how the application of a magnetic field leads to *hysteresis* in this case.
- (g) By contrast, explain why the Heisenberg magnet may not exhibit hysteresis. [6]
- 2. Write an essay on the concept of *temperature* in thermal physics.
 - You should contrast the *microscopic* and the *macroscopic* views, including some historical context.
 - You should discuss the consistency of the microscopic and the macroscopic approaches.
 - You should include a discussion of the relevance of *equilibrium states*, the way such states emerge, and how they are characterised.

[40]

[8]

[6]

[4]

[8]

[2]

[6]

3. (a) The partition function Z for a system of N indistinguishable non-interacting particles may be approximated by

$$Z = \frac{1}{N!} z^N$$

where z is the partition function for a single particle. Explain the arguments that lead to this approximation.

(b) The Helmholtz free energy F = E - TS is given by

$$F = -kT\ln Z$$

where the symbols have their usual meanings. Show that the pressure p is given by

$$p = kT \left. \frac{\partial \ln Z}{\partial V} \right|_{T,N}.$$

(c) The partition function for a single particle moving freely in a volume V is given by

$$z = V \left(\frac{mkT}{2\pi\hbar^2}\right)^{3/2}$$

By evaluating the pressure for an assembly of N such indistinguishable particles, show that this results in the equation of state for an ideal gas.

- (d) The quantity $\Lambda = \sqrt{2\pi\hbar^2/mkT}$ is known as the *thermal de Broglie wavelength*. Explain the physical interpretation of this.
- (e) In the van der Waals description of an interacting gas the single particle partition function is approximated by

$$z = \frac{V - V_{\rm ex}}{\Lambda^3} e^{-\langle E \rangle/kT}$$

Discuss how the various features of the inter-particle interaction are accounted for through the quantities V_{ex} and $\langle E \rangle$. [6]

- (f) Why is this approach referred to as a *mean field* approximation? [3]
- (g) Sketch a van der Waals isotherm indicating the *spinodal point(s)*. What are the special features of the spinodal point? [5]

Page 4 of 6

NEXT PAGE

[6]

[8]

[6]

[6]

(a)	Explain what is meant by <i>phase space</i> in the context of classical Statistical Mechanics and contrast the Boltzmann and the Gibbs conception of phase space.	[6]
(b)	Sketch and contrast the trajectories of an undamped harmonic oscillator and a damped harmonic oscillator in phase space.	[6]
(c)	Give an expression for the entropy of a classical system in terms of ρ , the density of points in phase space.	[5]
(d)	Liouville's theorem states that as a system evolves in time the density of points in phase space remains constant. This is incompatible with the Second Law of thermodynamics. Explain clearly this contradiction.	[7]
(e)	Outline the resolution of this paradox by the use of coarse graining and dis- cuss how quantum mechanics might be invoked to justify the procedure.	[8]
(f)	State the <i>Third Law</i> of thermodynamics. Explain how this is understood from quantum mechanics. Contrast this with the prediction of classical mechan-	
	ics.	[8]

4.

5. The second virial coefficient for an interacting (classical) gas is given by

$$B_2(T) = -2\pi \int_0^\infty r^2 \left(e^{-U(r)/kT} - 1 \right) \, \mathrm{d}r$$

where U(r) is the interaction potential. The Lennard-Jones 6–12 interaction potential is

$$U(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right].$$

The figure shows the second virial coefficient for the inert gases.

- (a) Make a labelled sketch of U(r), indicating ε and σ .
- (b) i. What special feature of the interaction potential results in the collapse of the $B_2(T)$ points of the different gases onto the common curve? (Ignore helium.)
 - ii. Using a suitable change of integration variable in the integral for $B_2(T)$, show that the Lennard-Jones U(r) does indeed lead to such a collapse. [10]
- (c) i. Sketch the form of $B_2(T)$ for a square well potential (with a hard core), showing how this differs from the Lennard-Jones $B_2(T)$, particularly at high temperatures.
 - ii. Explain the difference and discuss what information this might give about the short-distance form of the interaction potential.
- (d) The $B_2(T)$ low temperature points for helium fall away from the universal curve. Explain this. [6]

END

[4]

[6]

[6]

[8]