UNIVERSITY OF LONDON

MSc/MSci EXAMINATION 2019

For Students of the University of London

DO NOT TURN OVER UNTIL TOLD TO BEGIN

PH4211: STATISTICAL MECHANICS PH5211: STATISTICAL MECHANICS PH5911: STATISTICAL MECHANICS

Time Allowed: **TWO AND A HALF hours**

Answer **THREE** questions No credit will be given for attempting any further questions

Approximate part-marks for questions are given in the right-hand margin

The total available marks add up to 120

All College-approved Calculators are permitted

©Royal Holloway University of London 2019

Page 1 of 6

2018-19

GENERAL PHYSICAL CONSTANTS

Permeability of vacuum	μ_0	=	4π	\times	10^{-7}	$H m^{-1}$
Permittivity of vacuum	$\frac{\varepsilon_0}{1/4\pi\varepsilon_0}$	=	$8.85 \\ 9.0$	× ×	10^{-12} 10^{9}	$F m^{-1}$ m F^{-1}
Speed of light in vacuum	С	=	3.00	×	10^{8}	${\sf m} \; {\sf s}^{-1}$
Elementary charge	e	=	1.60	×	10^{-19}	С
Electron (rest) mass	$m_{ m e}$	=	9.11	×	10^{-31}	kg
Unified atomic mass constant	$m_{ m u}$	=	1.66	×	10^{-27}	kg
Proton rest mass	$m_{ m p}$	=	1.67	×	10^{-27}	kg
Neutron rest mass	$m_{ m n}$	=	1.67	×	10^{-27}	kg
Ratio of electronic charge to mass	$e/m_{ m e}$	=	1.76	×	10^{11}	$C \ kg^{-1}$
Planck constant	h	=	6.63	×	10^{-34}	Js
	$\hbar = h/2\pi$	=	1.05	Х	10^{-34}	Js
Boltzmann constant	k	=	1.38	×	10^{-23}	$J K^{-1}$
Stefan-Boltzmann constant	σ	=	5.67	×	10^{-8}	$\mathrm{W}~\mathrm{m}^{-2}~\mathrm{K}^{-4}$
Gas constant	R	=	8.31			$J \text{ mol}^{-1} \text{ K}^{-1}$
Avogadro constant	N_{A}	=	6.02	×	10^{23}	mol $^{-1}$
Gravitational constant	G	=	6.67	×	10^{-11}	$N m^2 kg^{-2}$
Acceleration due to gravity	g	=	9.81			${\sf m}\;{\sf s}^{-2}$
Volume of one mole of an ideal gas at STF	D	=	2.24	×	10^{-2}	m ³
One standard atmosphere	P_0	=	1.01	×	10^{5}	$N m^{-2}$

MATHEMATICAL CONSTANTS

$$e \cong 2.718$$
 $\pi \cong 3.142$

 $\log_e 10 \cong 2.303$

NEXT PAGE

Page 2 of 6

1. (a) The partition function for a single particle of mass m at temperature T, in a box of volume V is given by

$$z = V \left(\frac{mkT}{2\pi\hbar^2}\right)^{3/2} = \frac{V}{\Lambda^3}.$$

Why is the quantity Λ referred to as the thermal de Broglie wavelength? [6]

(b) Explain why the partition function for a collection of N similar but distinguishable objects, each with partition function z, is expressed as

$$Z = z^N.$$

[10)]
-----	----

(c) On the assumption that $Z = z^N$ is correct for a gas of particles, show that the Helmholtz free energy for such a gas would be given by

$$F = -NkT \ln \left\{ V \left(\frac{mkT}{2\pi\hbar^2} \right)^{3/2} \right\}.$$

[6]

[2]

(d)	This expression gives a Helmholtz free energy that is <i>not extensive</i> . Explain what this means, and explain why this is a problem.	[8]
(e)	Discuss in detail how this problem may be resolved and give the resultant expression for F .	[8]

- expression for F.
- (f) The resolution relies on the *thermodynamic limit*; explain.

2. (a) In the Weiss model of ferromagnetism it is assumed that the magnetic moments are subject to an additional "mean" magnetic field b

$$\mathbf{b}=\lambda\mathbf{M}$$

where \mathbf{M} is the magnetization and λ is a constant. Explain briefly the origin of this field.

(b) The magnetization of a collection of N non-interacting spin $\frac{1}{2}$ magnetic moments μ at a temperature T is given by

$$M = M_0 \tanh\left(\frac{\mu B}{kT}\right)$$

where M_0 is the saturation magnetization $M_0 = N\mu$ and the directions of M and the applied magnetic field B are parallel.

Show that the Weiss model leads to a spontaneous magnetization, in the absence of an external magnetic field, given by

$$\frac{M}{M_0} = \tanh\left(\frac{M}{M_0}\frac{T_{\rm c}}{T}\right)$$

where $T_{\rm c} = \lambda M_0^2 / Nk$.

- (c) i. Sketch the behaviour of the spontaneous magnetization as a function of temperature.
 - ii. What is the interpretation of $T_{\rm c}$?
 - iii. Discuss the order of the transition.
- (d) When *T* is very close to T_c then M/M_0 is very small. By expanding the tanh $(\tanh x \approx x x^3/3 + ...)$ show that, in the vicinity of T_c , the magnetization behaves as

$$\frac{M}{M_0} \propto \left(1 - \frac{T}{T_c}\right)^{1/2}.$$

[8]

[8]

(e) How does this result compare with the behaviour of real systems? Discuss the difference.

NEXT PAGE

[8]

[8]

- [4] [2]
- [2]

- 3. In the Landau theory of phase transitions the free energy is expanded in powers of the order parameter to a finite number of terms.
 - (a) In the context of phase transitions what is meant by the term *order parameter*?
 - (b) Why is the Landau expansion terminated, and what determines the highest power in the expansion? [6]
 - (c) What is the distinction between a *conserved* order parameter and a *non-conserved* order parameter? Give an example of each. Describe how one determines the equilibrium state of the system in these two cases.
 - (d) Make a labelled sketch of the free energy for a binary alloy. Show curves for the temperature *above* and *below* the critical temperature.
 - (e) The free energy of mixing for the binary alloy may be written

$$F_{\rm m} = 2NkT_{\rm c}x(1-x) + NkT\left[x\ln x + (1-x)\ln(1-x)\right].$$

Explain the structure of this expression.

(f) The expansion of $F_{\rm m}$ may be written as

$$F_{\rm m} = F_0 + 2Nk \left\{ (T - T_{\rm c}) \left(x - \frac{1}{2} \right)^2 + \frac{2}{3} T_{\rm c} \left(x - \frac{1}{2} \right)^4 + \frac{16}{15} T_{\rm c} \left(x - \frac{1}{2} \right)^6 + \cdots \right\}$$

Discuss the Landau truncation of this expression; in particular explain at which term the series should be terminated. Why is the expansion written in powers of $x - \frac{1}{2}$?

- (g) Within this model the order parameter critical exponent β has the value $\frac{1}{2}$. Show how this follows from the Landau free energy. The value $\beta = \frac{1}{2}$ does *not* agree with experiment. Why is this?
- 4. Write an essay on the logical foundations of Statistical Mechanics and its connection with Thermodynamics. You should include a discussion of the nature of *equilibrium states*, the emergence of the concept of *temperature*, and the importance of the *thermodynamic limit*.

[40]

NEXT PAGE

[6]

[6]

[4]

[6]

[6]

- 5. The force on a Brownian particle in one dimension may be written as $F(t) = f(t) v/\mu$ where f(t) is a randomly fluctuating force, v is the velocity and μ the mobility of the particle.
 - (a) Discuss the separation of the force into the two parts. In particular, explain qualitatively how the damping force, proportional to the velocity, arises as a consequence of the random motion of the background fluid atoms. [10]
 - (b) Show that the equation of motion for the Brownian particle of mass M (the Langevin equation) may be written as [4]

$$M\frac{\mathrm{d}v(t)}{\mathrm{d}t} + \frac{1}{\mu}v(t) = f(t).$$

(c) The solution to the Langevin equation is given by

$$v(t) = v(0)e^{-t/M\mu} + \frac{1}{M}\int_{0}^{t} e^{(s-t)/M\mu}f(s) \,\mathrm{d}s.$$

- i. Show, using appropriate approximations, that the equilibrium mean square velocity may be expressed as $\langle v^2 \rangle = \frac{\mu}{2M} \int_{-\infty}^{\infty} \langle f(0)f(t) \rangle dt$, and [8]
- ii. by invoking the equipartition theorem, show it follows that the mobility may be expressed $\frac{1}{\mu} = \frac{1}{2kT} \int_{-\infty}^{\infty} \langle f(0)f(t) \rangle dt$. [2]
- (d) Discuss how this may be regarded as an example of the *fluctuation-dissipation theorem*.
- (e) The voltage across an L R circuit is given in terms of the current I(t) by

$$L\frac{\mathrm{d}I(t)}{\mathrm{d}t} + RI(t) = V(t)$$

where V(t) may be regarded as a fluctuating voltage. By making the appropriate identifications, show that the resistance may be related to the voltage fluctuations through

$$R = \frac{1}{2kT} \int_{-\infty}^{\infty} \langle V(0)V(t) \rangle \,\mathrm{d}t.$$

(f) How may such voltage fluctuations be observed?

[4]

[8]

[4]

END

Page 6 of 6