UNIVERSITY OF LONDON

MSci EXAMINATION 2011

For Students of the University of London

DO NOT TURN OVER UNTIL TOLD TO BEGIN

PH4211 : STATISTICAL MECHANICS

Time Allowed: **TWO AND A HALF** hours

Answer **THREE** Questions

Approximate part-marks for questions are given in the right-hand margin

The total available marks add up to 60

No credit will be given for attempting any further questions

College Calculators are provided

© Royal Holloway University of London 2011

GENERAL PHYSICAL CONSTANTS

Permeability of vacuum	μ_0	=	$4\pi \times 10^{-7}$	H m⁻¹
Permittivity of vacuum	\mathcal{E}_0	=	8.85 × 10 ⁻¹²	F m⁻¹
	$1/4\pi\varepsilon_0$	=	9.0 × 10 ⁹	m F ⁻¹
Speed of light in vacuum	С	=	3.00 × 10 ⁸	m s⁻¹
Elementary charge	е	=	1.60 × 10 ⁻¹⁹	С
Electron (rest) mass	m _e	=	9.11 × 10 ⁻³¹	kg
Unified atomic mass constant	m _u	=	1.66 × 10 ⁻²⁷	kg
Proton rest mass	$m_{_{p}}$	=	1.67 × 10 ⁻²⁷	kg
Neutron rest mass	m _n	=	1.67 × 10 ⁻²⁷	kg
Ratio of electronic charge to mass	e / m _e	=	1.76 × 10 ¹¹	C kg⁻¹
Planck constant	h	=	6.63 × 10 ⁻³⁴	Js
	$\hbar = h / 2\pi$	=	1.05 × 10 ⁻³⁴	Js
Boltzmann constant	k	=	1.38 × 10 ⁻²³	J K ⁻¹
Stefan-Boltzmann constant	σ	=	5.67 × 10 ⁻⁸	$W m^{-2} K^{-4}$
Gas constant	R	=	8.31	J mol ⁻¹ K ⁻¹
Avogadro constant	N _A	=	6.02 × 10 ²³	mol⁻¹
Gravitational constant	G	=	6.67 × 10 ⁻¹¹	$N m^2 kg^{-2}$
Acceleration due to gravity	g	=	9.81	m s⁻²
Volume of one mole of an ideal gas at STP		=	2.24 × 10 ⁻²	m ³
One standard atmosphere	P_0	=	1.01 × 10 ⁵	N m ⁻²

MATHEMATICAL CONSTANTS

$e \cong 2.718$ $\pi \cong 3.142$	$\log_e 10 \cong 2.303$
-----------------------------------	-------------------------

[5]

[3]

[4]

1. (a) The partition function for a single particle of mass *m* at temperature *T*, in a box of volume *V* is given by

$$z = V \left(\frac{mkT}{2\pi\hbar^2}\right)^{3/2} = \frac{V}{\Lambda^3}.$$

Why is the quantity Λ referred to as the thermal de Broglie wavelength? [3]

(b) Explain why the partition function for a collection of *N* similar but distinguishable objects, each with partition function *z*, is given as

$$Z = z^{N} .$$
 [5]

(c) On the assumption that (b) is correct for a gas of particles, show that the Helmholtz free energy for such a gas would be given by

$$F = -NkT \ln \left[V \left(\frac{mkT}{2\pi\hbar^2} \right)^{3/2} \right].$$
 [3]

- (d) This expression gives a Helmholtz free energy that is *not extensive*. Explain what this means, and explain why this is a problem. [4]
- (e) Discuss in detail how this problem may be resolved and give the resultant expression for *F*.
- 2. (a) Explain what is meant by the *order parameter* in the context of phase transitions and describe the difference in the behaviour of the order parameter for *first-order* and *second-order* transitions.
 - (b) What is the order parameter for the *ferroelectric* transition? [2]
 - (c) When the Landau theory of phase transitions is applied to the ferroelectric transition the free energy is expressed by a polynomial of the form

$$F = F_0 + F_2 \varphi^2 + F_4 \varphi^4 + F_6 \varphi^6$$
,

where φ is the order parameter.

Explain why the power series is terminated and explain why there are no odd powers of φ in the expansion. [4]

- (d) Show, by the use of sketches, how the above polynomial for the free energy can lead to a first-order transition.
- (e) Under what circumstances would the transition become second-order? [3]
- (f) When the transition is first-order, show that the discontinuity in the order parameter at the transition is given by

$$\Delta \varphi = \sqrt{\frac{-F_4}{2F_6}} ,$$

and discuss what happens to this as the transition becomes secondorder.

[4]

3. (a) The virial expansion for a gas is given by

$$\frac{p}{kT} = \frac{N}{V} + \left(\frac{N}{V}\right)^2 B_2 + \left(\frac{N}{V}\right)^3 B_3 + \dots;$$

here the B_n are the virial coefficients and the other symbols have their usual meaning. Under what conditions may the higher-order terms be ignored?

(b) The van der Waals equation of state is written, in conventional form, as

$$\left(\boldsymbol{p}+\boldsymbol{a}\frac{N^2}{V^2}\right)(\boldsymbol{v}-\boldsymbol{N}\boldsymbol{b})=\boldsymbol{N}\boldsymbol{k}\boldsymbol{T}.$$

Show that the second virial coefficient corresponding to this equation of state is

$$B_2 = b - \frac{a}{kT}.$$
 [4]

(c) Measurements of the second virial coefficient of neon are shown in the figure below.

Estimate the values of the van der Waals parameters *a* and *b*. Be sure to state your units. Explain any approximations or assumptions.

(d) The interaction between neon atoms is conventionally represented by the Lennard-Jones 6-12 potential

$$U(r) = \varepsilon \left\{ \left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right\};$$

what are ε and σ in this expression?

(e) Outline briefly the arguments by which one makes the identification

$$a = \frac{4}{3}\pi\sigma^3\varepsilon$$
 and $b = \frac{2}{3}\pi\sigma^3$

and hence estimate ε and σ for argon.

Page 4 of 5

NEXT PAGE

[2]

[6]

[2]

[6]

			PART MARKS
4.	(a)	Under what circumstances is the equilibrium state of a system determined by the minimum of the <i>Helmholtz</i> free energy, and under what circumstances is it determined by the minimum of the <i>Gibbs</i> free energy?	[2]
	(b)	Discuss how a system may reduce its free energy by separating into regions of different density. What condition must the free energy satisfy for such a separation to occur? Is the system's order parameter <i>conserved</i> or <i>non-conserved</i> ?	[3]
	(c)	How does one determine the equilibrium state of such a system?	[3]
	(d)	What is meant by the term critical point?	[2]
	(e)	The free energy of mixing of a binary alloy may be written as	
		$F = Nsx(1-x)\varepsilon + NkT\left\{x\ln x + (1-x)\ln(1-x)\right\}.$	
		Explain the meaning of the various terms and the structure of this equation.	[2]
	(f)	Show that this system has a critical temperature given by	
		$T_{\rm c}=rac{{f s}arepsilon}{2k}$.	[3]
	(g)	What is the value of x_{c} corresponding to this?	[2]
	(h)	In what ways are the coexistence curves for the binary alloy and the liquid-gas system different; and in what ways are they similar?	[3]
5.		Write an essay on <i>The Second Law of Thermodynamics</i> , contrasting the ways that Einstein and Landau understood the Law. You should include a discussion of the relationship between the microscopic and the macroscopic approaches to the Law, and the importance of probability, mean values and fluctuations.	[20]

[20]

END