### **UNIVERSITY OF LONDON**

# **MSci EXAMINATION 2003**

For Internal Students of

Royal Holloway

# **DO NOT TURN OVER UNTIL TOLD TO BEGIN**

### PH4211A: STATISTICAL MECHANICS

Time Allowed: TWO AND A HALF hours

Answer THREE QUESTIONS only

No credit will be given for attempting any further questions

Approximate part-marks for questions are given in the right-hand margin

Only CASIO fx85WA Calculators are permitted

#### GENERAL PHYSICAL CONSTANTS

| Permeability of vacuum                    | $\mu_0$                | = | $4\pi \times 10^{-7}$    | $H m^{-1}$                          |
|-------------------------------------------|------------------------|---|--------------------------|-------------------------------------|
| Permittivity of vacuum                    | $\mathcal{E}_0$        | = | $8.85 \times 10^{-12}$   | $F m^{-1}$                          |
|                                           | $1/4\pi \varepsilon_0$ | = | $9.0 \times 10^{9}$      | $m F^{-1}$                          |
| Speed of light in vacuum                  | С                      | = | $3.00 \times 10^8$       | $m s^{-1}$                          |
| Elementary charge                         | е                      | = | $1.60 \times 10^{-19}$   | С                                   |
| Electron (rest) mass                      | m <sub>e</sub>         | = | 9.11 × 10 <sup>-31</sup> | kg                                  |
| Unified atomic mass constant              | m <sub>u</sub>         | = | $1.66 \times 10^{-27}$   | kg                                  |
| Proton rest mass                          | m <sub>p</sub>         | = | $1.67 \times 10^{-27}$   | kg                                  |
| Neutron rest mass                         | m <sub>n</sub>         | = | $1.67 \times 10^{-27}$   | kg                                  |
| Ratio of electronic charge to mass        | $e/m_{\rm e}$          | = | $1.76 \times 10^{11}$    | C kg <sup>-1</sup>                  |
| Planck constant                           | h                      | = | $6.63 \times 10^{-34}$   | J s                                 |
|                                           | $\eta = h/2\pi$        | = | $1.05 \times 10^{-34}$   | J s                                 |
| Boltzmann constant                        | k                      | = | $1.38 \times 10^{-23}$   | J K <sup>-1</sup>                   |
| Stefan-Boltzmann constant                 | $\sigma$               | = | $5.67 \times 10^{-8}$    | $W m^{-2} K^{-4}$                   |
| Gas constant                              | R                      | = | 8.31                     | $J \text{ mol}^{-1} \text{ K}^{-1}$ |
| Avogadro constant                         | $N_{ m A}$             | = | $6.02 \times 10^{23}$    | $mol^{-1}$                          |
| Gravitational constant                    | G                      | = | $6.67 \times 10^{-11}$   | $N m^2 kg^{-2}$                     |
| Acceleration due to gravity               | g                      | = | 9.81                     | $m s^{-2}$                          |
| Volume of one mole of an ideal gas at STP |                        | = | $2.24 \times 10^{-2}$    | m <sup>3</sup>                      |
| One standard atmosphere                   | $P_0$                  | = | $1.01 \times 10^{5}$     | $N m^{-2}$                          |

#### MATHEMATICAL CONSTANTS

 $e \cong 2.718$   $\pi \cong 3.142$   $\log_e 10 \cong 2.303$ 

- (a) When the liquid and the gas phase of a fluid coexist in equilibrium the temperature, pressure and chemical potential are the same in both phases. Explain why this is the case. [3]
  - (b) Under what constraints is the equilibrium state of such a system determined by minimising the Helmholtz free energy F = E TS? [3]
  - (c) Justify the double tangent construction on the F(V) curve to determine the equilibrium state and show that the volume fractions  $\alpha_1$  and  $\alpha_2$  of the two coexisting phases may be written

$$\alpha_1 = \frac{V_2 - V_0}{V_2 - V_1}, \qquad \alpha_2 = \frac{V_0 - V_1}{V_2 - V_1}$$
[6]

where the symbols have their usual meaning.

(d) A van der Waals p-V isotherm, for a temperature less than the critical temperature, is shown in the figure.



The true coexistence behaviour should be a horizontal straight line. Using the result

$$p = -\frac{\partial F}{\partial V}\Big|_{T}$$

show how the coexistence pressure may be determined from the double tangent construction.

(e) Explain the connection with Maxwell's 'equal area' construction. [3]

[5]

[4]

[4]

- 2. (a) The ferromagnetic transition and the ferroelectric transition have similarities and differences. For each case:
  - i) What is the order parameter?
  - ii) Is the order parameter conserved or non-conserved?
  - iii) What symmetry is broken at the transition?
  - iv) Is the broken symmetry continuous or discrete?
  - v) What is the order of the transition? [10]

(b) Outline the arguments by which the Heisenberg Hamiltonian  $H = -J \sum_{i,j} \mathbf{S}_i \cdot \mathbf{S}_j$ 

is approximated, in mean field theory, by a local magnetic field  $\mathbf{b} = \lambda \mathbf{M}$ 

where **M** is the magnetisation and  $\lambda$  is a constant.

(c) The magnetisation of a non-interacting assembly of N spin  $\frac{1}{2}$  magnetic moments  $\mu$  is given by

$$\frac{M}{M_0} = \tanh\left(\frac{M_0}{N}\frac{B}{kT}\right)$$

where the saturation magnetisation is  $M_0 = N\mu$  and the directions of **M** and the applied magnetic field **B** are parallel.

Show that in the presence of a Heisenberg interaction between the spins, in the mean field approximation, the spontaneous magnetisation is given by

$$\frac{M}{M_0} = \tanh\left(\frac{M}{M_0}\frac{T_c}{T}\right)$$

where  $T_{\rm c} = \lambda M_0^2 / Nk$ . What is the interpretation of  $T_{\rm c}$ ?

(d) Sketch the behaviour of the spontaneous magnetisation as a function of temperature and discuss the order of the transition. [2]

3. (a) Show that when two isolated systems are brought into thermal contact, they end up in the thermodynamic state for which

$$\frac{\partial \ln \Omega_1}{\partial E} = \frac{\partial \ln \Omega_2}{\partial E}$$

defining the terms  $\Omega_1$ ,  $\Omega_2$  and *E* in this expression. [5]

- (b) Write down the Boltzmann expression for entropy in terms of  $\Omega$ . How does the above equation imply the equalisation of the temperatures of the two systems?
- (c) Now consider a small sub-system of a large isolated system. The total energy of the isolated system is  $E_t$ . The sub-system can exchange thermal energy with the large system. When the sub-system is in a microstate of energy E the entropy of the combined system may be expressed as

$$S = S(E_{t}) - E\frac{\partial S}{\partial E} + \frac{E^{2}}{2}\frac{\partial^{2}S}{\partial E^{2}} - \dots$$

Justify the structure of this expression.

- (d) Show how the above result leads to the Boltzmann distribution function (otherwise known as the Boltzmann factor).
- (e) The equilibrium state of an isolated system corresponds to a maximum of the entropy. Discuss, in terms of the second derivative of *S*, how the existence of an entropy *maximum* implies that the heat capacity of the system is positive.

[4]

[3]

[4]

[3]

[5]

4. (a) The partition function for a single particle moving freely in a box of volume *V* may be written as

$$z = V \left(\frac{2\pi mkT}{h^2}\right)^{3/2} = \frac{V}{\Lambda^3}$$

where the symbols have their usual meaning.

The quantity  $\Lambda$  is known as the *thermal de Broglie wavelength*. Explain the meaning of this quantity. [3]

(b) Show that the pressure of a gas of N indistinguishable such particles is related to z by

$$p = NkT \frac{\partial \ln z}{\partial V} \bigg|_{T}.$$
[4]

- (c) Evaluate the pressure for this system, hence deriving the equation of state of an ideal gas.
- (d) In the van der Waals approach to an *interacting* gas the single particle partition function may be approximated by

$$z = \frac{V - V_{\rm ex}}{\Lambda^3} e^{-\langle E \rangle / kT}$$

Sketch the expected variation of the inter-particle interaction potential with separation. Discuss how the various features of the interaction are incorporated into the above expression for *z* through the quantities  $V_{\text{ex}}$  and  $\langle E \rangle$ .

(f) Discuss qualitatively how this approach to the interacting gas is connected with the law of corresponding states. [3]

5. (a) The autocorrelation function of a random function of time x(t) is defined by

$$G(t) = \langle x(0)x(t) \rangle$$

where the angled brackets indicate an average. Explain how G(t) describes the mean decay of the fluctuations of x(t). [4]

(b) The correlation time  $\tau_c$  of the random function is defined by

$$\tau_{\rm c} = \frac{1}{G(0)} \int_0^\infty G(t) \mathrm{d}t \; .$$

What feature of the fluctuating quantity x(t) does the correlation time describe? [3]

(c) A fluctuating quantity is found to have an exponential correlation function

$$G(t)=G(0)e^{-t/\tau}.$$

What is the corresponding correlation time?

(d) For an isolated system the probability P(x) that a fluctuating quantity has the value x is given by the Einstein expression

$$P(x) \propto e^{S(x)/k}$$

|     | where S is the entropy. Justify this formula.                                                                | [3] |
|-----|--------------------------------------------------------------------------------------------------------------|-----|
| (e) | Sketch and explain the functional form of $S(x)$ in the vicinity of the mean value $\langle x \rangle$       |     |
|     | value $\langle x \rangle$ .                                                                                  | [3] |
| (f) | Hence discuss qualitatively why the fluctuations in $x$ may follow a normal distribution.                    | [3] |
| (g) | Discuss the way the diffusion coefficient of a particle is related to its velocity autocorrelation function. | [2] |

[2]