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By applying a real space version of the Ginzburg criterion, the role of fluctuations and
thence the self-consistency of mean field theory are assessed in a simple fashion for a variety
of phase transitions. It is shown that in using this approach the concept of “marginal
dimensionality” emerges in a natural way. For example, it is shown that for many

homogeneous structural transformations the marginal dimensionality is two, so that mean
field theory will be valid for real three-dimensional systems. It is suggested that this simple
self-consistent approach to Landau theory should be incorporated in the teaching of

elementary phase transition phenomena.

I. INTRODUCTION

The most common technique for teaching the subject
of phase transitions is to use the mean field theory!-3 or,
equivalently, the Landau theory.*> The reason is obvious:
using a minimum of mathematics, many of the salient
physical features of phase transition phenomena are elu-
cidated, at least in a qualitative sense. However, as is well
known, mean field theory fails to describe many real ex-
perimental systems; also, for certain mathematically trac-
table Hamiltonians such as the two-dimensional Ising
model, the discrepancies are very substantial.? It is probably
well known to the reader that an important breakthrough
has occurred within the last few years in the theory of phase
transitions with Wilson’s renormalization group (RG)
theory.67 The starting point for this approach is the Landau
theory. Through a rather complicated mathematical pro-
cedure the RG theory, among other results, introduces the
concept of marginal dimensionality, d*.8 When the di-
mensionality d for a system is larger than the corresponding
d*, the system exhibits mean field or “classical” behavior,
whereas *“critical” behavior occurs for d < d*. Whend =
d*, Landau behavior is modified by additional “weak”
singular behavior such as, for example, logarithmic cor-
rections. In nature, systems exist with marginal dimen-
sionality of d* = 2, 3, 4, and 6 and indeed many other
values. When d = d*, the RG equations are exact and one

. then makes the so-called ¢ expansion, ¢ =.d* — d, to esti- .

mate the critical behavior for d < d*.6

It is the purpose of the present paper to introduce the
concept of marginal dimensionality in a simple fashion and
to find d* for a number of systems without using the com-
plexity of RG theory, but rather to use a real space version
of the so-called Ginzburg criterion® to assess the validity
of mean field theory. One example has previously been
published for tricritical beahvior!?; here we apply the same
criterion for the dipolar-coupled, uniaxial ferromagnet (d*
= 3), and a structural phase transition driven by the soft-
ening of an acoustic phonon (d* =-2). The results for d* for
these systems are known from rather complicated RG
theory,!1:12 5o this paper does not contain new results. It is
our hope, however, that teachers might find our approach
simple enough to incorporate it in their course and thereby
introduce the students to concepts which are essential for
a proper understanding of critical phenomena. Or, stated
more strongly, we believe that in teaching Landau theory
with a modern perspective it is essential that the limits of
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the theory be addressed directly. As we shall show, this
automatically introduces the marginal dimensionality
concept.

II. GENERAL FEATURES

All second-order phase transitions have the same quali-
tative features. In order to describe these it is convenient,
however, to use the nomenclature of one particular type of
system, and we have therefore chosen the language of
magnetic systems. It is emphasized that simply by changing
a few words the following description may be adapted to
describe any second-order phase transition; for example,
in the case of the gas-liquid transition around the critical
point insert “density” for “magnetization,” “pressure” for
“magnetic field,” and “compressibility” for “susceptibili-
ty"’

The origin of magnetization is the atomic spin S..To be
more specific, the magnetization M, around r is the thermal
average of S, times gup, thatis, M, = gup(S,). For sim-
plicity we set gug = 1 in the following. At high tempera-
tures disorder prevails and the spatial correlation between
the spins is only of short range. As the temperature is low-
ered the size of correlated regions of the spins grows and
grows, and eventually at the critical temperature sponta-
neous ordering sets in—that is, M = 0.

~Let H be the field conjugate to the order parameter M.
For'a ferromagnet this is just an ordinary uniform field, for
an antiferromagnet it it is the staggered field corresponding
to M being the staggered magnetization. The response to
the field is linear at small fields.

M=MH=0+ xH. (1)

The correlation function (SOS,) is decomposed into two
parts describing short-range correlations and long-range
order; that is, by definition

(SoS:) =g(r) + (S)? = g(r) + M. (2)

From elementary statistical mechanics34!3 one can show
that x and g(r) are related by

X = Zri g(r). (3)

This relation expresses the fact that one obtains a large
response to a small field if the system is “cooperative,” that
is, when g(r) is of long range. It is useful to'generalize Eqgs.
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Fig. 1. Order parameter M as well as the wave vector-dependent sus-

ceptibility xq are directly determined in a scattering experiment. The width
of xq is the inverse correlation range.

(1) and (3) in the following manner'3: Suppose that the field
varies sinusoidally in space with a wave vector q, H, = Hgq
exp(iq-r). The response M, will then also vary sinusoidally
with the same wave vector, M, = M exp(iq-r) with Mqand
H g being related by the wave vector-dependent suscepti-
bility xq:

M= MU=+ xoH,. (1)

It should be noted that by definition the largest response
occurs forg =0and M {,’:8 = 0. The generalization of Eq.
(3) is then

Xq = ; g(r) expliqr). (3)

This relationship is exact for classical spins and in general
is a good approximation for quantum-mechanical systems
near a phase transition. The peak of xqaround g =0Ohasa
half-width.:.£~!, and from Eq. (3’) we identify £ as the cor-
relation range of the short-range order. Often it is easiest
to derive xq theoretically and then to find g(r) by Fourier
inversion, but more importantly x4 is the quantity which
is directly measured in a scattering experiment when the
radiation couples to the order parameter. Why? Because

the phase difference between the waves scattered froman = - - - - -~ - co s -
From Egs. (8) and (9) we find the mean field values of the

element around 0 and an element around r is exp(iq-r) with
q = k; — ky, the difference between incident and scattered
wave vectors. The wave amplitude from element 0 is pro-
portional to Mo, whereas the wave amplitude from element
r is proportional to M, so the scattering cross section is
simply proportional to xq when g # 0. At q = 0 the scat-
tering is a superposition of the xq=0 and Bragg scattering
originating from the M#=0 term in Eq. (1); the latter is
proportional to M2. We have summarized this discussion
in Fig. 1, showing the wave vector- and temperature-de-
pendent susceptibility diverging as T — T, ¢ — 0 and the
onset of spontaneous long-range order. The behavior near
T. is often given by power laws as indicated in Fig. 1 with
t being the reduced temperature t = |T — T,|/T..

IIl. MEAN FIELD THEORY

We shall now present by far the simplest approximate cal-
culation of x4, that is, the mean field theory; we shall show

555 Am. J. Phys,, Vol. 45, No. 6, June 1977

how this relates to the conventional Landau description and
we shall then discuss the limitations of the mean field ap-
proach using a real space version of the Ginzburg criterion.
Let us first assume that the spins of the system do not in-
teract at all. In that case there are no correlations and the
response function, denoted x°, does not depend on q. [nan
applied conjugate field H;2PP the order parameter at posi-
tion r; would be M; = x®H;*PP. For simplicity we now
consider temperatures above 7.

We assume, and this is the essential approximation, that
the interaction between S; and its neighbors is equivalent
to a molecular field, M; = x° {H;*P? + H;™}, and that the
molecular field H;™ is of the form H;™ = Z; f(r;)(S;).
That is, only the average interaction of the j neighbors is
taken into account; fluctuations are neglected. Let H;2PP
be sinusoidal in space, that is, H;2PP = Hq exp(iq-r;), and
correspondingly M; = M q exp(iq-r;). Recalling that (S;)
= M, we find above T,

Mg exp(iqer) = x°[Hgq exp(iqr;)
+ %:f(rij)Mq exp(igr;)] (4)
and thereby |
Xq = X°[1 = aqx®1™! (%)
with

Qq = ),:f(") exp(iger). (6)

For the case of a simple ferromagnet agq has its maximum
for g = 0 and expansion around g = 0 yields

aq = ag[l — a*(q)], witha?(0) = 0. @)

From Eq. (5) we find the critical point by noting xq=0 —
o when agx? — 1. For a degenerate ground state, xo varies
as 1/T and thence one obtains apx® = T,/ T; thus Eq. (5)
can be rewritten in the form

Xq ™ [t+ 02(<I)]_'- t=(T- Tc)/Tc~ ®)

If the interaction function f(r) is isotropic, the long-wave-
length form of a2(q) becomes particularly simple, a%(q) =
%0292, and in that case xq has a Lorentzian line shape.

xa~ [E2+ @27, E=ftT2 . (9)

critical exponents: ¥ = | and » = '5. A similar analysis
below T. yields the primed exponents!¢y' =y =1,/ =v

= |/2.

IV. LANDAU EXPANSION

So far we have only discussed the susceptibility. We could
equally well have considered the free energy using the
molecular field Ansatz. This assumption basically reduces
the many-body problem to a single-site problem in which
a magnetic moment m at any site can be either parallel or
antiparallel to the total magnetic field H'* composed of the.
applied field and the molecular field. The single-site par-
tition function is then cosh(mHt/kT), and one can im-
mediately write down the entropy S, the internal energy U,
and thereby the generalized Gibbs free energy’ G(M,T.H)
= U — TS — gugMH. Here M denotes the nonequilibrium
magnetization.’ The equilibrium magnetization M is given
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by the condition 0 = (3G /ail )iz=sm. The magnetization is
small near T, so that if one expands G(M, T, H) in powers
of M, one finds for the dimensionless quantity g(M,2,h) =
G(M.T.H)/kT in terms of the dimensionless arguments
M t=(T—-1)/T, and h = mH/kT:

g(M.t.h,) = go(t) — hM + atM?)2 + bM*/4
+cMS/6+ .-+ (10)

witha = 1, b = 1, etc. .

The equation of state, (dg/IM ) j7=p = O, is explicitly A
= atM + bM3. The magnetization in zero field, My, is given
by Mo (at +bMy?) = 0. Above T the solution is My = 0,
whereas below T, M? = (a/b)t, that is, the order param-
eter critical exponent 8 = 5. The susceptibility is found by
differentiating the equation of state, x~! = (3h/dM)p=0
= gt +3bMy% Thus above T, x ! = at, whereas below T,
x~!= —2at; thatis, y = ¥’ = 1, as expected. ‘

The expansion of Eq. (10) is known as the Landau ex-
pansion. In this we have not included spatial fluctuations;
to lowest order this is done by adding a term D(VM)2.10
With this term included one can derive the Lorentzian wave
vector-dependent susceptibility of Eq. (9). Equation (10)
does not involve odd powers of M since g has to be invariant
under time reversal. In constructing the Landau expansion
for a general physical system, one must use symmetry
arguments to decide whether or not odd powers of the order
parameter are allowed. A cubic term would, for instance,
imply a first-order transition.

V. GINZBURG CRITERION

It is clear that the essential approximation above is the
neglect of fluctuations in the molecular field acting on a
given site. On the other hand, the fluctuations become more
and more pronounced as the temperature approaches T,.
In order to obtain a self-consistent picture, Ginzburg stated
that below T, ? the fluctuations of M averaged over a
suitable region Q (to be specified below) must be small
compared to the value of M itself, that is,

(6M)g2 & Mg2.

Let us assume that we have divided Q into V identical lattice
cells. One then has for the mean square fluctuation ampli-
tude

(OM)g? = <[§ i = (S))]2'>* 2
) <,-§9 (S = ()(S; = (51 )

jee

=N§ [(SoS:) = (S)3].

If the sum had been over the entire crystal, then by Eq. (3)
it would simply be equal to xq=0.

In order to assess the importance of fluctuations in the
Landau theory, the region Q must be chosen appropriately.
On physical grounds it is clear that fluctuations are im-
portant over linear dimensions of the order of £, the corre-
lation range. Indeed, it is an essential feature of our present
understanding of phase transitions that £ is the only length
in the problem. Therefore, we take @ = Q;, the region of
correlated spins.'® As T — T, Q; — «, but the sum be-
comes a constant fraction of xq=o, that is,

(0M?)q, = FN(Q)xq=0(1), (11)
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with F independent of £ or temperature. This may be easily
justified within the context of Landau theory. If xq = 4/(x?
+ ¢2) with x = £~ then by Fourier inversion in d dimen-
sions one obtains g(x,r) = x¥~2v(xr); that is, g(«,r) is a
homogeneous function of « and . More generally, this is
simply the scaling Ansatz. Thus

§ [{SoS:) — (S)?]
¢
=c j;sdr rd=id=2p(xr) = cx~2
X de(xr) (xr)4=tv(xr)

1
= ¢cx2 j; dx x4 1p(x).

Hence F of Eq. (11) is given bf

F= (j;l dx x""v(x))(J;m dx xd"vr(x))-l,

independent of £. ,
For the mean square order parameter one has

2
M2 = (;;s,-) = NX(S)2 = N2M2.
3

Thus the Ginzburg criterion may be rewritten as
Fx(t) < N(Q:)M(1). (12)

The number of spins V(£2;) within a correlated region Q;
is, of course, proportional to the volume of Q.

Quite generally, we write Q; = £9+™, where 4 is the di-
mensionality of the lattice and, for the cases considered
here, m = 0. As we shall discuss below, for spatially iso-
tropic systems m = 0, but in a variety of important physical
cases, in fact, one has m > 0. As we noted in Sec. I, the
correlation range diverges as 1=, t being the reduced
temperature |T — T,| /T, so that £ = &t~ Thus the real
space Ginzburg criterion may be rewritten as

(COHSt)I“"” & Eod+m t—(d+m)y+28

with the constant being of the order of unity.'4 In order for
this relation to be fulfilled for arbitrarily small ¢, it is re-

. quired that v/ — (d + m)»’ + 28 < 0. Thus we.arrive at a

marginal dimensionality
d*=(y'+28)/v - m. (13)

When d > d*, the mean field theory gives a self-consistent
picture of the phase transition at least insofar as the critical
exponents are concerned. However, when d < d*, the
Landau theory will break down at some distance from the
critical point. This distance may be very small if the basic
interaction range, &, is very large, as is the case for super-
conductors, and it is in this context that the Ginzburg cri-
terion is most well known.

Finally, when 4 = d*, Landau theory almost works. In
this case renormalization group theory gives logarithmic
corrections to the mean field behavior.

VI. CASES

Quite generally, it is convenient to subdivide the vaFious
possibilities into cases where m = 0 and where m > 0.
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A. m=0,QE=Ed.
1. Short-range interactions

If the interaction f(r) is of short range, for example, be-
tween nearest neighbors only, the Fourier transform of f(r)
will, in the long-wavelength limit, be of the form aq = ao(1
—£02q*2), where g*2 is of the form g*2 = 3L, p,q;2. The
region of critical fluctuations in g space therefore scales as
£~1 in all d directions, and by Fourier inversion it follows
that Q; = £4.

We have already found that the mean field critical ex-
ponents in this caseare 8 = 'h,y' = 1,/ = 15, and Eq. (13)
gives d* = 4. Consequently, the mean field theory is not
self-consistent for, say, the three-dimensional Ising model,
and indeed one finds experimentally (8-brass'>) as well as
theoretically, using series expansion techniques, !¢ that v
= 1.25, v = 0.64, and 3 = 0.30. When d is even further away

from d*, for example, d = 2, we would expect even larger

deviations from the mean field exponents. Indeed, experi-
ments on the 2d antiferromagnet K;CoF4,'” which is a
model system of the 2d Ising model, as well as Onsager’s
exact solution of the 2d Ising model,? give exponents very
far from mean field behavior: y =7, v = 1,8 = .

2. Tricritical points

In certain physical systems, of which 3He-*He mixtures
and the metamagnet FeCl, in a magnetic field are perhaps
the best known examples, one has a line of second-order
transitions which terminates at a tricritical point.!® The
mean field theory for such systems is rather more compli-
cated since one must consider two order parameters, the
so-called ordering and nonordering densities and their
conjugate fields. To be explicit, in the antiferromagnet
FeCl, the order parameter is the sublattice magnetization
M5 and its conjugate field is a staggered field Hs. The
nonordering density is simply the magnetization M witha
nonordering conjugate field, the applied field H. One may
then write down a Landau expansion in M identical to Eq.
(10). As a-function of applied field H, b[H,T.(H)] de-
creases continuously until at some point b{H = H,, T.(H,)
= T,] = 0. For b < 0 the phase transition becomes first
order. The point 5(H,, T;) = 0 then is the tricritical point.
It is immediately apparent that because of this vanishing
of the fourth-order term in the expansion the Landau theory
will yield 8, = Y as opposed to 8 =1 for a conventional
second-order transition. One finds in addition v,” = 1, »,’
= 15 The critical fluctuations are again isotropic in space,
so that m = 0. Thus for a tricritical point d* = (1 + %) /%4
= 3. Hence, in conventional three-dimensional systems one
expects Landau exponents with logarithmic correction
terms.

Experimentally, the phase diagrams of 3He-*He mix-
tures!920 and of the metamagnet FeCl,2!-23 are well de-
scribed by Landau theory with marginal dimensionality
corrections. The critical exponents, albeit only roughly
determined because of the difficuity of the experiments, all
seem to be in agreement with the Landau theory. For FeCl,
and certain other systems 8, seems to be slightly less than
Y., perhaps due to the presence of logarithmic correc-
tions.

3. Percolation

Percolation has been of interest for many decades al-
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though it is only recently that it has been cast in a lattice-gas
phase transition language. We do not want to enter into an
extensive discussion of percolation here.24 Instead, we limit
our description to the following. Consider a hypercubic (i.e.,
square in 2d, cubic in 3d, etc.) lattice with nearest neighbor
bonds only. If we now remove atoms continuously, then
below some critical concentration p = p, the system will
break up into finite clusters. This transition at p, is closely
related to a thermodynamic transition with the analogies:
for p > p., order parameter — percentage of atoms in the
infinite cluster ~(p — p.)8; susceptibility — mean square
finite cluster size ~(p — p.)~7’; correlation length —(1/e)
X (decay length) for the probability that two atoms belong
to the some cluster ~(p — p.)~". In this case the mean field
result is not that given by a simple Landau expansion [Eq.
(10)] but rather is the solution of the percolation problem
on the Bethe lattice.

Fisher and Essam showed that for a Bethe lattice,?’
which is essentially an infinite dimensional system, 8 = 1,
4’ = 1, ¥ = Y. The Ginzburg criterion with m = 0 still
applies to this problem. Thus we have for percolation d* =
(1 + 2)/'% = 6. This has been demonstrated “experimen-
tally” by Kirkpatrick in a very beautiful d-dimensional
computer experiment.26

B. m = 0,Q = gd*m

We shall now give examples of physical systems where
the linear dimensions of the correlated region of spins may
scale as £2 rather than £ in one or more directions as T ap-
proaches T,.

1. Dipolar-coupled, uniaxial ferromagnet or

- ferroelectric

Let us consider an Ising ferromagnet (ferroelectric)
where the magnetic (electric) dipole moments are only

“coupled by the dipolar interaction, that is, the interaction

between two spins pointing in the z direction and situated
at the origin and at r = (x,3,2) is f(r) = (322 — r?)/r3. In
the long-wavelength limit the Fourier transform of f(r) is
of the form

aq = ag[l — a19? — ax(q:/9)* + as3q:?].  (14)

This form of ag is very peculiar since the limiting value of
aq when q — 0 depends on the direction of q: if ¢ — 0 along
the x axis aq — ao, but if ¢ — 0 along the z axis the limiting
value is ag(1 — @2). Any limiting value between these two
extremes is obtained by choosing the appropriate direction
of q.

As xq is of the form

Xo~' ~ 1+ [(§9)% + g(q:£2/q8)* — (bs/i)z(qz£2)2(]i5)

it is evident that g scales as £~2, whereas modulus ¢ scales
as £~!. This is most clearly demonstrated pictorially in Fig.
2. Here the half-contour of x4, defined by the surface in ¢
space where xq = (}6)X¢,—0,gy=¢.=0, I8 sketched in the g,-
g plane. The entire surface is generated by rotation of this
contour around the z axis. The contour intersects the g, axis
at £, and if we omit the term b32/£2, which becomes
negligible near 7, the contour starts out from the origin
with a slope of g~1/2¢~1, The maximum dimension along
the g, axis is g—1/2£72, so the contour is therefore not only
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Fig. 2. Half-contour of x(q,T) for the dipolar-coupled, uniaxial ferro-
magnet. The contour gives the points in the gx-q: plane for which
x(gx.0.9:.T) = () limg,—0 x(4x.0.0.T). Note the scale difference on the
q: and g, axes.

shrinking as T — T, due to the fact that § — «, but it is
also changing shape in becoming more and more confined
to the x-y plane. We infer immediately that the correlation
range along the z axis, £, is superdiverging, that is £ ~ £2.
The correlated regions are long rods along the Ising axis of
length £ and with a diameter of £. We thence have Q; =
££:8) ~ &4, so that m = 1.27 The mean field critical expo-
nents are ¥’ = 1, = ', 8 = 15; thus the marginal dimen-
sionality from Eq. (13) is d* = 3. The three-dimensional
ferromagnet or ferroelectric exhibits critical behavior of
marginal dimensionality, and we expect “‘almost” mean
field behavior. It is possible to calculate the exact critical
behavior in this case using renormalization group theory,
essentially because RG uses mean field theory as the
“basis,” and for marginal dimensionality this *“basis” is
already quite close to the correct solution. The results
arell

Xq—0~ &~ 1]~ |Inz|!/3, (16)
. M ~11/2 |Int 13, a7)

Furthermore, the specific heat C should vary as
) C ~ |Ine)1/3, (18)

and the renormalization group equations imply the rela-
tion®

£5Cr2/kg = (3/32m) |Int]. - (19)

Expenments on a model system of the umax1al dipo-
lar-coupled ferromagnet, that is LiTbF,,28 have indeed
confirmed the logarithmic corrections for the specific heat?®
(where the logarithmic singularity is the leading singular-
ity), and neutron scattering experiments clearly showed the
superdiverging longitudinal correlation range.2” These
experiments also confirmed the nontrivial relation of Eq.
(19) to within an accuracy of about 2%,

2. Structural phase transitions

In this example we consider a structural phase transition
driven by the softening of an acoustic phonon. It is probably
easiest to visualize the distortion of a cubic unit cell. Ele-
mentary theory of elasticity? yields that the number of ways
a cubic lattice can distort is quite limited: one can have a
uniform expansion or contraction of the unit cell (the 4,
mode), an expansion along one cube axis and an equivalent
contraction along another (the E mode), or a shear of the
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unit cell (the T mode). The latter two modes are associated
with softening of the elastic constants ¢|; — ¢;3 and c4q4,
respectively. For the T, mode only transverse acoustic
phonons with polarization along a cube edge and wave
vectors perpendicular to that direction will lead to the static
deformation as ¢ — 0. This two-dimensional softening leads
to a fluctuation surface in g space geometrically identical
to that of the dipolar-coupled, uniaxial ferromagnet dis-
cussed above.'2 In this case, therefore, we also have d* =
3. For the E mode withc¢); —¢;2—0 t/he appropriate elastic
waves propagate along (1,1,0) with polarization along
(1,1,0), so in this case the fluctuations in ¢ space are con-
fined to a line {along (1,1,0)] rather than to a plane. As
discussed by Cowley,!2 the corresponding response function
is of the form {1 + £2[q2 + A(q./q)* + B(q . /9)*}}"}, and
the correlated regions in direct space are therefore sheets
with the normal along (1,1,0), with a thickness of £, and
with planar dimensions of £2 X £2. We therefore find Q; =
£ and, consequently, the marginal dimensionality d* = 2

Thus Landau theory gives a self-consistent solution for d
= 3 in this case. It should be noted, however, that the
transition of a cubic crystal generally is of first order be-
cause odd powers of the order parameter are allowed by
symmetry in the Landau expansion of the free energy, Eq.
(10). Our discussion is therefore only strictly applicable if
the coefficient of the cubic term accidentally is zero (or very
small), and we have only chosen the cubic case because it
allows a very simple discussion without presuming knowl-
edge of group theory. It turns out that the transition in
Nb;Sn is almost second order, and the results of a neutron
scattering study of the cubic to tetragonal phase transition
in this material3? indeed is consistent with the picture pre-
sented above.

Cowley has classified the phase transitions driven by the
softening of acoustic phonons in general,'2 and it turns out
that there are several cases where the cubic terms are for-
bidden by symmetry so that a truly second-order transition
may occur. As an example, we mention the orthorhombic-
monoclinic phase transition at 151 K in PrAlO3, which has
been studied in great detail and which indeed displays
Landau behavior.3! For similar reasons random phase ap-
proximation-based theories work very well for the dynamics
of such systems.3!32

VII. CONCLUSION -

In the traditional exposition of Landau theory one argues
that fluctuations are only accounted for in an average sense,
but these fluctuations diverge at the critical point and the
Landau theory can therefore not be expected to be valid
near the critical point. A more sensible assessment of the
role of the fluctuations can be obtained by using the
Ginzburg criterion for self-consistency. In this way the
concept of marginal dimensionality is introduced in a nat-
ural fashion. In the examples, we have emphasized the ge-
ometry of the critical fluctuations in reciprocal space and
in direct space. In order to facilitate visualization, we show
in Fig. 3 the salient features of the topology of the region
where the critical fluctuations take place. For a two-di-
mensional magnet the correlated region varies as £2, the
Ginzburg criterion is very far from being fulfilled, and in
reciprocal space the fluctuations occur within an infinitely
long rod perpendicular to the two-dimensional planes, as
indicated in part (a) of Fig. 3. For a conventional short-
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(a) (b) (c) (d)
LiTbF,

K, CoFy 3-Brass

Fig. 3. Regions of critical fluctuations in direct space (top) and in recip- -

rocal space (bottom) for the [2d] Ising model (a), the [3d] Ising model
(b), the dipolar-coupled, uniaxial ferromagnet (c), and for a structural
phase transition driven by the softening of an acoustic transverse phonon
(d). The dimensions of the regions in direct space enter in the Ginzburg
criterion.

range interaction, three-dimensional system the fluctuations
in reciprocal space take place withina sphcre of radius £~1,

and the correlated region in direct space is a sphere with
radius £, part (b) of Fig. 3. The Ginzburg criterion is still
not fulfilied. For the uniaxial, dipolar-coupled ferromagnet
in three dimensions the fluctuation region in g space isa
peculiar disk, so the correlated region in r space takes the
shape of long rods of length {2 and diameter £, part (c) of

(o g T T =
h T T l.{.p T | SE
\ \zCOQ
d4=2,d"=4
osk ™\ . _
\
L B-Brass %
s _d=3,d"=4 \

Squared order pafhfneter

old 1 i ! 1 1 1 3 1 i
0.0 0.08 006 0.04 0.02 0
Reduced temperature 1-T/T¢

Fig. 4. Squared order parameter, determined by neutron scattering, for
the four examples shown in Fig. 3. When the marginal dimensionality d*
= d, we see Landau behavior (with logarithmic corrections when d* =
d); for d* > d, clear deviations from Landau theory are observed.
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Fig. 3. This represents the border line for the validity of the
Ginzburg criterion.

The critical fluctuations are also restricted in g space for
structural phase transitions driven by the softening of an
acoustic phonon (elastic wave), the restriction being
brought about because only those lattice vibrations which
in the long-wavelength limit approach the static deforma-
tion go soft and contribute to the critical divergence. For
certain structural phase transitions the restricted region in
q space is identical to that of the uniaxial dipolar-coupled
ferromagnet, part (c); for others the critical region in q
space condenses around a line, part (d). In the latter casc
the correlated region in r space forms sheets of thickness £
and of planar dimensions £2 X £2. In that case the Ginzburg
criterion is fulfilled in three dimensions and the phasc
transition is self-consistently described by mean ficld
theory.

In order to illustrate the actual difference in critical be-
havior for the four examples of Fig. 3, we show in Fig. 4
experimental results for the squared order parameter for
four corresponding real physical systems. The order pa-
rameter is in all four cases normalized to unity at low
temperatures, but in order to emphasize the temperature
region of critical fluctuations we have only shown the resuits
in the temperature region 0.9 < T/T, < 1.

In summary, then, we see that by a simple application of
the Ginzburg criterion it is possible to assess the importance
of fluctuations and thence to elucidate the basic physics of
the phase transitions in a surprisingly large range of real
physical systems. In partucular, mean field theory works
very well in homogeneous structural phase transitions
simply because the fluctuations are confined in phase
space.
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GLORIOUS CONTEMPLATION

.. . T had plenty of time at school to think about all manner of interesting things. It
was utterly necessary, however, to avoid the heinous crime of “not paying attention.” In
my day, you inevitably suffered physical punishment for not paying attention. Stupidly
doing so, by staring out of a window, at some interesting cloud formation, for instance,
would inevitably earn for you a stinging series of blows about the head. To a little chap .
like me, such blows were not to be thought of, so I avoided staring at interesting things in
the wide world outside the windows. Even this precaution was not sufficient however,

* because teachers would sometimes ask you to repeat what they had just said. So long as
you were able to do so, it was accepted that indeed you were really “‘paying attention.”
So I learned, always at all times, to let the last few words the teacher was saying to
register in my brain. Each new sentence wiped out the preceding one, thereby permitting

contemplation.

instant recall of the new sentence. This invention won for me hour upon hour of glorious

—Fred Hoyle, Ten Faces of the Universe (Freeman, San Francisco, 1977).
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