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5.6 Problems for Chapter 5

5.1 A random quantity has an exponential autocorrelation function G(t) =
G (0) e−γt. What are the dimensions of γ? Calculate the correlation time
of G(t) using the usual definition.

Calculate the correlation time for a gaussian autocorrelation function
G(t) = G(0)e−γ2t2/2

5.2 Show that the autocorrelation function of a periodically varying quantity
m = m cos ωt is given by

G =
m2

2
cos ωt.

Show that the autocorrelation function is independent of the phase of
m(t). In other words, show that if m = m cos (ωt + ϕ), then G(t) is
independent of ϕ.

5.3 The mean square displacement of a Brownian particle at long times was
given by Eq. (5.2.12)

〈x2〉 = 2t

∫ ∞

0

Gv(τ)dτ − 2

∫ ∞

0

τGv(τ)dτ .

It was stated in the text that the second term was negligible, compared
with the first, and so could be ignored.

(a) In that case, show that the mean square displacement may be ex-
pressed

〈x2〉 = 2Gv(0)τv t ,

where τv is the correlation time associated with Gv(τ).

(b) Show that the second integral above may be expressed, approxi-
mately, as ∫ ∞

0

τGv(τ)dτ ≈ Gv(0)τ 2
v .

There is a choice of ways for demonstrating this. You might approx-
imate Gv(τ) by a decaying exponential Gv(0)e−τ/τv before doing the
integral.

(c) Using this approximate expression, show that without neglecting
the second term, the expression for 〈x2〉 becomes

〈x2〉 = 2Gv(0)τv (t − τv) .

Hence justify the neglect of the second term.
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5.4 A small mirror is suspended from a quartz fibre whose torsion constant
is κ. When the mirror is rotated an angle θ the torque exerted by the
fibre is Γ = −κθ. The moment of inertia of the mirror about the sus-
pension axis is I. The mirror reflects a beam of light so that the angular
fluctuations caused by the impact of surrounding molecules can be read
on a suitable scale. The position of the equilibrium is 〈θ〉 = 0. The av-
erage value 〈θ2〉 is observed. From this the goal is to find the Avogadro
constant (or, what is the same thing since the gas constant R is known,
to determine the Boltzmann constant).

The following are the data: At T = 287 K, for a fibre with κ = 9.43 ×
10−16 Nm it was found that 〈θ2〉 = 4.20 × 10−6.

Calculate the Avogadro constant.

5.5 The assembly of the previous question is placed in a chamber from which
the air may be evacuated. Can the amplitude of these fluctuations be
reduced by reducing air density? Describe the change in the behaviour
of the fluctuations as the air pressure is lowered. In particular, discuss
the behaviour as the pressure goes to zero.

5.6 In Section 5.3.9 we considered an electrical analogue of the Langevin
Equation based on a circuit comprising an inductor and a resistor in
series. In this problem we shall examine a different analogue: a circuit of
a capacitor and a resistor in parallel. Show that the equation analogous
to the Langevin equation, in this case, is

C
dV

dt
+

1

R
V = I.

Hence show that the fluctuation-dissipation result relates the resistance
to the current fluctuations through

1

R
=

1

2kT

∞∫

−∞

〈I (0) I〉 dt.

5.7 The dynamical response function X(t) must vanish at zero times, as
shown in Fig. 5.13. What is the physical explanation of this? What is
the consequence for the step response function Φ(t)? Is this compatible
with an exponentially decaying Φ(t)?
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5.8 We saw in Section 5.4.2 that χ′(ω) and χ′′(ω) may be regarded as the
cosine and sine transforms of the dynamical susceptibility X(t). Now
these real Fourier transforms may be inverted; X(t) may be found equiv-
alently from either χ′(ω) or χ′′(ω). The point about this is that χ′(ω)
and χ′′(ω) are not independent; they both come (invertibly) from X(t).
So, in particular, χ′(ω) may be found from χ′′(ω) or vice versa (the
Kramers-Kronig relations).

(a) In this way derive the following expressions

χ′(ω) = −
2

π

∞∫

0

ω′χ′′ (ω′)

ω′2 − ω2
dω′

χ′′(ω) =
2

π

∞∫

0

ωχ′ (ω′)

ω′2 − ω2
dω′.

(b) These are not quite the same as those in Eq. (5.4.61). Why is this?

(c) Where, exactly, does the requirement of causality enter into this
derivation?

5.9 Show that for the Debye susceptibility, the relation

χ0 =
1

π

∞∫

−∞

χ′′ (ω)

ω
dω

holds. Demonstrate that χ′′ vanishes sufficiently fast at ω = 0 so there
is no pole in the integral and there is thus no need to take the principal
part of the integral in the Kramers-Kronig relations.

5.10 In Section 5.4.11 we examined the form of the dynamical susceptibility
χ(ω) that followed from the assumption that the step response function
Φ(t) decayed exponentially. In this question consider a step response

function that decays with a gaussian profile: Φ = χ0e
−t2/2τ2

. Eval-
uate the real and imaginary parts of the dynamical susceptibility and
plot them as a function of frequency. The real part of the susceptibil-
ity is difficult to evaluate without a symbolic mathematics system such
as Mathematica . Compare and discuss the differences and similarities
between this susceptibility and that deduced from the exponential step
response function (Debye susceptibility).
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5.11 The Debye form for the dynamical susceptibility, Eq. (5.4.84), is

χ′(ω) = χ0
1

1 + ω2τ 2

χ′′(ω) = χ0
ωτ

1 + ω2τ 2

Plot the imaginary part against the real part and show that the figure
corresponds to a semicircle. This pictorial representation is known as a
Cole-Cole plot.

5.12 Plot the Cole-Cole plot (Problem 5.11) for the dynamical susceptibility
considered in Problem 5.10. How does it differ from that of the Debye
susceptibility?

5.13 The full quantum-mechanical calculation of the Johnson noise of a resis-
tor gives

〈
v2
〉

Δf
= 4R

hf

ehf/kT − 1
Δf.

Show that this reduces to the classical Nyquist expression at low frequen-
cies. At what frequency will there start to be serious deviations from the
Nyquist value? Estimate the value of this frequency.


