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2.11 Problems for Chapter 2

2.1 In Section 2.1 we saw that the density of free-particle states for a three
dimensional volume V was shown to be

g (ε) =
1

4

V

π2~3
(2m)3/2 ε1/2;

this followed from counting the number of states in the octant of radius

R =
√

n2
x + n2

y + n2
z .

(a) By similar arguments show that in two dimensions, by counting the
number of states in the quadrant of radius

R =
√

n2
x + n2

y ,

the density of states is given by

g (ε) =
mA

2π~2

where A is the area. Note in two dimensions the density of states
is independent of energy.

(b) And similarly, show that in one dimension the density of states is

g (ε) =
L

π~

(m

2

)1/2

ε−1/2.

2.2 Show, using arguments similar to those in Section 2.1.3, that the en-
ergy levels of an ultra-relativistic or a massless particle with energy-
momentum relation E = cp are given by

ε =
cπ~
V 1/3

(
n2

x + n2
y + n2

z

)1/2
.

Hence show that the pressure of a gas of such particles is one third of
the (internal) energy density.

2.3 In Sections 2.3.1 and 2.3.2 the ideal gas partition function was calculated
quantum-mechanically and classically. Although the calculations were
quite different, they both resulted in (different) gaussian integrals. By
writing the gaussian integral of the classical case as

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz e−(x2+y2+z2)
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and transforming to spherical polar coordinates, you can perform the
integration over θ and φ trivially. Show that the remaining integral can
be reduced to that of the quantum case.

2.4 The Sackur-Tetrode equation, discussed in Section 2.3.3, and written as

S = Nk ln V − Nk ln N +
3

2
Nk ln T + Nks0

is often interpreted as indicating different contributions to the entropy:
the volume contribution is in the first term, the number contribution
in the second term and the temperature contribution in the third term.
Show that such an identification is fallacious, by demonstrating that
the various contributions depend on the choice of units adopted – even
though the total sum is independent. Discuss the origin of the fallacy.

2.5 The Gibbs-Duhem relation tells us that the intensive variables T, p, μ are
not independent so that, for example, μ depends on T and p. Demon-
strate this by showing that

μ = −kT ln

[( m

2π~2

)3/2 (kT )5/2

p

]

for an ideal gas.

2.6 Show that the Fermi energy for a two-dimensional gas of Fermions is

εF =
2π~2

αm

N

A

where A is the area of the system.

2.7 Show that the chemical potential of a two-dimensional gas of fermions
may be expressed analytically as

μ = kT ln
{
eεF/kT − 1

}
.

2.8 Calculate the low temperature chemical potential of a two-dimensional
gas of fermions by the Sommerfeld expansion method of Section 2.5.3.
Observe that the temperature series expansion terminates. Compare
this result with the exact result of the previous question. Discuss the
difference between the two results.
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2.9 Obtain expressions for the chemical potential μ, the internal energy E
and the heat capacity CV for a system of fermions with general density of
states g(ε). That is, show that these are given in terms of the behaviour
of the density of states at the Fermi surface.

2.10 Evaluate the Fermi temperature for liquid 3He, assuming it to be a Fermi
“gas”. Its molar volume is 36 cm3. Calculate the thermal de Broglie
wavelength at T = TF and show that it is comparable with the inter-
particle spacing as expected.

2.11 In Problem 2.1 we found the expression for the energy density of states
g(ε) for a gas of fermions confined to two dimensions and we saw that it
was independent of energy. What surface density of electrons is necessary
in order that TF = 100 mK? Show that, for a given area, the heat
capacity is independent of the number of electrons.

2.12 Use the Sommerfeld expansion method of Section 2.5.3 to show that the
Fermi-Dirac distribution function may be approximated, at low temper-
atures, by

1

e(ε−μ)kT + 1
∼ Θ(μ − ε) −

π2

6
(kT )2 δ′(ε − μ) + ∙ ∙ ∙ .

where Θ is the unit step function and δ′ is the first derivative of the Dirac
delta function.

Can you write down the general term of the series?

2.13 Liquid 4He has a molar volume of 27 cm3 at saturated vapour pressure.
Treating the liquid as an ideal gas of bosons, find the temperature at
which Bose-Einstein condensation will occur. How will this temperature
change as the pressure on the fluid is increased?

The superfluid transition temperature of liquid helium decreases with
increasing pressure; very approximately ∂Tc/∂p ∼ −0.015 K bar−1. How
does this compare with the behaviour predicted for ideal gas Bose-Einstein
condensation?

2.14 Consider the Bose gas at low temperatures. You saw in Section 2.6.3
and 2.6.4 that when the occupation of the ground state is appreciable
then the chemical potential μ is very small and it may be ignored, com-
pared with ε in the integral for the number of excited states.
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(a) Show that when the ground state occupation N0 is appreciable then
μ may be approximated by

μ ∼ −kT/N0.

(b) Now consider the requirement that μ may be neglected in compari-
son with ε in the integral for the number of excited states. This will
be satisfied if |μ| is much less than the energy ε1 of the first excited
state. The expression for ε1 is

ε1 =
π2~2

2mV 2/3
.

Where does this expression come from?

(c) Show that the condition |μ| � ε1 is satisfied right up to TB in the
thermodynamic limit. Hint: demonstrate that |μ|/ε1 ∼ N−1/3.

(d) For a finite system comprising 1 cm3 of 4He (molar volume 27 cm3)
show that the expression

N0 = N

{

1 −

(
T

TB

)3/2
}

is valid to temperatures below TB right up to within ∼ 10−8TB of
the Bose temperature.

2.15 (a) Show that the pressure of a Bose gas below TB depends only on
temperature; that is, it is independent of other thermodynamic vari-
ables such as N and V .

(b) Comment on this result in the context of the Gibbs-Duhem relation
(asserting that the intensive variables T, p, μ are not independent).

2.16 (a) Show that below the transition temperature the entropy of a Bose
gas is given by

S =
5

2
Nk

ζ(5
2
)

ζ(3
2
)

(
T

TB

)3/2

.

(b) Since the number of excited particles is given by

Nex = N

(
T

TB

)3/2

,

show that the entropy per excited particle is given by

S

Nex

=
5

2

ζ(5
2
)

ζ(3
2
)
k ≈ 1.28 k.
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(c) Discuss the connection between this result and the two fluid model
of superfluid 4He.

2.17 Show that the chemical potential of a two-dimensional gas of bosons may
be expressed analytically as

μ = kT ln
{
1 − e−εq/kT

}

where εq is the two dimensional quantum energy, the analogue of the 2d
Fermi energy in Problem 2.6

This problem is the Bose analogue of the Fermi case treated in Prob-
lem 2.7.

2.18 Show that the Bose-Einstein transition temperature of a gas of bosons
and the Fermi temperature for a gas of “similar” fermions are of compa-
rable magnitude. Discuss why this should be.

2.19 The formula for the Bose integrals Bn of Sec. 2.6.4 was quoted as

Bn =

∫ ∞

0

xn

ex − 1
dx

= Γ(n + 1)ζ(n + 1).

Derive this result.

Hint: Use the sequence of transformations below

1

ex − 1
= e−x 1

1 − e−x
= e−x

∞∑

m=0

e−mx =
∞∑

m=0

e−(m+1)x =
∞∑

m=1

e−mx

and then change the variable of integration to y = mx.

2.20 The general formula for the Fermi integrals Fn of Section 2.5.3 was
quoted as

Fn =

∫ ∞

−∞

ex

(ex + 1)2 xn dx

= 2
(
1 − 21−n

)
ζ(n) n!

where ζ(n) is the Reimann zeta function. Derive this result. This is
difficult; Mathematica v.12 can’t do it!
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Hint: The first step is to integrate by parts, essentially the reverse of
Eq. (2.5.28), to obtain

Fn = 2n

∫ ∞

0

xn−1

ex + 1
dx,

noting that this holds for even n, while Fn = 0 for odd n. Next, follow
a sequence of transformations similar to those for the Fermi calculation
of Problem 2.19.

2.21 The Reimann zeta function and the Dirichlet eta function are defines as
infinite sums:

ζ(n) =
∞∑

m=1

1

mn
, η(n) =

∞∑

m=1

(−1)m−1

mn
.

Show that ζ(n)−η(n) = 21−nζ(n), and hence that η(n) = (1−21−n)ζ(n).

2.22 A dilute gas of 106 rubidium atoms (relative atomic mass 86.9) is confined
to an isotropic harmonic trap of frequency 150 Hz.

(a) Calculate the Bose-Einstein condensation (BEC) temperature TB.

(b) Estimate the width of the thermal cloud at TB.

(c) Estimate the width of the condensate cloud.

2.23 This is the trapped-gas analogue of Problem 2.14. Consider a Bose gas
confined to an isotropic harmonic trap at low temperatures, as in the
previous Problem. You know that when the occupation of the ground
state is appreciable then the chemical potential μ is very small and it may
be ignored, compared with ε in the integral for the number of excited
states. Moreover you know that when the ground state occupation N0 is
appreciable, then μ ∼ −kT/N0.

(a) The requirement that μ may be neglected in comparison with ε
in the integral for the number of excited states will be satisfied if
|μ| is much less than the energy ε1 of the first excited state. The
expression for ε1 is

ε1 = ~ω

where ω is the (angular) frequency of the trap. Where does this
expression come from?
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(b) Show that the condition |μ| � ε1 is satisfied right up to TB in the
thermodynamic limit. Hint: demonstrate that |μ|/ε1 ∼ N−2/3.

(c) For a finite system, as in the previous Problem, comprising 106

atoms, show that the expression

N0 = N

{

1 −

(
T

TB

)3
}

is valid to temperatures below TB right up to within ∼ 10−5TB of
the Bose temperature.

2.24 In Section 2.10 we studied a paramagnetic solid : a collection of essen-
tially distinguishable magnetic moments. If we were to consider a (classi-
cal) gas of indistinguishable magnetic moments, how would the partition
function be modified? What would be the observable consequences of
this modification?

2.25 According to Curie’s law, the magnetic susceptibility of a paramagnet is
inversely proportional to temperature.

(a) Show that a different behaviour is implied by the Third Law.

(b) What is wrong with the Curie law model?


