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1.8 Problems for Chapter 1

1.1 Demonstrate that gravitational energy is not extensive: show that the
gravitational energy of a sphere of radius r and uniform density varies
with volume as V n and find the exponent n.

1.2 Demonstrate that entropy, as given by the Boltzmann expression S =
k ln Ω, is an extensive property. The best way to do this is to argue
clearly that Ω is multiplicative.

1.3 In investigating the conditions for the establishment of equilibrium through
the transfer of thermal energy the fundamental requirement is that the
entropy of the equilibrium state should be a maximum. Equality of
temperature was established from the vanishing of the first derivative of
S. What follows from a consideration of the second derivative? (Hint:
consider the heat capacity.)

1.4 Do particles flow from high μ to low μ or vice versa? Explain your
reasoning.

1.5 In the derivation of the Boltzmann factor the entropy of the bath was
expanded in powers of the energy of the “system of interest”. The higher
order terms of the expansion were neglected. Discuss the validity of this.

1.6 The Boltzmann factor might have been derived by expanding Ω rather
than by expanding S. In that case, however, the expansion cannot be
terminated. Why not?

1.7 Show that ln N ! =
∑N

n=1 ln n. By approximating this sum by an integral
obtain Stirling’s approximation : ln N ! ≈ N ln N − N = N ln(N/e).

1.8 Show that the Gibbs expression for entropy: S = −k
∑

j Pj ln Pj , reduces
to the Boltzmann expression S = k ln Ω in the case of an isolated system.

1.9 This problem considers the probability distribution for the energy fluctu-
ations in the canonical ensemble. The moments of the energy fluctuations
are defined by

σn =
1

Z

∑

j

(Ej − ε)n e−βEj
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where β = 1/kT and ε is an arbitrary (at this stage) energy.

Show that

σn = (−1)n 1

Zeβε

∂n{Zeβε}
∂βn

and use this to prove that the energy fluctuations in an ideal gas, in the
thermodynamic limit, follow a normal distribution. It will prove to be
convenient to take ε as the mean energy. (This is difficult. You really
need to use a computer algebra system to do this problem.)

1.10 Starting from the expression for the Gibbs factor for a many-particle
system, write down the grand partition function Ξ and show how it may
be expressed as the product of Ξk, the grand partition function for the
subsystem comprising particles in the kth single-particle state.

1.11 What is the condition for the geometric progression in the derivation of
the Bose-Einstein distribution be convergent?

1.12 Why can’t the evolutionary curve in phase space intersect? You need to
demonstrate that the evolution from a point is unique.

1.13 Show that the trajectory of a 1d harmonic oscillator is an ellipse in
phase space. What would the trajectory be if the oscillator were weakly
damped.

1.14 The Fundamental Postulate of classical statistical mechanics states that
for an isolated system all available regions of phase space on the constant
energy hyper-surface are equally likely.

In terms of this discuss the properties of the phase space of a Boltzmann
ensemble of simple harmonic oscillators of identical energy.

1.15 A quartic oscillator has a potential energy that varies with its displace-
ment as V (x) = gx4. What would be the equipartition thermal energy
corresponding to the displacement degree of freedom?

1.16 Consider a particle subject to a hypothetical confining potential V (x) =
gxn (where n is even and positive).

(a) Calculate the heat capacity of a collection of such particles as a
function of n.
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(b) Show that in the limit n → ∞ the heat capacity tends to that for
a free particle.

(c) Comment on this limit – in the context of a gas of free particles.

1.17 For a single-component system with a variable number of particles, the
Gibbs free energy is a function of temperature, pressure and number of
particles: G = G(T, p,N ). Since N is the only extensive variable upon
which G depends, show that the chemical potential for this system is
equal to the Gibbs free energy per particle: G = Nμ.

1.18 Use the definition of the Gibbs free energy together with the result of
the previous question, Problem 1.17, to obtain the Euler relation of Ap-
pendix A.2:

E = TS − pV + μN.

1.19 The energy of a harmonic oscillator may be written as mω2x2/2+p2/2m
so it is quadratic in both position and momentum – thus equipartition
will give a classical internal energy of kT .

The energy levels of the quantum harmonic oscillator are given by εn =
(1

2
+ n)~ω.

(a) Show that the partition function of this system is given by

Z =
1

2
cosech

~ω
2kT

(1.8.1)

and that the internal energy is given by

E =
1

2
~ω coth

~ω
2kT

=
~ω

e~ω/kT − 1
+
~ω
2

. (1.8.2)

(b) Show that at high temperatures E may be expanded as

E = kT +
~2ω2

12kT
+ ∙ ∙ ∙ (1.8.3)

(c) Identify the terms in this expansion.


