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This paper examines the general question: How far can one set lower limits on the 
entropy density S(T) of a large system at low temperatures by using data of a different 
type, e.g., scattering data or static susceptibilities ? It is shown for an arbitrary one- 
component system that if we make a single unproved but highly plausible assumption 
about the fluctuations of large subvolumes, we can obtain an inequality relating S(T) 
to certain integrals over the temperature-dependent correlation functions of the system; 
and with one further very weak assumption the zero-temperature correlation functions 
alone determine a lower limit on S(T). It is then shown that the fluctuations of any 
locally conserved quantity give rise to a contribution to S of at least a constant times 
T3; in particular, by considering the density fluctuations we obtain the inequality 

where So(r) is the “Debye” entropy which would arise from longitudinal phonons 
propagating at the hydrodynamic sound velocity determined by the macroscopic 
compressibility. (This result does not assume the existence of such phonons as good 
elementary excitations of the system.) Some other general results are derived as a by- 
product: for instance, it is shown that any system obeying a diffusion equation of a 
certain type must have an entropy at least proportional to T. 

1. INTRODUCTION 

A great many of the strongly interacting many-particle systems found in nature 
are characterized by the fact that at sufficiently low temperatures they can be des- 
cribed in terms of elementary excitations, or quasiparticles, with a definite energy- 
wavevector relationship. The spectrum of the quasiparticles, and the statistics 
obeyed by them determine most of the thermodynamic properties of the system, 
and in particular the low-temperature entropy. In most cases, explicit calculation 
shows that the entropy tends to zero with T as T”, n > 0. 

In particular, if the elementary excitations of the system include long-wavelength 
longitudinal sound waves (phonons), then there is a corresponding contribution 
to the entropy which we shall call the “Debye” contribution. We consider for 
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simplicity the case of a system which is elastically isotropic; then the “Debye” 
contribution to the entropy per unit volume has the value 

S,(T) = g$$ T3 = KDT3. (1) 

The constant K,, is determined, apart from universal constants, entirely by the 
quantity c, the speed of longitudinal sound, which in turn is determined by the mass 
density and a single macroscopic thermodynamic coefficient: 

c = (Kp)-‘j2, (2) 

where p is the mass density and K an appropriate compressibility; for a system 
without shear (i.e., a liquid) K is just the inverse of the bulk modulus, while for a 
system with finite shear modulus it is the inverse of the longitudinal elastic stiffness 
constant (the quantity usually denoted C,,) [I]. 

If there are other types of quasiparticles present, apart from the phonons, they 
must contribute a positive term to the entropy. Consequently, it is clear that the 
expression (1) must be a lower limit on the total entropy per unit volume S of the 
system 

S(T) 3 S,(T) = K,,T3. (3) 

Thus, in this case, we can deduce a lower limit on the low-temperature entropy of 
the system from a knowledge of the density and a single macroscopic parameter, 
the appropriate static compressibility. 

The main question we set outselves to consider in this paper is: Does the 
inequality (3) (or a similar inequality) hold for an arbitrary system? More generally, 
how far can we establish lower limits on the entropy from a knowledge of data of 
a different type (e.g., from neutron scattering experiments or spin-susceptibility 
measurements)? Any result we can obtain, apart from its intrinsic interest, will be 
useful in establishing the consistency of measurements of the specific heat at low 
temperatures with other data. In addition, it should give some comfort to those 
laboring in the field of submillidegree cryogenics, since their efforts will at least 
not be frustrated by a sudden vanishing of the entropy of their working system! 

At first sight it is tempting to argue that the inequality (3) must hold for an 
arbitrary (elastically isotropic) system, on the following grounds: whatever else is 
happening to the system, it must be possible to compress it and thus at sufficiently 
long wavelengths the elementary excitations must include longitudinal sound 
waves (phonons) whose speed, as determined by ordinary hydrodynamical con- 
siderations, must be given by Eq. (2). These phonons must obey Bose statistics 
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and hence their contribution to the entropy will be given by the expression (1). 
Finally, any other degrees of freedom can only increase the entropy, so (1) will be 
a lower limit. 

However, although the above argument clearly has a certain physical plausibility, 
there are a number of holes in it. Perhaps the most serious concerns the question 
of whether the excitations relevant to the low-temperature entropy can be described 
by hydrodynamics at all. This is certainly not obvious and it is easy to produce a 
counterexample: the weakly interacting Fermi gas. It is well known [2] that hydro- 
dynamics is valid only for frequencies w such that WT << 1, where T is of the order 
of a characteristic quasiparticle lifetime; for the weakly interacting Fermi gas this 
is proportional to T-?. On the other hand, if a set of excitations obeys a Planck 
distribution, the dominant contribution to the entropy will come from those with 
frequency of order k,T/h. It follows that for a Fermi gas at low temperatures, in 
the region of frequencies important for the entropy, hydrodynamic phonons do 
not exist. 

The argument is also dubious at other points: for instance, even if one grants 
that the necessary hydrodynamic phonons do exist in the system in question 
(in the sense that one expects to observe a delta-function type resonance in, say, 
inelastic neutron scattering experiments), does it necessarily follow that they are 
distributed according to a Planck law ? Or that it is legitimate to add their contri- 
bution to the entropy to any other contribution, so that it represents a lower limit 
on S(T)? And so on. 

For certain specific systems these difficulties have been circumvented by rigorous 
microscopic arguments using the techniques of field theory. The prototype of 
such arguments was the work of Landau and Pitaevskii on the specific heat of a 
degenerate normal Fermi liquid [3]. Without explicitly introducing the idea of 
quasiparticles, they made certain assumptions about the structure of the one- and 
two-particle propagators and then used thermodynamic perturbation theory 
to show that the entropy for this system is linear in Tat low temperatures-a result 
which is, of course, in accordance with the inequality (3). Similar techniques have 
been applied by Giitze and Wagner [4] to the condensed Bose liquid, and by 
GGtze [5] to the case of a perfect crystal; in both cases the inequality (3) is fulfilled 
(it becomes an equality for the Bose liquid). It seems very probable that a similar 
proof could be carried out for the neutral superfluid Fermi liquid [6], although 
I do not know of any reference where this has been done. However, in any given 
case these arguments require one to know, or assume, some specific properties 
of the low-energy excited states of the system, or equivalently of the propagators 
(at the very least, one must assume that they can be obtained by perturbation 
theory from some appropriate exactly soluble case, e.g., a noninteracting gas). 
There is, of course, no guarantee that any many-body system we may meet in the 
laboratory may be such that we can successfully guess the microscopic structure 
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of its low-lying state+, so it is of some interest to see whether we can prove some 
relations which will be quite independent of the specific nature of the system. 

This is the task we set ourselves in this paper. We restrict ourselves to an 
isotropic one-component system. First we show that if we make a single unproved 
but highly plausible assumption about the behavior of macroscopic subvolumes 
of the system in the appropriate limit, we can derive an inequality relating the 
entropy to certain weighted integrals over correlation functions which may be 
observable in practice (e.g., in scattering experiments). Thus, in cases where we 
can do the required scattering experiments, we have at least a negative test for 
consistency between these and the specific-heat data. The result also has some 
interesting general implications; for instance, we show that if there is any macro- 
scopic variable in the system (e.g., mass or spin density) which obeys a diffusion- 
type equation in the long-wavelength, low-frequency limit and has a finite “suscep- 
tibility” associated with it, then there must be a term in the entropy which tends 
to zero as T + 0 at least as slowly as T itself (though we are unable to give a rigorous 
bound on the coefficient). This result is quite independent of the microscopic 
nature of the system. 

We then go on to consider the case where we do not know the form of the corre- 
lation functions, but only (say) the macroscopic static compressibility. Then 
with one further very weak assumption about the temperature dependence of a 
certain moment of the density correlation function, we are able to prove that the 
inequality (3) holds in general apart from a constant factor: in fact, 

S(T)3 $KDT3. (3') 

With one further assumption (“normal scaling”) we can improve the factor of 3 in 
the inequality (3’) to 1, thus obtaining our originally conjectured inequality (3). 
We can also obtain lower limits similar to (3’) for the contribution to the entropy 
from fluctuation of macroscopic variables other than the density, e.g., the spin 
density or current density. 

The paper is set out as follows. For simplicity of presentation we first derive 
our results for a one-component liquid (system without shear). In Section 2 
we describe the limit in which we shall be interested and make plausible our 
fundamental assumption about the behavior of macroscopic subvolumes. In 
Section 3 we show that this assumption leads rigorously to a lower limit on the 
low-temperature entropy in terms of various correlation functions; with one further 
very weak assumption the result can be expressed in the relatively simple form of 
Eq. (42), which involves only the zero-temperature correlation functions. In 
Section 4 we test this result for various systems for which results are already known, 

1 As an example of a system of current interest whose microscopic structure is still controversial, 
one might mention the (quasi-two-dimensional) system formed by helium atoms adsorbed on a 
solid substrate. 
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and furthermore show that the existence of a diffusion-type equation for any 
macroscopic quantity implies an entropy which is at least linear in temperature. 
In Section 5 we consider the case where the correlation functions are completely 
unknown, and show that the fluctuations of any locally conserved quantity must 
give rise to a term in the entropy at least as large as const. T3, where the constant 
may in certain cases be found from macroscopic thermodynamic data; the 
inequality (3’) then follows as a particular case of this. We also briefly examine 
the conditions under which the original conjecture (3) holds. In Section 6 we 
treat the more complicated case of a system with finite shear modulus. In Section 7 
we briefly summarize the results and discuss their significance. 

2. POSTULATE ON THE FLUCTUATIONS OF MACROSCOPIC SUBVOLUMES 

We shall consider for the present a system of N identical particles of mass m, 
enclosed in a volume Q; as usual we shall be interested in the “thermodynamic 
limit” N-+ co, L? -+ co, mNjQ = const = p. Throughout this work we shall 
assume that the system behaves normally in this limit, in the sense that for a given 
value of p and T quantities like the average energy are proportional to a, that is 

We shall further assume, for the present, that if we slowly alter the shape of the 
system without changing the total volume Q, then the energy is unchanged to 
relative order 1;2-“, II > 0; i.e., that the system has zero shear modulus. (This 
assumption is made only to simplify the presentation and will be relaxed in 
Section 6.) Under these conditions we can define the zero-temperature compressi- 
bility K uniquely by the relation 

where E, is the ground-state energy. Furthermore, we can formally define a 
“speed of hydrodynamic sound” c, by the usual expression 

c, E (Kp)-lJ2 (6) 

[cf. Eq. (2) above]. It must be emphasized that Eq. (6) is simply a definition of the 
quantity c, and does not imply that hydrodynamic sound waves can actually 
propagate in the system. Finally we define a characteristic length A, by the relation 

h, = kcJk,T. (7) 

For simplicity we take our total volume a in the shape of a cube of side I. 
Now we divide this total volume into a large number it of equal subvolumes 
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Vi (i = 1,2,..., n) which we take to be cubes of side d. Eventually we shall want 
to take the limits Vi -+ co and T -+ 0 as well as Q -+ co, and we have to specify 
rather carefully how this is to be done. For reasons which will become clear 
subsequently we choose to work in the following limit: 

N-+ co,ii+ co, Vi+ co, T-0, 

mN/Q ---f const = p, 

A,/1 --f 0, d/X, + 0, but (uhT3/d4) In&/b) + 0, 
(8) 

where a, b are any fixed lengths. We shall refer to the limiting process described 
by (8) as “the appropriate limit” and indicate it by the shorthand notation lim,,, . 
It is to be emphasized that the quantity d here is a construct and has no physical 
significance. 

For the total system there will generally exist a set of operators with the following 
properties: (a) they commute with the total Hamiltonian2, (b) they commute 
with one another, (c) they can be expressed in the form of integrals over the total 
volume D of some locally defined operator. Examples of members of such a set 
are the total particle number N, the total particle current i (for a translationally 
invariant system) and the total spin $ (for systems in which the Hamiltonian is 
invariant against rotation of the spins alone). We write the members of such a set 
in the general form 

where v labels the particular operator we are considering. The eigenvalues of the 
operator &t will be labelled a, : in general we find that as 52 tends to infinity, their 
spacing is of order 1 or less (not of order a). The energy is then a function of the 
oly’s, among other things; we denote the minimum energy compatible with a given 
set of values {oI”} by &{ol,). Suppose that the system of interest to us is characterized 
by the fact that at T = 0 the a,‘s take a certain set of values {a:“)}; these values 
may be determined either (as in the case of the total number of particles) by the 
conscious choice of the experimenter or (as in the case of the total spin) by the 
condition of energy minimization plus, possibly, weak residual interactions with 
the walls. Given this set of values, the ground-state energy E, is uniquely determined: 

E, = E&f’}. (10) 

Consider now states in which the 01, differ from their original values ,Lo) by an 
amount of order Sz”, 0 < k < 1. We can then regard the 01, as continuous variables; 

2 Excluding the interaction with the enclosing walls. More precisely, we require that they are 
locally conserved, in the sense that r&,(r), A] is the divergence of some current. 
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since they are eigenvalues of extensive operators, we have i3nEm{01y}/aoIyn N LP+l 
and hence successive terms in a Taylor expansion of the energy around LX:()) are 
smaller by a power of Sz. Thus, defining 

we have 

AE,,=C( 2 
Y 

-) 4 +i C ( ,,‘j& ) a,a,f + ..-, Y Y.“’ 
(12) 

where the derivatives are evaluated at {a,} = 0. 
For simplicity of notation we shall assume from now on that we have chosen 

the operators &t in such a way that the cross terms (V # v’) in (12) vanish; this is 
clearly always possible. We define now 

(13) 

the derivatives being evaluated at a, = 0, i.e., in the original state. According to 
our hypotheses py and xv are independent of 52 in the limit 52 + co. Moreover 
we define the quantum-mechanical expectation value of any operator I? as (C): 

(C) = Tr{@}, (14) 

where b is the density matrix. Also we define the deviation of 6 from its value in 
the ground state (C), as A(C): 

A(c) = (c) - (c), . (15) 

Finally we define an operator representing the fluctuations of&i from its ground- 
state value 

A” Es z( - ,y . (16) 

Clearly the eigenvalues of .& are just the quantities a, . 
Consider now a state of the system which is arbitrary subject only to the restric- 

tions (for all V) 

l(aY 5 Qbn, b < 1, for all II. (17) 

It then follows from Eqs. (12)-(17) and the definition of Em{~v} that for such a 
state, to within terms of relative order LL-I+~, we have 

A<-@ - C pY4AY) a BQ-l C’ x;~C@~>~>, (18) 
Y ” 
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where the prime indicates that the sum runs over any subset of the totat set of A,‘s. 
The inequality (18) is of no great intrinsic interest; it serves merely to motivate 

our fundamental physical postulate, which we now introduce. We turn our attention 
to the subvolumes Vi and define operators in analogy with (9) 

so that obviously 

Since the subvolumes are completely equivalent, we have 

(&spo = 11-la(O) I . (21) 

We therefore define “fluctuation” operators analogous to the AV [Eq. (16)] 

A i s ,di - 12-la(0) ” ” ” . W) 

Note that in general the & do not commute with the total Hamiltonian, and there- 
fore the mean-square value of L&+ is not zero even in the ground state. 

Now we consider the system in a thermal equilibrium state in the appropriate 
limit. From general thermodynamic considerations we should expect that 

so that for the subvolumes Vi the condition analogous to (17) is fulfilled. (For the 
case n = 2, this can be verified directly from the formulas of the next section.) 
We therefore postulate for any thermal equilibrium state in the appropriate limit, 
an inequality analogous to (18) 

(the primed sum is taken over any subset of the A,). 
More precisely, we make the following postulate: 

lim 6 = 0. 
c-0 

(23) 

The inequality (24) is the keystone of all our subsequent results. Although we 
have perhaps succeeded in making it plausible from an intuitive point of view, 
it is not a rigorous consequence of any theorems of quantum mechanics or statistical 
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mechanics known to the author. In particular, it is important to realize that it 
cannot be obtained simply by comparing the subvolume Vi with the total volume 9 
and invoking the extensive property of the mean energy. This would be equivalent 
to breaking up the volume Q into subvolumes Vi and treating them as isolated 
volumes completely equivalent to Q apart from a scale factor, thus ignoring 
(among other things) the finite value of ((a,,“)2),, . To see why this will not work, 
we have to remember that the first corrections to Eq. (4) for finite fz are of order 
JF, I > 0 (usually I = l/3). Thus, if we imagine that we impose the same boundary 
conditions on the subvolumes Vi as on the volume 9 and then compare the relevant 
ground-state energies Eoi and E, , 

(E, - nEoi)/E,, - IZVT~ - li’d-3(z+1). 2 (25) 

On the other hand, as we shall see in the next section, the quantity E,(T) may be 
as small as of order Sh;4. In other words, we have neglected an effect which in the 
appropriate limit tends to zero slower than the one we are looking for. Physically 
speaking, we are trying to calculate the effect of the thermal long-wavelength 
fluctuations, and it is not apriori obvious that it is legitimate simply to superimpose 
this on the much larger effect of the corresponding zero-point fluctuations, which 
is assumed to be constant. 

We cannot therefore claim to have demonstrated the inequality (24) in any 
meaningful sense. Rather, we treat it as a general statement which we conjecture 
will be obeyed by all systems likely actually to occur in nature. To this extent 
we may hope it might have a status analogous to the third law of thermodynamics 
which has not (to the author’s knowledge) ever been proved in general either. In 
our case as well, the conjecture (24) must eventually be disproved, or tentatively 
established, by comparison with experiment for a wide range of systems. In Section 4 
we shall show that the conclusions drawn from it are consistent with the experi- 
mental evidence for a number of different types of system; we have not found any 
counterexample. 

We can simplify the formula (23) slightly if we include all interactions with 
external fields, etc., in the Hamiltonian. In that case for any given ir we have 
either y, = 0 (for quantities A, which are not rigorously conserved) or d(A,) = 0 
(for quantities such as the total particle number which are). Thus we can write (24) 
in the simpler form 

where E includes interactions with any external fields (which are assumed held 
constant as we vary 7). It is precisely this energy which is related directly to the 
entropy, which is what we calculate in the next section. 
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3. INEQUALITY FOR THE ENTROPY 

In this section we shall show that the assumption (25’) leads rigorously to a 
lower limit on the entropy of an arbitrary many-body system in the limit T -+ 0 
in terms of the correlation functions. We start by expressing the quantity xi (A^,i)2) 
in terms of the response functions [7] of the system. We first introduce Fourier 
transforms of the operators a,(r) 

A”(r) = CL~)/Q + 0-l C A,,eik.r, GN 
k 

D Ak” = 
s 

&2,(r) - ajo)] e-ik.r, (27) 

where the sum over k goes over values allowed by the usual periodic boundary 
conditions. Then we have [cf. Eq. (22)] 

& s 
s 

vi dr[,&(r) - aF)/Q] = ii-l 1 & j” dr eik’r. (28) 
k 

Let Ri denote the center of the subvolume Vi . Then (28) reduces to 

where 

(29) 

(30) 

Note that in the limit ] k 1 d -+ 0, we have 9(k) + 1 independently of the direction 
of k. From (29) we have 

F ((a,i)") = T LF2Vi2~,~(k) v(k') ei(k+k')'Ri(&,&v) 

= (vi/a) c 1 &)12(&&cv). 
k 

(31) 

Notice that since a(r) is a Hermitian operator, & and A-k” are Hermitian 
conjugates. Substituting (31) in the definition of E,(T) [eq. (23)] for a given choice 
of the subset of A, over which the summation is taken, we find 

&m(T) = 4 -&(;'fi-'~ 1 g)(k)j2d(&+&,,). 
Y k 

(32) 

Consider now a general thermal average of the form 

d(C+C) = Tr(&c+c) - Tr(p^o(?+c), (33) 
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where & is the density matrix corresponding to thermal equilibrium at tempera- 
ture T. Let us introduce the spectral density 

x’;.‘“‘(w) = n-Z-l c e-BE, c I(n / C j m)l”{8(En - Em - ho) - 8(E, - Em + ho)}, 
nt n 

(Z = 1 e?“, /3 = l/k,T). (34) 
m 

x;(“)(w) is just3 the imaginary part of the time Fourier transform of the retarded 
response function [7]. We notice for future reference that it obeys the sum rules 

2 m - 
s = 0 

w~;‘~‘(w) dw = ~ ; ([C, [C+, HI]), (35) 

2 
s 

w  x;'"'(w) - 
rr 0 

~ &, = X(c) 
w  T’ (36) 

where x(Tc) is the temperature-dependent static “susceptibility” corresponding to 
the quantity C, i.e., the (adiabatic) change in (C) induced by a perturbation AC+, 
divided by A, in the limit h --j 0. With the above definitions it follows from the 
fluctuation-dissipation theorem that 

d(C+C) = j O(C)\” + ; j” (coth(@w/2) X;(~)(U) - x,“‘“‘(w)) dco. (37) 
0 

We now apply this equality to the quantity E,(T) [eq. (32)], taking C to be 
the operator PII”AkV . We denote the corresponding spectral density by x:(k) w : r). 
To avoid complications we shall omit the term k = 0 from the sum; this is legi- 
timate since we are interested in obtaining a lower limit on the quantity E,(T) and 
the contribution of the k = 0 term is clearly nonnegative. For all other values of 
k we have A(&,) = 0. Then replacing the sum by an integral in the usual way, 
we find 

Q 
fFm(T) >, f&#-) = (27T)3 __ F’ j d3k I &)I2 L(k 0, (38) 

where 

AJk, T) = ; x;l; jm [coth(@w/2) x;(k, w : T) - x;(k, w  : 0)] dw. (39) 
0 

Finally, combining the inequalities (25’) and (38) and recalling that according to 

3 Apart possibly from a numerical factor depending on the convention used for the definition 
of the response function. We follow the conventions of Ref. (7). 
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our definition of (E) we have cl(E) = QTdS, we obtain* the required lower limit 
on the entropy per unit volume S(T) 

or more strictly, 

S(T) 2 (1 -- rl) &,U-1, !i-y 7 = 0. (41) , 

This may be regarded as the first major result of this paper. It takes a simpler 
form if we can neglect the temperature dependence of xt(k, w : 7’): in that case 
we find 

This then is a lower limit on the total entropy in terms of the zero-temperature 
correlation functions of the system. 

That it is legitimate to neglect the temperature dependence of x:(k, w  : T) is 
in fact a very weak assumption. The additional term contributed to I?‘,,(T) by this 
temperature dependence is proportional to L,(T) ~- LB(O), where 

L,(T’) = j d3k jr dw j rp(k)12 coth(@w/2) x"(k, w  : T') (44) 

(where T’ is in general not equal to T = I/k&. [This follows from (39).] All 
that we need to suppose is that for sufficiently small T and T’ < T we can write 

40’) 2 -WNl - aT’)> (45) 

where 01 is some constant independent of ,8, and also of the subvolume dimension d 
which enters L, through its appearance in v(k) [Eq. (30)]. Now we can show that 
in the appropriate limit L,(O) is at most of order Adp4 where A is a constant 
independent of /I 4; consequently, if the inequality (45) holds, the quantity 
L,(T) - L,(O) is either positive or, if negative, at most of order Td-* N h;1d-4. 
Hence it can subtract from the quantity S,(T) at most a term of order dp4 In&/b), 
where b is a constant. But we shall see that the terms kept in (42) are at least of 
order ham, and hence from the last condition involved in the definition of the appro- 

* That the inequalities (25’) and (38) do in fact imply (40) is possibly not quite obvious at first 
sight, the result is most easily obtained by integrating the expression for S(T) by parts, using 
(25’) and (38) and then reversing the integration by parts. 

4 This follows by arguments analogous to those used in the Appendix. 
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priate limit [Eq. (S)], we can drop the terms arising from the temperature 
dependence of x”. Thus the validity of (42) requires only the very weak condition (45) 
in addition to our fundamental postulate. We shall, however, be able to prove some 
useful results without involving the assumption (45); in particular, we do not need 
to invoke it as an assumption in the next section, since for the cases discussed 
we know that xlr is temperature independent to a sufficient approximation. 

4. ILLuSTR.~TI~NS FOR SIMPLE SYSTEMS 

In this section we shall apply the inequality (40) to some simple systems where 
some of the low-temperature correlation functions are known explicitly. We 
include both real systems (e.g., liquid helium II) where both the correlation 
functions and the entropy are known experimentally, and model systems (e.g., 
the weakly interacting Fermi gas) for which both can be rigorously calculated. 
We shall show that in all cases considered the known results are in agreement with 
the inequality (40). In addition, we demonstrate the interesting result that any 
system which has a macroscopic variable which at low temperatures obeys a 
temperature independent diffusion equation, must have an entropy which tends 
to zero no faster than T, irrespective of the microscopic nature of the diffusion 
process. 

Except where explicitly otherwise stated, the correlation functions for the systems 
considered in this section are temperature independent to a sufficient approxi- 
mation, and we can therefore rigorously replace (40) by (42). 

1. System with Hydrodynamic Sound Waves 

Our first example is a more or less trivial one: a system for which the density 
response function for small k and T is adequately derived from hydrodynamics, 
(so that weakly damped sound waves are good elementary excitations of the system). 
The explicit form of the spectral density for the density response function (that 
corresponding to &i = fi, the total particle number) for small k and w(w 3 0) 
is then [8] 

x;;(k, 0) = zp 
2 m2cs2 

. c,kS(w - c,k), (46) 

where c, is given by Eq. (2) and in this case is, of course, indeed the speed of 
longitudinal sound. The experimental evidence from neutron scattering [9] for 
He II indicates that this form of xL(k, w) is applicable there to a good approxima- 
tion. The corresponding static “susceptibility” xN is given from Eqs. (13), (5) 
and (6) by 

(47) 
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We also consider among the set A$: the three components of particle current fb, . 
In this case the susceptibility corresponding to each is 

Since the system is isotropic, the (imaginary part of the) current-current corre- 
lation function has the general form 

x;,(k, w> = k,2xXkw) + (k2 - &x2) XXkw), (49) 
where the “longitudinal” and “transverse” contributions x;r, X& are both non- 
negative, It follows from the continuity equation that &(k, W) is related to the 
density correlation function xi by 

xh(k, ~1 = (4k2) xi& w). (50) 

Substituting Eqs. (46)-(50) and (43) into the inequality (42), taking the sum 
over v to include the contributions from density and current fluctuations and 
dropping the (nonnegative) contribution of x[;$ , we finally obtain 

(51) 

The term in square brackets vanishes exponentially for /3hc,k s kX, > 1; 
since our limit involves that AT/d + co, we can put the cut-off factor 

g?(k) = n sin(kid/2)/(kid/2) 
i=O,V*Z 

equal to 1 everywhere. 
Then we find 

s(T) 3 & @fic&” * 4~ jz /A -- x2 In(1 - e-x)/ dx 
0 

= $ (pit,)-3 jy g 

- 2n-2 kB4 ~3 E ,y,(~). -_~ 
45 (/ic,)3 (52) 

Thus we have reached the unsurprising result that a system whose density corre- 
lation function shows temperature-independent hydrodynamic behavior must 
have at least the “Debye” entropy. This result can actually be slightly strengthened: 
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it can be shown that it follows if the behavior at zero temperature is hydrodynamic, 
irrespective of the form at finite temperature (see the end of Section 5). 

2. The Ideal Fermi Gas 

In this case &k, CO) is given for small k and w by the expression 

x;;(k, w) = $ (z)(s) O(uFk - w), (53) 

where (dn/dc) is the density of states (of both spins) per unit volume at the Fermi 
surface, z+ is the Fermi velocity and 19(x) the usual step function. The static 
susceptibility is simply 

xN = (dn/dc). (54) 

We substitute this in the inequality (42) and take the sum over the density 
fluctuations only. After some simple transformations we obtain 

ks 1 
‘dT) = 2Qn)3 d3f ~ _ j d3u I u j--l J z (yj j:,‘“’ f(x) dx, 

* I 
(55) 

f(x) = -& - ln(l - e-“), (56) 

where 

f = (hF/dkBT) = 43 (X,/d) (57) 

[cf. Eq. (7); for a free Fermi gas, c, = 33%r]. The appropriate limit involves 
that t + co; in this limit the double integral in (55) is independent of e and we 
therefore get 

S,(T) = Ak,d-3f-1 = t&j ke2T, 

where A is a numerical constant of order unity. This result is slightly curious in 
that it depends on d, the dimension of our subvolumes, which is an arbitrary 
construct and has no physical significance. To interpret the result, we note that 
our basic inequality (41) implies that for any given large but finite value of d the 
quantity T(d, X, , Z) is less than some constant Q as X, and I tend to infinity; 
moreover, by choosing d large enough we can obviously ensure that Q, < 1. Thus, 
Eq. (58) means that there exists a term in the entropy of an ideal Fermi gas which is 
(at least) linear in T, although we cannot in this case put an explicit lower bound 
on the coefficient. If we were to assume that T,, does not become of order 1 until 
d becomes comparable with the characteristic length of the system (the interparticle 
spacing) we should get a coefficient which agrees with the exact result within a 
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numerical factor [that is, it is proportional to (&/de)]. We note, by the way, that 
the inequality following from (58) for S(T) could be strengthened by a factor of 4 
by considering the spin fluctuations as well as the density fluctuations. 

Having examined the case of the ideal Fermi gas, it would be natural to go on 
to the ideal Maxwell-Boltzmann and Bose gases. However, in both these cases 
the static compressibility is singular at T = 0(x;’ = 0) and hence the inequality (3’) 
is trivially fulfilled. 

3. Normal NeutraI Fermi Liquid 

For this model (which is generally believed to give a good description of liquid 
He3 at low temperatures) &k, w) is given by the general form [2] (for small k 
and UJ) 

x;;(k, co) = $ (f&(s), s = W/k&. (59) 

The function f(s) depends on the Landau parameters Fz and in general cannot 
be written down in a closed form. However, it has the property that for any finite 
set of values of Fz we can write 

f(s) 3 cs for 0 < s < s, , (60) 

where C and s,, are some dimensionless constants. Proceeding as above, we obtain 
the result 

where A’ is a numerical constant. Thus, we predict a linear term in the entropy, 
in agreement with experiment. 

It should be emphasized that in this case (as in the case of the ideal Fermi gas) 
we can obtain other linear terms in the entropy by including other values of 
&t (e.g., the components of spin S and particle current J (in the latter case, it is 
the “transverse” current fluctuations which give a linear term). Thus we can obtain 
a linear term by this technique even for the case of a charged Fermi liquid, where 
the density correlation function xk has no low-lying spectral weight at all [7]. 

4. System Obeying a D$iision Equation 

As our final example we consider a system in which some macroscopic variable 
C(r, t) obeys a diffusion-type equation 

$ (r, t) = DV2C(r, t). 

We assume that both the diffusion coefficient D and the associated static suscep- 

595/72/I-7 



96 LEGGETT 

tibility xe tend to a finite limit as T --f 0. Such a situation is characteristic of, for 
instance, spin diffusion in a metal. For notational simplicity, however, we shall 
assume that it is the particle density which obeys Eq. (62) (as in a hypothetical 
neutral gas scattered by static impurities); the generalization to the case of diffusion 
of spin or other locally conserved quantities is obvious. 

In this case the form of XX is (cf. Ref. [S]) 

In this case, it is natural to define, instead of A,, a different “characteristic thermal 
wavelength” A,’ by 

h,’ = (DH/kBT)1/2 (64) 

and replace A, by A, in the definition of the “appropriate limit”, Eq. (8). (Since 
d is an arbitrary construct, this does not amount to making any new physical 
assumption.) Then after some changes of variables we find from (42) 

where 

g(x) z --& - + In(l - e-%), 

(66) 

a s j3LiDd-2 = (X;/d)2. 63) 

In the appropriate limit, 01+ co, we easily see that the main contribution to the 
double integral comes from the region ] u 1 - 1, z 2 a-l, and is proportional to 
CX-~. Hence we get finally 

S(T) > __, a ( > & kB2T, (69) 

where A” is a numerical constant. 
Thus, for any system possessing a conserved macroscopic variable which obeys 

a temperature-independent diffusion equation at low temperatures, we expect 
an entropy which is at least linear in temperature. This is interesting, since at first 
sight one would think that scaling arguments would lead to a contribution from 
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the diffusion modes which would vary as T3j2. Equation (69) is of course consistent 
with the result of exact calculations for a free Fermi gas scattered elastically by 
impurities (in this case the entropy depends only on the density of single-particle 
states at the Fermi surface, which is not qualitatively affected by a dilute concen- 
tration of elastic scatterers). The result is also consistent with the experimental 
specific heat of dirty metals [in this case, it is the spin rather than the particle 
(charge) density which obeys a diffusion equation]. However, it should be noticed 
that in the general case, if we are trying to use (69) to put a lower limit on the 
coefficient of the linear term, it is illegitimate to take d shorter than the longest 
characteristic length of the system, which in this case is the mean-free path I; this 
is because, for k > Z-l, the form of x” certainly differs substantially from Eq. (63). 
Thus, in general, we can only say that a system obeying a diffusion equation will 
have an entropy of at least yT, where the constant y is at least of order 

(my - (WV)-1, 

where ii is some characteristic particle velocity. 

5. MINIMUM ENTROPY FOR AN ARBITRARY SYSTEM 

In this section we turn to the question of the constraints imposed on the low- 
temperature entropy of an arbitrary many-body system by the static susceptibilities. 
We shall show that every independent locally conserved quantity must give rise to 
(at least) a T3 term in the entropy, with a minimum coefficient which for quantities 
such as the particle and spin density may be determined from the static susceptibility. 

We consider a general operator &i of the type considered in Section 2. Then, 
according to (42) and (43), this contributes to the entropy a term at least equal to 

According to Eqs. (35) and (36), the nonnegative function x:(k, w  : 0) obeys 
the sum rules 

2 m - 
i = 0 

wx;(k, w : 0) dw = -fi-“<[a,, , [&xv 7 @II>, (72) 

2 m - 
s lr 0 

w-lx”&, w : 0) dw = xkv y (73) 
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where xkv is the static susceptibility. We shall assume that as k + 0 the quantity 
XkV tends to xy defined by Eq. (1 3)5, and in fact that 

Xkv = xvi1 + uo(k”>l~ n > 1. (74) 

We further notice that since a,(r) is a locally conserved quantity, the right-hand 
side of Eq. (72) must be proportional to k2 for small k. We therefore define 

!,$ - fi2k2 
I 

1 <@k, , LA-k” , Allij = 

and a quantity with the dimensions of a velocity 

C” = (!9X”)1’2. 

Now we introduce the dimensionless quantities 

s = w/c,,k, 

<,(k, s) = $ x;(k, w : 0). 

In terms of these we have 

- 

5” 3 0 

where 

01 = ,Bic,k. 

The sum rules (72) and (73) take the simple form 

j-,” sL&) ds = 1: s-l&) ds = 1. 

It is shown in the Appendix that Eqs. (79) and (81) imply the result 

Qdk T) > i kB I *  -  W -  e-91. (82) 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

The right-hand side of (82) falls off exponentially in the limit k + cc; hence after 
substituting it into (70) we can take y(k) [Eq. (30)] equal to 1 for all k. 

6 In the case of superfluid systems we must be careful if Y indicates a Cartesian component of 
the particle current: for a given component XkV depends on the direction of k,and the “transverse” 
part does not tend to xv as k 4 0. However, with a little care this case is easily included. 
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Then we have finally [cf. Eqs. (51) (52)] 

(83) 

Thus, each independent0 locally conserved quantity gives rise to a term in the 
entropy with the minimum value (83) determined uniquely by the quantity c,; 
in fact, the total entropy per unit volume S(T) obeys the inequality 

S(T) > ;. g ke C’ (;$)“. 
Y Y 

This is the second principal result of this paper. 
Now, we may if we wish restrict the sum over v to a single quantity, the particle 

density. In this case Eq. (72) is just the well-known longitudinal sum rule and so 
in Eq. (75) we have f, = p/m2. Further, xN is related to the bulk modulus K 
defined in Eq. (5) by Eq. (47), and so c, for this case is identical to the “speed of 
hydrodynamic sound” c, defined by Eq. (6). Then comparing the inequality (84) 
with the “Debye” entropy S,(T) [Eq. (l)], we finally find 

S(T) 2 t&,(T). (85) 

Thus, we have found a lower limit on the entropy of an arbitrary many-body 
system which is half the “Debye” entropy as defined in terms of the macroscopic 
compressibility by Eqs. (1) and (2). For a translationally invariant system at least 
one would expect intuitively that it should be possible to improve the factor & to 1. 
However, this more difficult than it looks at first sight. Suppose that, as in Section 4, 
Part 1, we sum over the current fluctuations as well as the density fluctuations. 
Using Eqs. (49) and (50) and dropping, as above, the “transverse” current fluctua- 
tions, we find 

x (1 + $7 Ldk, s> ds (a = #lfic,k), (86) 

where cN is the normalized density correlation function, which obeys the sum 
rules (81). We have found no way of proving that the right-hand side of (86) is 
at least equal to S,(T) without involving some extra assumption about & . The 
most general such assumption which will allow a proof that S(T) 3 S,(T) seems 
to be that &,,(k, s) is a function only of s, i.e., that Qk, w) is a function only of 
the ratio w/k in the limit k, w -+ 0. (“normal scaling”). If this is so, we can do the 
integral over k first and using the formulas of the Appendix, get the required 

6 “Independent” have means such that the cross terms in the second of Eqs. (12) vanish (see 
discussion of that equation). 
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result. Although the assumption of normal scaling seems to hold for all known 
translationally invariant models which have a finite compressibility at T = 0, 
we have not found a proof that it must be so for an arbitrary system. 

To conclude this section, we notice that if the system is translationally invariant 
and the density fluctuation spectrum at zero temperature is hydrodynamic, then 
we can prove the result S(T) 3 S,-,(T) even without assuming the inequality (45). 
In fact, when summed over the density and “longitudinal” current fluctuations, this 
inequality follows from formula (A12) of the Appendix;’ we do, of course, have 
to make the extremely weak assumption that the “transverse” contribution to 
Ll,(k, T) does not actually decrease with increasing T. This is trivially true for 
superfluid systems with vanishing normal density at T = 0. 

6. SYSTEMS WITH SHEAR 

It is clear that the inequality (85) cannot be valid in general for a solid, if SD is 
defined from (1) and (2) by taking K-l in (2) to be the bulk modulus (i.e., the 
modulus for isotropic compression). To see this, recall that for an ordinary harmonic 
solid whose elastic constants are restricted only by the requirements of symmetry 
and stability we can always choose the constants so that the bulk modulus is 
arbitrarily small, while the velocities of sound remain greater than some fixed 
finite value. Then an elementary calculation shows that the bulk modulus cannot 
place a lower limit on the entropy. We shall now show that for an isotropic solid 
the inequality (85) remains valid provided that we interpret K-l in Eq. (2) as the 
longitudinal elastic modulus C,, . 

For simplicity of presentation we first consider the ordinary classical theory of 
an elastic solid. In this case the elastic strain is described by a vector field u’(r); 
we can separate u’ into an irrotational part u and a residual part, which contributes 
nothing to the elastic energy since it corresponds to a local rotational displace- 
ment. For a general solid with cubic symmetry the energy is specified by three 
elastic constants C,, , C,, and C,, according to the formula 

E = s U(r) dr, (87) 

U(r) = i Cl1 [(-Z$)” + (-Z$)” + (-!$)‘I 

+ 2c4, [(S)’ + (2)” + (z$)“l 

+ Cl, [($+g-) + &-)(f$) + ($($)], 0-w 

’ It is simplest in this case to work directly from Eq. (38). 
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or, in other words, 

(89) 

We shall impose the condition that the solid is isotropic; since the only quantities 
invariant under rotation are 

g (g)“? c (2)(S) = P .u>” w’ (90) 

the condition of isotropy implies 

c,, - c,, - 2c,, = 0 (91) 

-a condition which can also be found from the isotropy of the phonon spectrum. 
Hence (89) takes the form 

U(r) = GC,, - C&7 - 4” + 1 C,, (-f$)“. 
IL” 

(92) 

Now it follows from the irrotationality condition on u and the fact that the dis- 
placement at the boundaries is zero8 that 

Jdrz(g)I = Jdr(V.u)2. 
PY 

(93) 

Consequently, the total energy takes the simple form 

E = &Cl, s 
(V . u)” dr. (94) 

Furthermore, the change in the particle density from its equilibrium value Q(r) 
is related to u by 

tip(r) = -V . u(r) (95) 

and hence we finally get 

E = +C,, s [Sp(r)12 dr. (96) 

8 This may not strictly be true, but the correction term is proportional to the surface area 
rather than the volume and may therefore be dropped. 
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Now for the static properties of the total system we need not of course invoke 
the idea of an elastic continuum; all we need to suppose is that we can define the 
displacement u of a given point on the surface of the solid. Then if we consider 
a homogeneous deformation and write dpu, for the difference in displacement along 
the v axis of the faces perpendicular to the TV axis, we have in analogy to (18) 

where 

Buy E iii' + . 
i ) (98) 

The B,,'s therefore have the right properties to be counted among our set of 
operators &z in Section 2, and we therefore define them for our subvolumes Vi 
(taking, where necessary, U, to be an average over the appropriate surface) and 
postulate in analogy to (23) 

We could of course add terms involving other independent variables A, such as 
the spin if required. 

Now, however, we can follow through an argument exactly analogous to the 
one developed above for the continuum model, and show that provided the dis- 
placement at the walls is neglected we can rewrite (99) as simply 

where SNi is the fluctuation of the number of particles in the i-th subvolume. From 
here on all the argument of Sections 2-5 goes through provided only that the 
“susceptibility” xN is everywhere replaced by C,;‘. [We notice that for k # 0 it is 
indeed C,, which appears in the sum rule (73).] 

Thus, we finally obtain the result that the inequality (85) is valid also for a system 
with finite shear modulus, provided that the quantity Sn is defined from (1) and (2) 
with K = C&l. In summary, we have proved (given our basic assumptions about 
the fluctuations of large subvolumes) that the entropy of an arbitrary one- 
component many-body system, solid or liquid, is at least half what we would 
calculate by assuming the existence in it of longitudinal phonons whose speed is 
determined by the appropriate macroscopic compressibility. 
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As an aside, it is worth mentioning that we have so far been unable to generalize 
the above results to the case of a multicomponent system. The difficulty here is 
that the usual bulk modulus is defined in terms of the change in energy with volume 
at constant relative concentration of the components; however, if large subvolumes 
are subjected to rarefaction and compression it may be energetically advantageous 
to them to change the relative concentration too. If therefore we wish to obtain 
an inequality in terms of the usual bulk modulus, it is essential to consider the 
effect of concentration fluctuations as well as those of the total density, and when 
this is done it is not at all clear whether we can prove Eq. (85). 

7. CONCLUSION 

In this paper we have demonstrated the following results for an arbitrary 
isotropic one-component system in the limit V+ co then T + 0, whether or not 
it has a finite shear modulus: 

(1) Given our fundamental assumption (23) about the fluctuations of large 
subvolumes, the entropy is related to the correlation functions of locally conserved 
quantities A, by the inequality (40). 

(2) With the additional very weak assumption (45), a lower limit (42) can be 
found for the entropy in terms of the zero-temperature correlation functions alone. 

(3) Provided only that the relevant static susceptibility tends to a finite limit 
as k + 0, each independent locally conserved variable gives rise to a contribution 
to the entropy which is at least a constant times T3. In particular 

(4) The entropy of an arbitrary large system must be at least one-half of the 
entropy which it would have if it could sustain longitudinal phonons whose velocity 
is determined by the usual hydrodynamic formula. If the system is translation 
invariant and the correlation functions obey “normal scaling” the factor of one 
half in this statement can be canceled. 

At first sight these results may seem somewhat unsurprising. However, to the 
best of the author’s knowledge they are the first lower limits on the entropy (and 
hance on the specific heat) which have been derived independently of a microscopic 
model. They may therefore be used to check the consistency of specific-heat 
measurements with other types of experimental data. As a practical example, it 
should be possible to test whether data on the low-temperature specific heat of a 
given amorphous antiferromagnetic is compatible with susceptibility measurements, 
even though no very good microscopic model is yet available for such a system. 

Finally, we notice that the result (42) with (43) may be put in a rather intuitively 
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appealing form. For, if we define a weighted normalized spectral density #z(k, W) 
by [cf. Eq. (36)] 

then the expression Q,(k, T), which is the contribution to the entropy from a fluctua- 
tion of wave vector k, takes the simple form 

Qdk, T) = hb j,* b(w) + 1) l@(w) + 1) - n(w) ln doI1 #:‘(k, w> dw, 
(102) 

where n(w) is the usual Bose distribution function. 

APPENDIX 

We shall demonstrate some inequalities needed in Section 5. We consider a 
function [(s) 3 0 defined for 0 d s < cc and obeying the sum rules 

jr s&s) ds = j,” s-‘&s) ds = 1. (A.1) 

If we define those moments which are finite by 

K, = s m PC(s) ds, 
0 

then it obviously follows that 

K,,, + K-1 - 2Kz 3 0, 

and so in view of (A.l) we get by iteration of (A.3) 

K, < 1 < K, < K3 ,..., 

K, < 1 < K-, < Km, ,... . 

Consider now the quantity9 

64.2) 

(A.3) 

64) 

64.5) 

G4.6) 

g The essentials of this proof are due to Dr. J. Plaskett. 
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We write this in the form 

L(s) = --J-- ems - 1 
- $ In(l - e-as). 

Now f (s) is concave upwards, and hence 

m> >.fxl> + (3 - l).Lx’(l>* 

Therefore 

But f=‘( 1) is always negative, and so using (A.4) we conclude 

I(a) >fa(l) = & - + ln(1 - e-s) 

which is the result needed for the proof of (82) in the text. 
We can also demonstrate the inequality 

coth(ols/2) {(s)(l + s”) ds > 2 coth(cu/2). 

The proof is similar to the above one: we write J in the form 

(A.8) 

(A.91 

(A.lO) 

(A.11) 

(A.12) 

44 = J,” S-V + s”> g,(s) ds, (A.13) 

g=(s) = s coth(ols/2). (A.14) 

The function g=(s) is concave upwards, but now g,‘(s) > 0. On the other hand, 
we have from (A.2)-(A.5) 

s O3 s-l(l + s2)(s - 1) C(s) ds > 0, 
0 

(A.15) 

so that the result (A.12) follows. 
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