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l. Introduction 

My aim in these lectures will be to describe some o.f the more interesting and 

import an t aspects of criticai phenomena. I will, in particular, be discussing the 

ideas of scaling and cri ti ca l exponents and emphasizing the idea of uni versa! i ty. 

Following this I will be dealing with the microscopic formulation of statistica! 

mechanics and certain series expansion methods that bave been extensively used in 

the past. These are no t only applicable to criticai phenomena, but are us_eful in 

other areas of physics and engineering as well. The main emphasis and focus of the 

lectures will, however, be on the collection of rather subtle ideas which underlie 

renormalization group theory and its applications to criticai phenomena. 

approaching them in roughly two stages: from the microscopics will 

I will be 

come some 

introductory concepts; then I will be describing the generai renormalization group 

ideas which are essentially topological in nature. I will be aiming, in describing 

these generai concepts, at applications beyond criticai phenomena. They bave for 

example been used to handle the Kondo problem and to study various aspects of field 

theories. Finally, I will discuss some of the first practical successes of the 

renormalization group, based on the so-called "epsilon expansions". These 

expansions are generated in terms of the parameter E = 4-d, where d is the spatial 

dimensionality of the physical system. They were some of the first sweet fruits of 

the renormalization group ideas! 

What is the task of theory? It is worthwhile, when embarking on theory to bave 

some viewpoint as to what theory is. There are different opinions on this 

subject. Some people feel the task of theory is to be able to calculate the results 

of any experiment one can do: they judge a theory successful if it agrees with 

experiment. That is no t the way I look a t a theory at all. Rather, I be lieve the 

task of theory is to try and understand the universal aspects of the natura! world; 

first of all to identify the universals; then to clarify what they are about, and to 

unify and inter-relate them; finally, to provide some insights into their origin and 

nature. Often a major step consists in finding a way of looking at things, a 

language for thinking about things -- which need not necessarily be a calculational 

scheme. This aspect of renormalization group theory, which I view as very 

important, is underplayed in a number of articles and books on the subject. 

"Shapes" are aspects I often regard as important. To make an illustrative point 

here, the geometrica! properties of the circle have been known for a long time, and 

we tend to take them for granted, The ratio of the circumference to the diameter is 

called ~. which is only the first of many Greek letters that will be introduced in 

these lectures! Its value, which today we know as 3.14159265358 ... was, from very 

early times, felt to be the same for all circles; i.e., that it was a universal 

property. This is true if space is Euclidean; and, to a very high degree of 

accuracy, the space we inhabit is, indeed, Euclidean. The value of this ratio is of 

course of great interest. The Bible has an unambiguous statement 1 that the value of 
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w is 3, although the people to whom that is attributed probably knew that it was not 

exactly equal to 3. This "Biblica!" theory is the analogue to the so-called 

"classica!" theory of criticai exponents that will be referred to frequently in 

these lectures. we know that the Ancient Greeks already had very good inequalities 

for w. Of course, the numerica! value of w is now known to very many decimai places 

indeed, and there are numerous series expansions which converge to the exact value, 

such as 

(1.1) 

Also, there are explicit formulae that relate w to the other transcendental numbers, 

the most famous being 

(1. 2) 

In a similar way, in the theory of criticai phenomena there is a set of 

important numbers, the criticai exponents, and they are also believed to be 

universal in character. In these lectures evidence will be presented to show that 

this is so. In addition some formulae, in the form of series expansions, bave been 

derived for these criticai exponents, but, so far, only the first few terms in the 

expansions are known. Also, while the expansion (1.1) for w is convergent, the e:­

expansions for the criticai exponents are almost certainly not convergent in 

generai, unless they are treated in a special way. We will also see that there are 

a number of formulae like (1. 2) which relate the various criticai exponents to one 

another, although perhaps with not quite the mathematical rigor and generality of 

(1.2). 

These remarks mre or less sum up the attitude I will be taking towards the 

subject matter of these lectures. 

2. Criticai Phenomena in magnets and fluids: Universality and Exponents 

2.1 The gas-liquid criticai point 

The first criticai point to be discovered was in carbon dioxide. Suppose one 

examines2 a sealed tube containing co2 at an overall density of about 0.5 gm/cc, and 

hence a pressure of about 72 atm. At a temperature of about 29° C one sees a sharp 

meniscus separating liquid (below) from vapor (above). One can follow the behavior 

of liquid and vapor densities if one has a few spheres of slightly different 

densities close to 0.48 gm/cc floating in the system. When the tube is heated up to 
o 

about 30 C one finds a large change in the two densities since the lighter sphere 

floats up to the very top of the tube, i. e. , up in t o the vapor, while the heaviest 
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Fig. 2.1 (a) (p,T) diagram for a typical physical system; 
(b) corresponding plot of particle number density p versus T. 

The vertical "tie-lines" link coexisting liquid and vapor 
densities, and span the region of liquid vapor coexistence. 
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one sinks down to tbe bottom of tbe liquid. However, a spbere of about "neutra!" 

density (in fact "criticai density") remains floating "on" t be meniscus. Tbere is, 

indeed, still a sbarp interface between tbe two fluids, but tbey bave approacbed one 

anotber closely in density. Furtber sligbt beating to about 31° C brings on tbe 

striking pbenomenon of criticai opalescence. If tbe carbon dioxide, whicb is quite 

transparent in tbe visible region of tbe spectrum, is illuminated from tbe side, one 

observes a strong intensity of scattered ligbt. Tbis bas a bluisb tinge wben viewed 

normal to tbe direction of illumination, but bas a brownisb-orange streaky 

appearance, like a sunset on a smoggy day, wben viewed from tbe forward direction 

(i.e., witb tbe opalescent fluid illuminated from bebind). Finally, wben t be 

temperature is raised a furtber few tentbs of a degree, t be opalescence disappears 

and tbe fluid becomes completely clear again. 

"liquid" from "vapor" bas completely vanisbed: 

Moreover, tbe meniscus separating 

no trace of it remains! Al l 

dif f erences between t be two pbases bave go ne: indeed only o ne, qui te bomogeneous, 

"fluid" pbase remains above tbe criticai temperature (T "' 31.04° C). 
c 

Tbese phenomena are bes t interpreted in the pressure-temperature (p, T) phase 

diagram sbown in Fig. 2.1. Tbe first tbree stages are represented by tbe points a, 

b and c on tbe vapor pressure curve. Note tbat Te and Pc are tbe criticai 

temperatures and pressures respectively at wbicb criticai opalescence is observed. 

As tbe temperature is raised furtber, t be system follows a contour of constant 

overall density (tbe "criticai isocbore"). Tbe wbole process is completely 

reversible. Significantly, it is possible to go from liquid (point l) to vapor 

(point 2) eitber smootbly via a route along wbicb tbe properties of tbe fluid always 

cbange smootbly and continuously, or tbrougb t be va por pressure curve, a t whicb a 

first order transition takes place witb a discontinuity in density, internai energy, 

etc. Any point inside tbe sbaded region of Fig. 2.l(b) corresponds to liquid and 

vapor coexisting witb one anotber. As tbe critica! point is approacbed tbe two 

densities, pliq(T) and Pvap(T) become closer and closer to eacb otber until tbey 

matcb at T = Te. 

2.2 Universal bebavior 

One finds tbat tbe actual variation of pliq(T) and Pvap(T) is close to 

universal for gases sucb as argon, krypton, nitrogen, oxygen, etc., in tbe sense 

t ba t if tbe temperature is normalized by t be criticai temperature, Te, and t be 

density by tbe criticai density, pc' tben tbe data for tbe different gases all fit 

very nearly on tbe same coexistence curve. Tbe sbape of tbis coexistence ~ will 

be one of tbe first objects of our investigation. Tbe simplest curve wbicb bas tbe 

same basic sbape as tbe coexistence curve grapbed as T vs p is, of course, t be 

parabola y = Ax2 • The assertion t ba t t be coexistence curve is parabolic (in t be 

criticai region) in fact represents tbe "Biblica!" or classica! tbeory of tbe 
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coexistence curve. At first sight, it seems to be a most natura! and unprejudiced 

starting point. But what really is the shape of this curve near Te? That is the 

question one must ask! 

To that end we introduce here a variable that will be greatly used, namely, the 

reduced temperature 

T-T 
t =T (2.1) 

c 

which measures the deviation of the temperature from critica! in dimensionless 

units. Now as T approaches Te from below, the difference between the liquid and gas 

densities, Puq and Pvap respectively, is going to vanish as, we might reasonably 

expect, some power fl of l t l . Thus we wri te 

Pliq -pvap- as T + T -. 
c 

(2.2) 

The exponent fl is the first of the critica! exponents that will be introduced in 

these lectures. It is the analogue of n because it directly describes the shape of 

the coesxistence curve. From the way the parabola is oriented in Fig. 2.l(b), we 

see t ha t the classica! or "Biblica!" theory prediction is simply fl=1/2. How does 

this compare with the value of fl measured in the real world? The experiments that 

have been done in this connection are some of the most precise experiments ever 

performed in Physics. A notable example is provided by the work of Balzarini and 

Ohrn3 who measured the coexistence curves for xenon and sulphur hexafluoride using 

very sensitive optical methods. These two fluids are obviously very different 

chemically but, nevertheless, their critica! behavior is found to be essentially the 

same. The data on the density jump 6p = pliq - Pvap span the range from t ~ 3 x 10-2 

down to 3 x 10-6 and on a log-log plot lie very accurately on two straight and 

parallel lines. This first confirms the power law behavior and then yields a value 

of fl which is quite close to 1/3. The precise value lies somewhere in the interval 

0.32 -- 0.34, perhaps closer to 0.32. Despite the experimental accuracy and the 

great range of the data one cannot, unfortunately, actually determine such critica! 

exponents to much better t han ±O. 02. We are certain now t ha t it is no t a simple 

fraction, or at least not a very simple fraction like 1/2 or 1/3! Clearly, 

therefore, the "Biblica!" value is quite outrageously wrong. Finally, in line with 

n being independent of the size of the eire le, it is found t ha t fl is al so qui te 

independent of the type of fluid; the same values are found for water, a highly 

associated liquid, for liquid metals, and for the 'quanta! liquids' helium three and 

four at their liquid-vapor critica! points. 
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2.3 Binary fluids 

Another type of system which has been much investigated is that of a mixture of 

two chemical compounds, say A and B, that at high enough temperature& are mutually 

soluble, but at lower tempera tures separate out into two phases as o! l separates 

from water, which we will call a and fl (see Fig. 2.2). There are a great many 

combinations that can be used: organi c liquida such as aniline and cyclohexane or 

carbontetrachloride and perfluoroheptane are favourites because the 1nterest1ng 

behavior occurs (under atmospheric pressure) at temperatures close to room 

temperature. The vapor phase is usually present, as shown in Fig. 2.2, but plays no 

essential role. The denser phase at the bottom could be, for example, A-rich, while 

the less dense one floating above !t would then be B-rich. As the temperature is 

increased a liquid-liquid criticai point or consolute point is reached and criticai 

opalescence is exhibited just as for a one-component fluid. Beyond this point only 

a single, homogeneous liquid phase exists. 

Va por 

8- r i eh phase 

Fig. 2.2 Illustrating phase separation in a binary liquid mixture of two 
chemical species A and B. 

Now what should one focus on instead of the density difference? We will use 
a symbols such as xA to denote the mole fraction of A molecules in the A-rich phase a 

and so on. As the criticai temperature is approached from below one observes that 

the composition difference between a and fl phases varies as 

(t + 0-). (2.3) 

The question is "Does fl have the same value as before?" The answer is an 
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unequivocal "yes" as can be seen from experiments on very many binary fluid systems 

(including molten metal mixtures). An interesting comparison has been published by 

Sienko4• He finds, for example, that on a normalized log-log plot the coexistence 

curve for CC14 and c7F14 shows a form which is almost indistinguishable from that of 

the liquid-vapor coexistence curve for co2. 80 t ha t a again lies close to 1/3. 

Sienko and coworkers also studied the metal-ammonia systems in which alkali metals 

Na, Li and Ca are dissolved in NH3• At first sight these mixtures appear to provide 

an exception to the a " 1/3 rule. For temperature& deviating from (below) Te by 

from 1% to 10% (i.e., t • 0.01-- 0.1) the coexistence curve on a log-log plot has a 

steeper slope than for other systems and, indeed, seems to conform to a a = 1/2 

relation as predicted by the "Biblica!" theory. But accurate data t ha t are taken 

closer into the critica! (or consolute) point fall clearly into Une with all the 

other systems: the slope changes quite rapidly around t " 0.007 to 0.009 and 

decreases to yield again a " 1/3. So we are forced to accept this universality of 

behavior, but we learn that the universality does not extend indefinitely out of the 

criticai region. Indeed it is really a matter of extrapolating in towards the 

critica! point if one wants to determine the true, universal, asymptotic behavior. 

So when I discuss critica! behavior it is always a matter of approaching close 

enough to the critica! point. It is worthwhile to embody this point in a formai 

definition of a critica! exponent which can then be used for more exact and rigorous 

theoretical arguments and analyses. 

2.4 Critica! exponents defined precisely 

Generally, when we say a function f(x) behaves like xA, or write 

f(x) - i as 

it will be taken to mean that 

li m 
x+ O+ 

ln[f(x)] 
lnx 

x+ 0+, 

• A. 

(2.4) 

(2.5) 

In this way we can avoid introducing a constant for the coefficient of ~ as would 

be essential if we wrote f(x) • AxA or f(x) « xA. At a more subtle level suppose we 

have a function such as 

(2.6) 

This does not vary as a simple or "pure" power law but rather has a "confluent" 

logarithmic singularity. From a theoretical viewpoint one can still use eqn. (2.4), 

and in this way one obtains a critica! exponent equa! to A. Thus even functions of 
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this type with more complex singularities are covered. One of the important 

contributions of renormalization group theory is that it reveals the circumstances 

under which such logarithmic factors should be anticipated. One must always expect, 

of course, that over any finite range there will be some correction terms: thus 

even for an asymptotically pure power law one will generally ha~e 

f(x) (2. 7) 

where the confluent "correction" exponent, a, may well be less than unity (although 

it must be positive for the form written to make sense). On a log-log p lo t 

corrections such as these can and do actually alter the slope and lead to erroneous 

values for measured criticai exponents. The most serious correction terms are those 

where a < l, the smaller the value of a the worse the problem. In fact, values of 

around 1/2 are expected on theoretical grounds in many real situations. This 

assertion reflects another valuable contribution of the renormalization group since 

it has enabled us to give a sensible estimate of the exponent a and to explain why 

this sort of behavior is what one should expect in most circumstances. 

There have been people in the past who have questioned whether nature really is 

required to conform to power law behavior near a criticai point. The evidence, 

bot h experimental and theoretical, is now compelling t ha t, apart from logarithmic 

factors in special cases and certain correction terms, power law behavior is the 

rule. One would have to be a brave scientist indeed to hold out against this 

conviction and this poi n t. Nevertheless there are stili those -- some would call 

them "cranks" -- who argue that perhaps the "Biblica!" theory is stili correct if 

one goes really close to Te, so that fl = 1/2 after al l! However, I am afraid that 

in science, new and more correct ideas often win out only after their opponents die 

or retire. Evidently many people are not as open to rational conviction by new 

thoughts, as might be desirable! 

Another problem that arises in the handling of experimental data is that the 

criticai temperature Te is, of course, not known in advance. Usually one treats Te 

in the expression t = (T-Tc)/Tc as a fitting parameter. When the data extends over 

severa! decades, the data close in to the transition point will sometimes be used to 

determine Te, while that further out then serves to determine the criticai 

exponents. Sometimes Te will be determined separately from both sides in similar or 

distinct experiments. All in all, great care has to be exercised when interpreting 

even the very best data if one is not to assign misleadingly small "error" estimates 

to parameters such as Te, fl, and the amplitudes A, etc. 
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2.5 Specific heats 

In 1963 Voronel' (then in the Soviet Union) and his coworkers5 made some 

historically important measurements of the specific heat at constant volume, Cv( T) 

of argon in the vicinity of its critica! point. More precisely, they observed the 

specific heat at constant overall density along the critica! isochore p • Pc· Below 

Te the system will, as seen, then consist of a mixture of vapor and liquid, and the 

proportions of the two will actually change as the temperature is varied. So this 

"specific heat" actually contains a latent heat contribution. Nevertheless that is, 

both experimentally and theoretically, the most appropriate function to measure for 

the study of critica! behavior. Now the "Biblica!" or classica! theory predicts 

that (I will not say "this" anymore) the specific heat merely has a jump 

discontinuity at the critica! point, i.e., <y<Tc-) t- CV(Tc+). Actually 

CV(Tc-) > Cv<Tc+) is predicted as indicated by the dashed curve in Fig. 2.3. 

Voronel' was the first one to do sufficiently careful and accurate measurements to 

show unambiguously that this was not so! On the contrary, Cv(T) rose up smoothly 

but very steeply on bot h sides of Te as sketched in Fig. 2. 3. Asymptotically the 

variation has the form 

(t+ O+), (2.8) 

where the specific heat exponent a has a value in the region of 1/8 to 1/9 for most 

fluide. Because of the small value of a, correction terms now assume much greater 

importance and make a hard to determine precisely. Also one might question whether 

Cv does, indeed, diverge to infinity, or whether it just has a sharp spike or cusp 

at Te. 

On this latter question microscopic models are able to provide us with some 

definite guidance. These models come in various shapes and sizes: but the most 

famous is undoubtedly the Ising mode!, which I will be discussing in more detail 

later in these lectures. Onsager's celebrated solution of the 2-dimensional Ising 

mode! in 1944 gave the specific heat as 

Cv(T) • A lnltl +finite "background" terms. (2.9) 

The singular behavior is carried mainly by the leading logarithmic term (although 

terms like tln l t l appear in the "background"). As is readily confirmed by 

application of the forma! definition (2.5), a logarithmic divergence corresponds to 

the limiting case of a+ O+. [Consider the function t (t)= <ltl-a-1)/a .] To draw 
a 

attention to the fact t ha t the logarithm is present, this case is usually reported 

as 

a • O (log). 
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Fig. 2.3 Sketch showing the variation of the specific beat, Cv(T), of argon and 
other fluids through the gas-liquid criticai point. The dashed curve 
represents the prediction of the classicsl (or "Biblica!") theories. 
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One small detail tbat Fig. 2.3 suggests one sbould take into account is tbat 

tbe specific beat does not mirror itself around tbe critica! point. Thus one 

sbould, properly, define two exponents: a' for T < Te and a for T > Te. Tbe 

convention is tbat primed exponents refer to T < Te and unprimed to T > Te (except 

wbere, like e, tbe definition makes sense only for T < Te). Nowdays it is ratber 

' well establisbed on botb experimental and tbeoretical grounds tbat a = a , so tbe 

distinction is often dropped unless one bas reason for being circumspect. 

Modern experiments on critica! specific beat obtain temperature resolutions of 

10-6 or 10-7 in t. Some of tbe beat experiments are tbose of Ablers6 on liquid 

belium at its lambda point, T).. = Te !! 2.18 K, wbere tbe norma! fluid becomes 

superfluid. Tbe transition is seen to remain sbarp down to a tentb of a 

microdegree. More recently Lipa7 bas pusbed tbe resolution still furtber down to 

only tens of nanodegrees. Tbe specific beat seems to continue rising down to tbese 

very small deviations from Te. 

It is wortbwbile asking tbe question at tbis point if, witb continuing 

experimental refinements, one can expect to observe tbe specific beat continuing to 

diverge indefinitely close to Te. Naturally, precautions must be taken to allow for 

gravity and otber small disturbing factors. However, ultimately tbe basic 

tbeoretical answer is "No,' tbe specific beat cannot increase without bound". The 

reason is tbat in tbe laboratory one would always be dealing witb a finite system, 

witb a finite number of atoms confined in a bounded region of space. A perfectly 

sbarp pbase transition can take place only in a truly infinite system, i.e., in tbe 

tbermodynamic limit wbere tbe system is infinitely large in extent but its density, 

pressure, and all otber intensive quantities are fixed and finite. However large a 

system is in practice, it will still be finite and, ultimately tben one will reacb 

tbe point wbere tbe specific beat singularity is seen to be rounded off. 

Experiments deliberately done on small samples certainly sbow tbese rounding 

effects. So in talking about a pbase transition one really sbould always bave in 

mind tbe tbermodynamic limit. 

Tbe specific beat anomaly at tbe lambda transition in He4 is now believed to be 

very close to logaritbmic. Tbus Ablers quotes a = a' : -0.02 ± 2 (tbe uncertainty 

being in tbe last decima! place) signifying tbat a is probably very sligbtly 

negative. Tbis suggests tbat tbe specific beat does not quite diverge to co but 

ratber comes up to form a sbarp cusp at wbicb point C(Tc) is finite but tbe slope 

(dC/dT)c is infinite. 

Similar bebavior is also observed at magneti c pbase transitions: a notable 

case being tbe specific beat of tbe ferromagnet nickel near its Curie or critica! 

point, Te. Magnetic systems are in many ways mucb simpler to tbink about 

tbeoretically because magnetic field H-o is a point of symmetry. One finds tbat tbe 

zero-field specific beat of nickel displays a sbarp cusp, but it is mucb lesa strong 

tban in tbe case of superfluid beliiDD or some of tbe otber fluid systems. In tbis 
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case, and that of other magnetically isotropic magnetic systems, one finds that a is 

definitely negative although still quite small say a = -0.10 to -0.15, high 

precision being again difficult to attain. 

2.6 The order parameter 

In the case of simple fluida the parameter of apparently central interest is 

the density, p. Following Landau's general conception of phase transitions, we name 

this special quanti ty the order parameter and denote i t generally as 'P. So for 

single-component fluida we write 'P • p. For fluid mixtures we saw that what 

mattered was the difference between the mole fractions, Ax, which measures 

differences in composition: so bere we bave 'P • Ax. For superfluid He4 , the 

crucial theoretical concept, which embodies our understanding of superfluidity, is 

an effective macroscopic wave function, w= w' +i w''· As a wavefunction this has 

both real and imaginary parta. While p and Ax are both simple scalar quantities, a 

complex number is beat thought of as a two-component vector. Thus the superfluid 

order parameter, 'l' • w, is a two-component vector which has the symmetry of a 

circle, i.e., can point in any direction in the complex plane. It is the phase of w 
which is in fact responsible for the existence and nature of superfluidity. In the 

case of ferromagnetism, there are various possibilities, but certainly it is the 

magnetization, M, which should be the order parameter. In the case of a magnet 

like nickel, the magnetization can point freely in any direction; i.e., nickel is 

spatially, highly isotropic; then the magnetization can be thought of as a three­

component vector M • <Mx, MY• Mz). 

In summary, we see that the order parameter, '1', has a tensorial character which 

may depend on the class of systems considered. Theoretically it is natural to 

distinguish between these various cases, and the renormalization group has enabled 

us to make this distinction meaningful and effective. In particular we often refer 

to n, the number of componente of the order parameter. Then we bave: 

n • l for simple fluida, binary fluida, uniaxial ferromagnets, binary alloys, 

etc. 

n • 2 for superfluid He4 and He3 + He4 mixtures, XY-magnets (easy plane 

of magnetization). 

n • 3 for isotropic magnets, etc. 

As regards values of the critica! exponents, none of which conform to 

"Biblica!" or classica! theory, there is found to be a subtle dependence on n. 

Specifically, one has a(n•l) "' 0.11, a(n•2) "' 0.0 and a(n•3) "' 0.14 :1: 4. Similar 
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slight differences are found for the criticai exponent ~, viz. ~(n=l) "' 0.32, 

~(na2) "' 0.34 and ~(n=3) "' 0.35 - 0.37. The n = 2 value applies to XY-magnets but 

the corresponding superfluid order parameter is essentially inaccessible to 

experiment. Clearly then, the symmetry or tensorial character of the order 

parameter is important. The t h ree cases described above are often referred to as 

Ising-like (n•l), XY-like (n=2), and Heisenberg-like (n=3). Larger values of n are 

not just of theoretical interest; they are also required for describing real 

physical systems, in particular various magnetic crystals of more complex structure 

and symmetry. 

2.7 Fluid-magnet analogy 

The close analogies that exist between fluids and ferromagnets are worth 

emphasizing, even though ferromagnets bave an intrinsic symmetry that makes them 

easier to think about. Conj ugate to the order parameter, 'l', in any thermodynamic 

system, is a "thermodynamic field" variable, h. In the case of fluid the pressure, 

p, has traditionally been treated as this conjugate variable, but often it is better 

to regard h as the chemical potential, ~· The pressure p or chemical potential ~ is 

the variable that directly allows one to alter the density (at constant 

temperature). The analogous variable for a magnet should therefore be the magnetic 

field H, which is the variable primarily coupled to the magnetization. Fig. 2.4 

illustrates clearly how far the analogy can be taken. In the case of the magnet, in 

the (h,T) plane, there is a Une of first order transitions separating the "up" and 

"down" ferromagnetized states; this line ends at the criticai (or Curie) point. The 

first order transition Une is analogous to the vapor pressure curve, but differs 

from it in one minor respect in that it is entirely confined to the H=O or T-axis. 

This, of course, is a consequence of symmetry under H + -H. In the ('l', T) plane 

there is a coexistence curve in both cases. Inside this curve the magnet breaks up 

into domains; this is analogous to gas-liquid coexistence in fluids. For the magnet 

the coexistence or "spontaneous magnetization" curve is symmetric about the T-axis 

while for the fluid this symmetry is apparently absent. Below Te the order 

parameter variation for the fluid is given by pliq - Pvap - l t l~ while for the 

magnet it is M0(T)- ltl~. where the spontaneous magnetization should be defined as 

M0(T) • lim M(H,T). 
H+ O+ 

(2.10) 

This careful definition of McJ(T) is neccessary because M takes different Umiting 

values depending on whether H=O is approached from positive or negative values. The 

specific beat exponent is also defined in an analogous way for the two systems, and 

so on. Thus while most emphasis will be placed on magneti c systems, analogous 

effects and similar results hold for other types of systems in nearly all cases. 
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Fig. 2.4 Phase and coexistence diagrams illustrating the msgnet-fluid analogy. 
Note magnetization corresponds to density and magnetic field to pressure 
or, better, chemical potential. 
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The question of how the perfect symmetry of the spontaneous magnetization curve 

is reflected in the less than fully symmetric nature of the fluid coexistence curve 

is a fairly subtle one. For the magnet the natura! field variable to take, because 

of the symmetry, is H. One suspects that for a fluid the most suitable variable by 

analogy should be 

(2.11) 

where p0 ' is the limiting slope of the vapor pressure line at Te. In this way h 

would measure the deviation from the limiting tangent (shown dashed in Fig. 2.4), 

which one expects might be the analogue of the H•O symmetry axis of the magnet. 

This is sometimes called a scaling axis. A remarkable feature of the coexistence 

curve is that the line of mid points between the liquid and vapor phases is 

surprisingly straight. Furthermore, one can clearly define two different exponents, 

Il_ and Il+, with respect to deviations below and deviations above criticai density, 

Pc• i.e., for the vapor and liquid sides of the coexistence curve. There is no 

obvious (or known) symmetry between liquid and gas that should tell us.!. priori that 

these two exponents should be the same; yet to an exceedingly high degree of 

accuracy they are identica! in valuel Somehow the system builds itself an 

asymptotic symmetry from a Hamiltonian which does not, in the first place, possess 

this symmetry at all. Again, the renormalization group is able to explain how a 

system is able to build up a symmetry on approach to a criticai point, and to decide 

when a symmetry can be built (or, on the contrary, when a weakly broken near 

symmetry of the Hamiltonian is amplified). 

2.8 Magnetic susceptibility 

Above Te the spontaneous magnetization of a ferromagnetic materia! is 

identically zero, but magnetization can be induced by applying a magnetic field, 

H. Fig. 2.5 illustrate& the type of isotherms observed. 

The isothermal susceptibility is defined quite generally as a function of H and 

T by 

(2.12) 

One usually measures, and is most interested in, the so-called initial 

susceptibility 

(2.13) 

which measures the slope of the magnetization isotherm at zero field (as shown by 
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M 

T=T. c 

H 

Fig. 2.5 Typical ferromagnetic magnetization curves (isotherms) above Te, at Te 
and below Te (for a scalar,Ising-like or n•l system). 

the tangente in Fig. 2.5). In practice one often drops both the superscript o and 

the adjective "initial" and just refers t o "the susceptibility". 

Clearly XT measures the ease of magnetizing a ferromagnet and hence is expected to 

grow large and, indeed, diverge at the Curie point where, after all, a ferromagnet 

essentially magnetizes itself! This divergence can be seen in Fig. 2.5: the slope 

of the criticai, t-Te isotherm is actually infinite at zero field. For theoretical 

purposes it is usually convenient to define the reduced 
l ideal ideal 

susceptibility x • xT xT , where xT is the isothermal susceptibility of an 

ideal paramagnet (with no spin-spin interactions). Evidently, x, which is 

dimensionless, measures the enhancement in magnetic responsiveness caused by the 

interactions, which are, of course, responsible for the ferromagnetic criticai 
id e al behavior. The analogous reduced susceptibility for a fluid is x • KT/~ , where 

K •! 
T P 

(2.14) 
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is the isothermal compressibility of the fluid and Krideal 1/p is the 

corresponding quantity for an ideal gas. Since, as explained, x measures the ease 

with which the order parameter is changed in response to the conjugate field, it is 

often known as the response function. (See also the lectures by A. L. Fetter). 

The divergence of x(T) at criticality is very strong and is characterised by an 

exponent y defined as expected via 

(t+O+; h = O). (2.15) 

Measured values of y are typically y(n=l) "' 1.23 -- 1.24, y(n=2) "' 1.31 --1.32 

and y(n=3)"' 1.35 -- 1.38. In the case of superfluid He4 , one does not know how to 

measure x: thus only the exponent a can be measured (of the thermodynamic 

properties we have defined). As can be seen, y has a small n-dependence, but in all 

cases deviates markedly from the "Biblica!" value which is simply y=1. 

Below Te the situation is more complex. Even at H=O there is a nonzero 

spontaneous magnetization, Mo(T). Nevertheless, (as mentioned), one can still 

define the initial susceptibility as the limiting slope of the magnetization curve 

when H + 0+. The temperature dependence of x, so defined, provides one with the 

further exponent y'. These last remarks apply, however, only to the Ising-like case 

of n=1. If n•2 or 3, so that a continuous (rotational) symmetry is present it can 

be shown theoretically, although experimentally it is not so easy to observe, that 

this limiting slope is infinite, so that xT(T,H) diverges as H+O+ for T < Te and the 

exponent y' cannot be defined in the usual way. 

2.9 Criticai isotherm 

The order parameter variation on the criticai isotherm is generated by fixing 

the temperature precisely at Te, varying the order field, h, and observing the 

change in'· i.e., M or p as the case may be. Fora magnet one finds that for small 

H this variation is given by (see Fig. 2.5) 

M(T = T ) - H1/fl 
c ' 

(2.16) 

which defines the criticai exponent fJ. Values of fJ are typically: ll(n=l) "' 4.8, 

fJ{n=2)"' 4.7, and fJ{n•3)"' 4.6. These should, perhaps, be regarded as more 

theoretical than experimental, since 6 is extremely difficult to measure accurately 

owing to the steepness of the criticai isotherm. The classica! value is fJ = 3 which 

corresponds to a cubie curve for the criticai isotherm. Of course, this is just the 

simplest analytic function which has the correct shape. 

Naturally the criticai isotherm near a fluid criticai point displays completely 
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analogous behavior. The relation is often written in reverse form as 

(2.17) 

where 6p =p-pc' but this clearly corresponds precisely to the expected magnet-fluid 

analogy. Likewise, "Biblica!" theory (in this case the originai prophet is van der 

Waals) predicts o=3, a cubie relation, but experiment yields o ~ 4.2 to 4.8. 

3. Scaling 

3.1 Introduction: thermodynamic functions 

The "Biblica!" or classica! theories break down completely in the region of a 

criticai point. What then, can replace them? It turns out that the simplest 

phenomenological theories that come anywhere close to explaining criticai behavior 

embody the concept of scaling. In order to make the discussion reasonably 

comprehensi ve one needs t o couch i t in terms of the full thermodynamics. Le t us 

consider a ferromagnet since its symmetry allows us to make certain convenient (but 

inessential) simplifications. The Helmholtz free energy, F(T,H), is associated with 

the basic differential thermodynamic relation 

dF -SdT - MdH, (3.1) 

where S is the total entropy. From this one can, by means of a Legendre 

transformation, generate the alternative free energy function, A(T,M) = F+MH, and it 

is then a simple matter to show that the basic differential relation becomes 

dA = -SdT + HdM. (3.2) 

The magnetic field and susceptibility are obtained from A by differentiation 

according to 

H = ( 3A) 
3M T 

an d 
-1 

x (3.3) 

Note that the susceptibility will diverge when T + Te, but it is intrinsically non­

negative: Indeed a negative static compressibility or magnetic susceptibility is 

thermodynamically inconceivable. This is equivalent to the statement that the free 

energy A as a function of M must be a convex function: although the graph of A 

versus M can have a flat portion, its curvature must, otherwise, be strictly 

positive (See Fig. 3.1 below). 
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3.2 The classica! phenomenological approach or Landau theory 

The simplest type of phenomenological theory in this context derives from mean 

field theory; it was developed to a fine art by Landau and now frequently goes under 

his name. I t consista, first of al l, in identifying the order parameter, 'l', 

(physically if this is possible but otherwise j ust as an abstract quantity), and 

then expanding the appropriate free energy as a Taylor series in powers of the order 

parameter. For a magnet the issue is straightforward: we bave 'l' = M and the power 

series expansion reads 

(3.4) 

By symmetry under M ++ -M no odd powers of M can be present. At high temperatures 

this expansion can be justified for all reasonable models on fully rigorous grounds, 

but near Te it turns out to be dangerous! By differentiating twice one obtains the 

inverse susceptibility, which in zero field above Te is thus given by 

-l 
X = 2A2(T) for T > Te, (H,M O). (3.5) 

The next assumption is that the coefficients Aj (T) can also be expanded in 

powers of t « (T-Te) so that, in particular, we may write 

-l 
x 2 

2A2,0 + 2A2,lt + O(t ). (3.6) 

When T+ Te+ the susceptibility, by definition of Te, diverges to infinity, so that 

x-l+ O as t+ O+, and hence A2, 0 = O. The predicted behavior of x near Te is thus 

X ,. C/t as t + 0+, (H,M = O). (3.7) 

This, of course, corresponds to y = 1. The fact that this theory gives an incorrect 

value for y can be traced directly to the unjustifiable assumption that A( T ,M) can 

be expanded in a power series near and, indeed, ~ a critica! point. Nevertheless 

this seems to be a very natura! assumption of the sort which is frequently made in 

physics and engineering. Furthermore, it can also be shown to be the essentially 

inevitable outcome of any of the wide variety of more microscopically-based mean 

field theories that bave been proposed in this and many other related contexts, 

In spite of the evident shortcomings of the classica! phenomenological theory, 

let us continue to explore its consequences by considering the effect of the term of 

fourth order in M. Its coefficient is 

A4 (T) = A4 ,0 + O(t) = iu + O(t), (3.8) 
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A(M,T) 

' \ 

T=Tc 

M 

Variation of the free energy A(T,M) according to classica! phenomenolog­
ical theory. The non-convex section of the isotherms for T < Te must be 
"corrected" by drawing in the flat, tangenti al segment, so forming the 
"convex cover" of the underlying, approximate function. 
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where the replacement of A4 0 by J. u is purely a matter of convenience. We will 
' "f 

assume u > O to ensure thermodynamic stability (although, in fact, the case u ( O is 

required for dealing with tricritical points). Le t us now examine the equation .!!!._ 

~· which is the relationship connecting T, H and M, near Te. It is obtained by 

differentiating A with respect to M and is easily seen to be of the form 

2 
H "' M( et + uM ) , (3.9) 

where we have put 2A2 , 1 = c so that, from (3.5) and (3.6), A2 (T) "' ict . For a 

flui d the corresponding equation would, for example, follow from van der Waal 's 

equation with M replaced by p - Pc and H by p - Pc• 

On setting t = O, we obtain the critica! isotherm as H ~ M3 and, thence, the 

erroneous prediction ò = 3. 

three roots, namely, 

For T < Te and H + 0- one obtains an equation with 

M o 

.!. 
an d M ± M0(T) "' BI t l 2. 

.! 
with B (c/u)"- (3.10) 

The first root turns out to have a higher free energy than the other two (see Fig. 

3.1) and therefore is of no real physical interest. The other two roots provide two 

equivalent states of equilibrium spontaneous magnetization. We see clearly that the 
l 

predicted value of the exponent a is 2 , the incorrect classica! result. 

One of the difficulties of the classica! theory is associated with the 

necessary convexity of the free energy. If one follows through in graphical terms 

the arguments just presented, one obtains for the variation of A as a function of M 

for various values of T the results shown in Fig. 3.1. Above Te the variation 

predicted by (3.4) is quadratic in M for small M and obviously convex. At Te the 

coefficient of the quadratic term vanishes and A has a pure fourth power dependence 

on M. The graph is extremely flat but still convex as it should be. 

however, the coefficient of M2 is negative, so the curve starts off at M 

Below Te, 

O like an 

inverted parabola, although it is ultimately turned around by the positive quartic 

term. The resulting concave portion of the curve for small M is clearly unphysical, 

and this should be taken as an indication t ha t the theory has gone wrong! This 

defect in the theory can, however, be repaired in a more-or-less ad hoc way by means 

of the "Maxwell construction", which essentially consists of drawing a straight line 

between the two minima a t -M0 (T) and +Ma (T). This process generates the so-called 

"convex cover" of the origina! A( M) plot. But what can be done about the totally 

incorrect values of the critica! exponents that come from this theory? Can anything 
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be salvaged? The temptation is to somehow or other graft on the correct values! 

This desire brings one naturally to the idea of scaling. 

3.3 The scaling concept 

There are severa! ways in which the desired modifications of Landau theory can 

be introduced. One of the earliest and most direct approacbes was tbat of Widom. 

Tbe gist of tbe argument goes as follows: Consider tbe exponent B. Tbe incorrect 

classica! value of 1/2 arises from tbe presence of tbe M2 term in (3.9). Let us 

therefore try to patcb up tbe tbeory by replacing M2 by M1/B where B is now a free 

parameter tbat can be fitted to experiment. If this were all, tbe equation of state 

would tbus become 

H"' M(ct + uMl/B), (3.11) 

and so the spontaneous magnetization below Te would come out correctly! Likewise, 

however, one migbt try to get the susceptibility exponent, y, rigbt by replacing t 

in (3. 9) by tY. For T > Te 1t follows t ba t H • cMt y and so x - t -y as desired. If 

this modification is to apply also for negative values of t tben t sbould obviously 

be replaced by ltl. Tbis, bowever, is easily seen to lead one into trouble since it 

introduces non-analytic bebavior into tbe equation of state everywbere on tbe 

criticai isotberm t = O ( even for H or M nonzero). Tbis has quite unpbysical 

consequences since, in fact, tbe equation of state is, botb tbeoretically and 

experimentally, completely free of singularities on crossing t be criticai isotherm 

away from H = M = O. Similar problems arise in (3.11) for small values of M above 

Te, wbere tbe expansion (3.4) sbould be valid but is not unless 1/B is an even 

integerl 

To avoid tbese problems let us rewrite (3.9) by dividing through by cltl 312 to 

obtain tbe equivalent form 

(3.12) 

where we bave replaced 3/2 by l!. wbile B and D are simply related to the originai 

constants c and u. However, from t bis poi n t on we may release l!. from its 

constrained value and treat it as a second free exponent, wbicb, bopefully, can be 

adjusted to get, say, y correct. Now tbe spontaneous magnetization varies as ltiB 

so tbe quantity M/BitiB can be viewed as tbe magnetization scaled by tbe spontaneous 

magnetization, MQ(T). Similarly, on tbe left band side of (3.12) we bave tbe 

magnetic field, H, scaled by a cbaracteristic power of t be temperature, namely, 

l t Il!.. Next we noti ce tbat tbe full equation of state is a relation connecting M, T 

and H which we could express as M •Jt(T,H). Widom's originai suggestion was that, 
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perbaps, wben T + Te, and M and H become small tbe equation of state in genera! 

simplifies if M is replaced by tbe suitably scaled magnetization, namely M/BitiB and 

H is replaced by a suitably scaled field, namely DH/Itl 6 • Tbis evidently applies to 

tbe special case (3.9) wbicb embodies classica! tbeory but perbaps it also bolds 

asymptotically for tbe true equation of state in tbe critica! regioni More 

explicitly, tbe nature of tbe proposed simplification is tbat, in tbe criticai 

region, tbe equation of state reduces from a function j((T,H) of two variables to a 

function of only one variable, but wbicb relates tbe two scaled variables 

together. In other words, we make the scaling postulate 

~ .. Bw(n---;). (3.13) 
ltl" ltl 

where W is some sufficiently generai function of a single argument. This assertion, 

tbe scaling ansatz, must, at this stage, be regarded purely as a guess, albeit, as 

we shall see, a remarkably successful guess! 

In the classica! tbeory we bave Il = 1/2 and /1. = 3/2 and tbese values are 

uni versa! for all systems: tbey simply arise from the integrai exponents in tbe 

assumed Taylor series expansion. Additionally in classica! tbeory, as one sees from 

(3.12), the full scaling function, W(y). is also universal. Thus we may expect more 

generally tbat 13 and !J. are universal exponents and W(y) is a universal function, 

even tbougb tbe values will differ from tbeir classica! counterparts. On tbe other 

band, tbe parameters B and D, like Te itself, must reflect the details of tbe 

particular ferromagnet: tbus they are referred to as non-universal amplitudes. Tbe 

exponent !J. is often termed tbe gap exponent. 

Let us now examine some of the implications of tbis simple but, in fact, far­

reacbing assumption. The susceptibility for t > O and H + O is given by 

x .. (aM) ,. ltl 13- 6 BDW'(O), 
aH T,H=O 

(3.14) 

where W'(O) must just be some number. Since, by definition, we bave x~ t-y, we see 

t ba t 

a + Y· (3.15) 

This sbows bow 6 sbould be cbosen to give tbe rigbt value of y. Otherwise it tells 

us nothing new. 

To find a new result let us look at the critica! isotberm, T • Te' for whicb 

purpose tbe limit t + O must be studied. In tbis limit tbe scaled magnetic field 

evidently diverges since 

y•D-H-+oo 
lti!J. 

as t + o. (3.16) 
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In tbe spirit of tbe enterprise let us tben assume tbat W(y) also varies as 

some power wben y becomes large, i.e., suppose 

W(y) .. W À 
00 y as y + co, (3.17) 

wbere W00 and À are constants. It follows tbat 

(3.18) 

When t + O, tbe temperature variable sbould drop aut of tbis expression since M tben 

becomes a function of H only; consequently we must demand Àl!. • e wbicb fixes tbe 

exponent À as 

À = e/l!.. (3.19) 

Tbus t bere is, in reality, no free cboice of À! Moreover, from (3.17) we now see 

t ba t M ~HÀ; but, by definition we bave M ~ Hl/o far T = Te. Thus we 

conclude o = 1/À and bence 

(3.20) 

Tbis nove! equation relating tbe tbree exponents e, y, and o is known as Widom' s 

relation. It is our first nontrivial scaling law or, simply, exponent relation. 

In a similar way, by integrating M= -(aF/aH)T to obtain tbe free energy F(T,H) 

and tben differentiating witb respect to T one derives expressions far tbe entropy 

and specific beat and bence establisbes tbe so-called Essam-Fisber relation 

n' + 2e + y' = 2. (3.21) 

A little furtber investigation using tbe fact tbat tbere must be no singularities as 

one crosses tbe criticai isotberm, t = O, at nonzero H or M reveals tbat one must 

also bave 

a =a', (3.22) 

far tbe specific beats above and below Te and 

y = y'. (3.23) 

far t be susceptibilities. Evidently tbere are four relations connecting tbe six 

exponents n, n' , e, y, y ' and o , and so only two of tbem can be independent: t bis 

is a striking prediction, by now verified many times experimentally! 
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T< Te 
M/lti,B 

T=Tc 

lT>Tc 

H o l ,88 y = H l ti 

(a) (b) 

Fig. 3.2 (a) A schematic plot illustrating equation of state data. i.e., M versus 
H isotherms, for a ferromagnet through the critical region; (b) a scaled 
plot of the same data illustrating the "collapse" of the data onto a 
single scaling function W(y). with two branches W>(y) and W<(y) 
corresponding to t ~ O. 
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The success of scaling can be illustrated graphically by replotting equation of 

state data for magnets, fluida, etc. in scaled form. Thus consider Fig. 3.2(a) 

where M versus H isotherms are sketched for a ferromagnet. This data may be 

replotted in scaled form as M/l t l~ versus y = H/l t l ~ò (recalling that l!. "' ~ò by the 

scaling laws) for appropriate choice of the exponents ~ and ò, which might be 

determined separately from the spontaneous magnetization curve and criticai 

isotherm. Scaling is confirmed if one observes, as in fact is found, 8 a "collapse" 

of the data for the different isotherms onto a common locus, which represents the 

scaling function W(y). Actually in this representation one finds two branches, 

asymptotically matching as y + "', corresponding to W>(y) and W<(y), the scaling 

function for T ~ Te. When the procedure is repeated for different magnets one 

finds similar results with, indeed, the same scaling function t up to different 

scaling amplitudes B and D. The scaling function that emerges for fluids is, 

likewise, the same for all fluids, and furthermore i t agrees, as do the exponents, 

with that found for magnetslt 

To sum up then, the scaling postulate proves to be a remarkably successful 

guess. Our theoretical task from here on is to set scaling theory in a broader 

context, to explain why i t works, and to ask if we can actually calculate the 

exponents and, also, the scaling functions. The renormalization group approach 

provides many of the explicit answers and, further, explains the circumstances under 

which scaling can break down and how it fails. 

3.4 Scaling of the free energy 

It is useful at this stage to recapitulate by taking a somewhat different 

approach to scaling, and to be a little more precise. Specifically we will again 

use the symbol "-" to mean "behaves like" and take the symbol "•" to mean 

"asymptotically equal to" i. e., if f(x) • g(x) as x + O, the ratio, f(x)/g(x) 

approaches unity when x+ O. As before, the discussion will be couched in magnetic 

language but, as previously emphasized, the same types of behavior are to be found 

in many other systems if one merely identifies the analogous quantities properly. 

In the criticai region the free energy, F(T,H), will bave a singular part which 

embodies the leading criticai behavior. Let IJ.F be the deviation of the free energy 

from its value at the criticai point with other non-singular contributions (the 

"background" terms) also subtracted off. 

energy by 

twe restrict attention here to uniaxial, 
isotropic, n • 3, Heisenberg-like or XY, n 
exponents differ slightly, (see later below) 
must also differ slightly for these distinct 

We define a normalized or reduced free 

n = l or Ising-like magnets. For 
= 2 magnets of different symmetry the 
and, necessarily, the scaling functions 
"universality classes." 
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f -AF 
singular • ~TV" (3.24) 

Division by kBT produces a dimensionless quantity which, however, is still 

proportional to tbe size of the system; tbus, we bave also divided by tbe volume, V, 

in order to obtain an intensive quantity whicb contains tbe bulk tbermodynamics. 

The dimensiona of f are tbus inverse volume or number density. As we will be 

working in tbe tbermodynamic limit, f is independent of V (wbicb we suppose becomes 

infinite tbrougb a sequence of domains of reasonable sbape). 

In tbe previous section scaling was introduced via tbe equation of state in 

(3.13). If we integrate M(T,H) witb respect to H, tbis leads to the free energy 

wbicb (after background subtraction) will be similarly scaled. Alternatively, we 

could introduce a scaling postulate directly for tbe free energy. In tbis way, tbe 

scaling ansatz becomes tbe assertion 

f i (T,H),. A0 1tl 2-a Y (D~) 
8 ng. ltlu as t,H + O, (3.25) 

wbere Ao and D are non-universal scaling amplitudes wbicb depend on tbe details of 

tbe system. The first, Ao• seta tbe scale of tbe free energy while D seta tbe scale 

of the magnetic field. As before, there appear two universal exponents a and Il. A 

tecbnical point tbat arises bere concerning tbe scaling function Y(y) was already 

alluded to before: specifically, the universal function Y(y) sbould really be 

considered in two parta: Y>(y) for t > O and Y<(y) for t < O. These two parta must 

ma t cb analytically as y + 00 , but to pursue tbat point bere would be unecessarily 

distracting. The reason for writing tbe power of tbe temperature prefactor in 

(3.25) as 2 - a is to get tbe specific beat exponent correct, as is easily seen. 

Let us set H • O and normalize tbe scaling function by setting Y(O) • l, whicb we 

may do because of tbe presence of tbe factor A0• Recalling tbat 

entropy is given by S •- (3F/3T)8• 0 it follows tbat tbe singular part of tbe 

entropy varies as 

Il S(T) a: (H=O). (3.26) 

The internai energy bebaves similarly. Tbe specific beat tben follows as 

(3.27) 

In tbese expressions A1 and ~ are amplitudes proportional to Ao· (Note that tbe 

variation of the prefactor T in the definition of C(T) is smootb and so does not 

affect tbe criticai bebavior of tbe specific beat. For t > O tbe symbol C referred 

to bere could be subscripted eitber M or H since in zero field (H•O) one bas 

~ • ~: tbis is a special feature resulting from tbe symmetry of a simple 
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ferromagnet. More generally, one should consider St(T) or, for a fluid system, 

Cv(T) and so on. 

The reader should sketch the variation of the zero field entropy S(T), noting 

t ha t S is monotoni c, and al so continuous through the criticai poi n t, T = Te, but 

exhibits a vertical tangent there, varying in the vicinity as ± Jtll-a where, as is 

typically true, we bave supposed a has a positive, albeit small value. Moreover, 

the internai energy and many other quantities 'driven' by the critica! behavior, 

such as the resistance, exhibit precisely the same form near Te. Thus it is not 

these quantities themselves but rather their temperature derivatives which diverge 

at Te (or, if -1 <a < O exhibit a sharp cusp there). 

The equation of state M = J1. (T,H) is obtained by differentiating with respect 

to H. This yields 

( a F) a f A_ DJ t 12-a-f::.. ' r H ) M = - - a: àH " "1) y D---=-;:- • 
aHT ltl" 

(3. 28) 

The reason for calling b. the gap exponent can now be seen. Each successive 

differentiation with respect to H, to form x = (aM/aH), x 2 = (ax/aH), etc. changes 

the exponent of the ltl prefactor by the constant decrement 11. For T< Te and H+ O 

the scaling function Y' will approach a nonzero constant value and so, as before, 

Mo(T)" B ltl 2-a-f::... But since, by definition, Mo(T) - ltla. it follows that 

a 2 - a - 11. (3. 29) 

Adopting M/ltla as the scaled magnetization, we see from (3.28) that this is a 

function only of the scaled magnetic field, y a: H/ltJ 6 , thus recapturing the 

originai scaling postulate (3.13). 

To obtain the criticai isotherm we let t + O, and in line with the arguments 

used in the previous section, assume that Y(y) " yÀ+l when y + "'• The 

choice À = 6/f::.. ensures that ltl cancels out when t+ O. In this way, repeating the 

details for the sake of completeness, we obtain 

(3. 30) 

But since M _ Hl/o we conclude 

a o, (3.31) 

as before [see (3.20)). 

Finally, the susceptibility is given by xT = (aM/aH)T and for the reduced 

susceptibility above Te we find 
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(3. 32) 

so that we obtain the scaling relation 

y -2 + Cl + 2/1. (3. 33) 

By combining (3.29), (3.31) and (3.33) one readily establishes the various scaling 

relations 

cx+f3(1+o) 2, (3.34) 

Cl + 2f3 + y 2 t (3.35) 

an d f3 + y f3o. (3. 36) 

Quite clearly, the classica! values of the exponents, viz. ex = O, B = 1;2 , y = l 

and o = 3 satisfy these relations! Even before the full advent of scaling, 

Rushbrooke had shown on rigorous thermodynamic grounds that, because of the 

convexity of the free energy, the exponent inequality 

ex' + 2f3 + y' ) 2, (3.37) 

was a thermodynamic necessity. Note that this is a rigorous result that does not 

depend on any assumption as scaling theory does. Similarly, Griffiths later proved 

the inequality 

ex' + B(l +o) ) 2, (3. 38) 

corresponding to (3.34). Evidently, then, scaling theory certainly does not 

conflict with thermodynamics even though it asserts that the rigorous inequalities 

hold as equalities. Nor, however, can the scaling laws be obtained by pure 

thermodynamic arguments although quite a few theorists have been tempted to think so 

and to try to demonstrate it! Occasionai reports in the past of measured values of 

criticai exponents violating the above inequalities bave all proved to be poorly 

founded (which is just as well, since otherwise a violation of the Second Law of 

Thermodynamics would have been observed!) 

It seems that, at least as far as systems belonging to the same symmetry class 

are concerned, the criticai exponents are universal quantities satisfying the 

scaling laws. Similarly, the scaling function Y is a universal function only of the 

scaled field y for such systems. However, as mentioned before, one does expect some 

change in Y as n, the number of componente of the order parameter and d, the spatial 
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dimensionality, are varied. So we can write Y = Y(y;n,d). To emphasize this point, 

note, as will be shown, t ha t t bere are good grounds for believing t ha t classica! 

theory is correct when d > 4. To see how the scaling function depends on d, 

consider the behavior of the (zero-field) susceptibility above and below 

criticality. We can write 

as T + Te-, (3. 39) 

where the amplitude ratio, c+;c-, should be universal but, clearly, depends on the 

particular form of the scaling function. Within Landau theory it is an easy 

exercise to prove c+;c- = 2 (which is, indeed, universal). We can accept this for 

d > 4, but for the Ising model (n = l) a1·1d d < 4, we find c+;c- " 5.03 for d = 3 

while for d = 2 one knows the exact univeral value c+;c- = 37.693562 •••• 

3.5 Fluctuations, correlations and scattering 

What is the 'cause' of the failure of mean field theory and Landau theory? Why 

do they yield wrong exponents and wrong scaling functions? The short answer is 

"Because they neglect fluctuations ". To understand the significance of this pie ce 

of now conventional wisdom and to explore further striking criticai phenomena that 

provide a key to the renormalization group approach, let us study fluctuations in 

the criticai region and introduce the correlation and scattering functions which 

serve to quantify them and to describe relevant observations. 

Much can be learned about criticality by scattering radiation --- light, x-

rays, neutrons, etc. -- off the system of interest. In a standard scattering 

experiment, a well-collimated beam of light, or other radiation, with known 

wavelength, À, is directed a t the sample, flui d, magneti c crystal, etc., and one 

measures the intensity, I(e), of the light scattered at an angle e away from the 

"forward" direction of the main beam. The radiation undergoes a shift in wave 

vector, ~. which is simply related to e and À by 

1~1 = ~rr sin fe. (3.40) 

The scattered intensity I( e) is determined by the fluctuations in the medium. If 

the medium were perfectly uniform (i. e., spatially homogenous) there would be no 

scattering at all! If one has in mind light scattering from a fluid, then the 

relevant fluctuations correspond to regions of different refractive index and, 

hence, of particle density p(R). For neutron scattering from a magnet, fluctuations 
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in the spin or magnetization density are the relevant quantities, and so on. We 

need to study the normalized scattering intensity I(6,T,H ••• )/Iideal(6), where 

I(6; T ,H •• ) is the actual scattering intensity observed a t an angle 6, which will 

normally depend on such factors as temperature, magnetic field, etc. while Iideal(6) 

is the scattering t ha t would take place if the indi vidual particles (spins, etc.) 

doing the scattering could somehow be taken far apart so that they no longer 

interacted and thus were quite uncorrelated with one another. Now this normalized 

scattering intensity is proportional to the fundamental quantity 

(3.41) 

which represents the Fourier transform of the appropriate real space correlation 

function G(~) (of density-density, spin-spin, etc.) 

As the criticai point of a fluid or fluid mixture is approached one observes 

enormously enhanced values of the scat tering, especially a t low angles, 

corresponding via (3.40) and (3.41), to long wavelength density fluctuations in the 

fluid. In the immediate criticai region the scattering is so large as to be visible 

to the eye, particularly through the phenomenon of criticai opalescence. This 

behavior is not, however, limited to fluids. Thus if, for example, one scatters 

neutrons from iron in the vicinity of the Curie point one likewise sees a dramatic 

growth in the low-angle neutron scattering intensity as sketched in Fig. 3.3. (With 

neutrons care must be taken to ensure that the total elastic scattering is observed 

since the proportionality of I(6) to G(~) holds only if inelastic scattering 

processes can be neglected.) As can be seen, for small angle scattering there is a 

pronounced peak in I{6, T) as a function of temperature, and this peak approaches 

closer and closer to Te as the angle is decreased. Of course, one could never 

actually observe zero-angle scattering directly, since this would mean picking up 

the oncoming main beam, but one can extrapolate to zero angle. When this is done 

one finds, in fact, t ha t the zero-angle scattering I(O, T), actually diverges a t 

Te. This is the most dramatic manifestation of the phenomenon of criticai 

opalescence and is quite generai, being observed whenever the appropriate scattering 

experiments can actually be performed. 

In order to understand these effects we need to examine the correlation 

function for the relevant quantity, which, in generai, is the locally fluctuating 

order parameter, V(~), for the transition in question. Thus V(~) could, for 

instance, describe how the spin varies from lattice site to lattice site in a 

magnetic crystal. The overall spatial average of this quantity is what was 

previously referred to as the (total) order parameter, V. We will define the 

correlation function GVV(~), or, for brevity, just G(~) by 

(3.42) 
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I (8,T) 

e-o 
Il zero-angle 
scattering 11 

T 

Fig. 3.3 Schematic plot of the elastic scattering intensity of neutrons scattered 
at fixed angle, 9, from a ferromagnet, such as iron, in the vicinity of 
the Curie or criticai point. The small arrows mark the smoothly rounded 
maxima (at fixed 9) which actually occur ~ Te (in contrast to 
classica! and most mean field theories which yield a nonanalytic maximum 

at T • Te>· 
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We will always presuppose a macroscopically large system, so that there is 

translational symmetry. Likewise, we suppose that inhomogeneous effects due to 

gravity, etc. can be ignored. This means that the two average 

quantities, ~(Q)> and ~(g)> will be equal to one another and to the overall, bulk, 

thermodynamic order parameter ~. We may thus let 

(3.43) 

represent the deviation or fluctuation of ~ about its uniform mean value; then it is 

a matter of simple algebra to show that the correlation function directly measures 

the fluctuations since 

(3.44) 

For simplicity we will often assume an isotropic system so that G is a function of R 

rather than R. 

3.6 The correlation length 

If one thinks of a lattice of spins above Te in zero field, H = O, one 

has ~> = O by symmetry. A ferromagnetic exchange coupling between neighboring 

spins then tends to align the spins parallel to one another whereas thermal energy 

works to randomize them. Thus at high 

correlation function, G(g), to fall 

temperatures one 

off rather 

expects the spin-spin 

rapidly with the 

distance, R, separating the spins, whereas a t lower tempera tures the spins should 

become correlated with each other over longer and longer distances, the correlation 

function then decaying more slowly with R. 

What should the law of correlation decay be? On fairly generai grounds one can 

* show that away from Te the correlation function should fall off exponentially with 

R for large distances, i.e., that the leading behavior is given by 

G(R) ~ e-R/~ as R + "'• (3.45) 

where ~ is a quantity that has the dimensiona of length, and is thus called the 

correlation length. It evidently tells us the scale on which the correlations 

decay. At high temperatures ~ will be just a few angstroms, but near a criticai 

point it becomes very large. This ties in well with our earlier comments on 

criticai opalescence, since if ~ becomes comparable with the wavelength of the 

*one must assume that the interactions themselves are of finite range or 
decay rapidly. 
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radiation, the medium will then contain fluctuations or inhomogeneities on that 

scale, and this will give rise to strong low angle scattering i. e., to criticai 

opalescence. 

There is another, very generai theoretical route that tells us t ha t ~ must 

become large near a criticai point. This utilizes the fluctuation-susceptibility 

relation which reads 

G(Q;T,H) a ~d~ G(~;T,H) = x(T,H). (3.46) 

For simplicity we consider here only the magnetic case. Note that G(Q;T ,H) is the 

limiting value as ~ + O of the Fourier transform of G(~;T,H). It thus depends only 

on T and H and is therefore a thermodynamic function: via statistica! mechanics one 
2 finds it is just the reduced susceptib:j.lity, x(T,H) = kBT xT/m , where m is the 

magnetic moment per spin. Now when T + Te for H • O, we know that x d~verges; 

somehow this divergence must also come out of the integrai in (3.46). Since G(~) is 

a bounded function it cannot, itself, diverge [In the case of S = lf2 spins one 
3 

has G(!) < 4l; thus a divergence of the integrai can only mean that G(~) decays very 

slowly when T = Te, certainly more slowly than an exponential. Consequently we are 

forced to conclude that ~(T) diverges to infinity when T+ Te. The variation of ~ 

near Te can, naturally, be described by 

HT) ~ l/tv, (M O), (3.47) 

where for three-dimensional systems the new exponent, v, has values around 2/3. 

This contrasts with the classica! prediction v = 1/2 (which follows from an 

extension of phenomenological, Landau theory to inhomogeneous situations). More 

concretely one has v~ 0.63 for Ising-like (n = l) systems, particularly fluids, 

increasing to v = 0.70 for Heisenberg-like systems. For the two-dimensional Ising 

model the divergence of ~(T) was established by Onsager along with his originai 

calculation of the zero-field free energy which revealed the logarithmic divergence 

of the specific heat; his results yield v = 1. In experiments on fluids such as 

carbon dioxide, the correlation length has been measured down to t = 10-4 or 10-5 by 

when ~ is thousands of angstroms in magnitude. The divergence of the correlation 

length is one of the crucial clues to our generai understanding of criticai 

phenomena; the renormalization group approach, in particular, focuses on the 

behavior of the correlation length. 

3.7 Decay of correlations at and below criticality 

At Te the correlation length is infinite. If it were not, then the integrai in 

(3.46) would necessarily converge and be finite: then x would be bounded at Te 
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which is certainly not the case! Thus precisely ~T = Te the correlation function, 

G(R) cannot be an exponential function of R. Moreover, it must, in genera!, stili 

decay to zero and one should, in fact, anticipate an "algebraic" or inverse power 

law form such as 

D 
G c (R) ,. d-2+n 

R 
as R + co, (3.48) 

(where the nonuniversal amplitude D should not be confused with our previous use of 

this symbol). The reason for writing the decay exponent in this rather special way 

is that G(R) frequently appears, as in (3.46), in volume integrals of the form 

so that the d drops out. Evidently n is a new critica! exponent which describes how 

G(R) be ha ves !!.!_ Te. Its numerica! value is always rather small and in classica! 

theory, which, as already mentioned, will be found to apply for spatial 

dimensionalities d > 4, one has n = O. (Of course this result provides another good 

reason for writing (3.47) in the form given.) For real three-dimensional systems 

one finds n "' 0.03 to 0.06, but it proves to be a very difficult parameter to 

measure reliably and accurately in experiments. For d = 2 Ising-like systems the 

theoretical value is n 1/4; this can even be confirmed by experiments on 

(effectively) two-dimensional systems. Since n is in all cases small, the integra! 

in (3.46) necessarily diverges and the susceptibility is indeed infinite at Te. 

Beneath Te there is a subtle'ty that has to be taken into account. The 

correlation function in genera! now exhibits long range order, i.e., G(~) does not 

decay to zero as R + co but rather approaches a nonzero value, say G(co). This 

appearance of long range order is, in fact, one of the notable characteristics of 

most phase transitions. In a magnet the zero field spin-spin correlation 

function (S(Q)S(~) > when R + co becomes proportional t o [M0 (T) l 2 , the square of the 

spontaneous magnetization. Via the scattering theory this leads to a magnetic Bragg 

peak in the scattering of strength proportional to [M0 (T) 12 • In systems such as 

antiferromagnets, where 'l'(~) is a "staggered magnetization", this provides a means of 

measuring the spontaneous order which would, otherwise, be inaccessible to 

experimental observation. If one subtracts the limiting value, <S(O)S(co)), frorn the 

correlation function one obtains a net correlation function which again decays to 

zero. In Ising-like systems there is then also an exponent v' for the correlation 

length beneath Te. Experimentally, one finds v' "' v and theoretically, according to 

scaling, the two exponents 

scattering intensity I(9) 

should be exactly 

I(~) provides us 

the 

with 

same. Experimentally the 

the information needed t o 

de termine !; • It is not hard to show that G(~), which we reca! l is essentially 

proportional to I(~), is an even function of k which, rather generally, can be 

expressed in the form 
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(3.49) 

In a so-called Ornstein-Zernike analysis one thus plots 1/G(~) [or 1/I(~) l in the 

critica! region versus k2 • The data for small k (sue h t ha t ka ~ 0.1 where ~ is a 

typical molecular dimension) usually fall close to a strai~ht line whose intercept 

with the k2 = O axis determines the susceptibility x(T). As T + Te this intercept 

falls to zero but the successive isotherms remain more or less parallel on the 

Ornstein-Zernike (or OZ) plot. The reduced slopes evidently serve to determine 

~(T). Close to Te the plots in the case of very ~ood experiments show a sli~ht 

downward curvature: this is an indication of a nonzero and positive value of the 

exponent n. Thus at T = Te we have, by (3.48), the power law decay 1/Rd-2+n, and on 

Fourier transformation this yields 

D 
G (k) .. 2-n' c- k 

(3.50) 

asymptotically for small k. On an Ornstein-Zernike plot the curvature of the 

critica! isotherm thus measures n. It should be stressed, however, that since n has 

such a small value, it is difficult to measure this curvature unambiguously: 

extensive data are needed and careful corrections for multiple scattering and other 

extraneous effects are called for. Nevertheless, a small positive value is 

definitely established. 

3.8 Scaling of the correlation functions 

Our treatment of correlation functions has evidently introduced two new 

exponents, v and n. Are these independent of each other? Are they independent of 

the thermodynamic exponents a, 6, y, and 6? Or are all the exponents somehow linked 

together? Let us see what the idea of scaling has to say in this context. 

Accordingly, with no loss of generality we write the correlation function and its 

Fourier tranform as 

" 
G(!~;T,H) an d G(~;T,H) .. 

9) (~;T ,H) 

k2-n 
(3.51) 

which serves to pull out the criticai point behavior. Now we expect (or hope!) that 

G and G will exhibit some simplified behavior as T + Te. Scaling means that there 

should be some reduced description, some compression or collapse of the 

multivariable data. Thus the dependence of the correlation functions on three 

variables might, perhaps, reduce to a dependence on only two, properly scaled, 

variables. The behavior ~ Te has been extracted in terms of the functions g) 

and t> • In li ne with our previous application of scali n~, i t is thus natura! to 
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postulate tbat :> and f) are functions no t of tbree variables, but only of two scaled 

variables. We saw before t ba t tbe scale d magneti c fie! d bad to take tbe form 

H/ l t 111 ; t bere is no good reason to expect t bis to be cbanj!:ed in any way for t be 

correlation functions. However, tbe lengtb R sbould now also be replaced by a 

scaled lengtb and, likewise k by a scaled wave number. we bave of course, already 

identified a cbaracteristic lengtb for tbe problem: tbis is tbe correlation lengtb 

1;. Since l; diverges at criticality it is reasonable to j!:uess that it is tbe only 

lengtb tbat really matters in the criticai rej!:ion. We conclude tbat tbe natura! 

scaled length 

kl; '" kltl-v. 

is R/1;,. Rltlv and that tbe appropriately scaled wave number is 

Accepting this we can, asymptotically, replace SI and ~ by scaling 

functions D and D to obtain tbe scaling postulates 

(3.52) 

and, quite equivalently under Fourier transformation, 

D(k/lti\I;H/Itl 11 > 
G(~;T,H) ,. , 

k2-n 
(3.53) 

wbere, for simplicity, we bave left out tbe nonuniversal scaling amplitudes needed 

for full normalization if we wish to explicitly exhibit the expected universality of 

D and D. 

Notice tbat tbe only otber lengtbs that could conceivably play any role are tbe 

interatomic spacings or the atomic and molecular diameters on scales, say, .!: But 

near tbe criticai point ali sucb lengtbs become extremely small compared to tbe 

range of tbe correlations, and so, being "overwbelmed", become unimportant to the 

long wavelength bebavior of tbe fluctuations measured by G and G. Tbis, indeed, 

gives us some insigbt as to wby tbere sbould be universality. Different fluids are 

found to bave tbe same criticai exponents and scalini!: functions. The same tbing 

applies to magnets (if tbey bave tbe same symmetry number n). Where does this 

universality come from? Clearly the only important differences between different 

fluids can be traced to tbe sbapes and sbort range interactions of tbeir constituent 

molecules, i. e., to differences on a scale of a few anj!:stroms. Near tbe criticai 

point, fluctuations are taking piace on tbe scale of 103 A and beyond, so 

differences on a scale of a few A are "wasbed out" or "averaged over". Thus one can 

understand, in an intuitive way, universality as a consequence of tbe fact tbat tbe 

correlation lengtb becomes very large so tbat tbe important "effective interactiC\ns" 

no longer take piace on an atomic scale but ratber on a semi-macroscopic scale set 

by 1;. On tbis leve! tbe microscopic differences do not matter and one obtains 

universality. As systems move away from criticality and tbe correlation length 

becomes smaller, tbe differences start to matter. Tbese intuitive ideas, formulated 

most clearly in tbe first piace mainly by Kadanoff, are capitalized upon and made 

more concrete in Wilson's development of renormalization group tbeory. 
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To see how the correlation function scaling hypothesis implies connections 

between the criticai exponents, l et us examine the fluctuation integrai in (3. 46) 

that leads to the zero-field susceptibility above Te, namely, 

(3. 54) 

We have been explicit here in dealing with a volume integrai in d dimensions; 

because of the assumed (asymptotic) isotropy this reduces to an integrai over the 
d-l radius with the factor CdR representing the surface area of a d-dimensionai 

sphere: for future reference the relevant coefficient is 

A change of variable to the scaled combination x = Rt v transforms the integrai to 

the form 

-(2-n)v x .. cd t 

-(2-n)v ,. (const.) t • (3.55) 

Comparing with the definition x - t-y we discover the new scaling relation 

y (2-n)v, (3.56) 

which relates v and n. The classica! exponent values y = l, n = O and v 

obviously satisfy this relation. Experimentally, also, this relation checks very 

well. If i t is accepted, i t actually provides the bes t method of measuring the 

elusive exponent n! 

Our theory at this stage is what might be called "three-exponent scaling", 

since from only t h ree exponents, say a, f:. and v, one can obtain al l the other 

exponents for bot h thermodynamic and correlation functions. Notice that all the 

exponent relations so far encountered have no explicit dependence on the 

dimensionality, d (even though the actual values of the criticai exponents 

themsel ves do depend on d). There is, however, an important further exponent 

relation which does involve d explicitly: this we consider now. The argument we 

use may, perhaps, be regarded as not very plausible but it does lead to the desired 
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result, and other arguments are not much more convincingl Following Kadanoff we 

start by noting from (3.24) and (3.25) that the exponent a makes its appearance in 

the singular part of the free energy in the following way: 

f -6F t2-<X 
sing. • kBTV • (H • 0), (3.57) 

and that, as remarked, the dimensione of f are those of reciproca! volume or 1/Ld 

(where L is a length). Now fsing. + O when t + O and so the relevant "criticai 

volume" is evidently diverging, i.e., there is a significant length which is 

diverging! But, as we bave argued, there should be only one important length in the 

criticai region, namely, the correlation length, ~. which moreover is also diverging 

as t + O. This suggests the identification 

f l l 
sinp;. ~ ~d ~ (t -v)d• 

(3.58) 

Then comparinp; with (3.25) yields the new relation 

dv 2 -a, (3.59) 

which explicitly involves the dimensionality. This is called a hyperscaling 

relation to emphasize the fact that it goes beyond and cannot be derived from the 

ordinary scaling relations for exponents. 

Notice now that this extra relation means that just two exponents, say à and v 

can be used to predict all the others, i. e., we bave achieved a "two-exponent 

scaling theory". On combining the hyperscaling relation (3.59) with various other 

exponent relations one can easily derive the further hyperscaling relation 

(15-1) 
2-n • d (l5+1). (3.60) 

Again, following Buckingham and Gunton, one can show by rigorous statistica! 

mechanical arguments that this relation must (for most systems) be satisfied 

rigorously as an inequality, namely, 

(15-1) 
2-n < d (l5+1). (3.61) 

Once again, then, we see that scaling comes in as the borderline of a generai 

physical inequality. Notice that the experimental observation 15 < 4.8 for d = 3 

implies, via this inequality, n > 0.034. 

A peculiar feature of the hyperscaling relations is that the classica! exponent 

values do not aatisfy them unless d = 4! To check this, substitute 15 • 3 and n • O 

in (3.61) and a • O and v = 1;2 in (3.59). This fact also serves to demonstrate 
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that the hyperscaling relations have a rather different status than the other 

scaling relations. However, they hold exactly in the two-dimensional Ising model, 

and renormalization group theory is able to show why the hyperscaling relations are 

to be expected fairly genera-lly, why they hold for d < 4 but break down for d > 4, 

and by what mechanisms they can be expected to fail when they do. [See Appendix D.] 

As discussed, the criticai exponents themselves depend not only on d but also 

on n, the syDD!letry of the order parameter; so far, however, no generai exponent 

relations have been discovered in which n appears explicitly. On the other hand, 

for certain classes of problem there are special relations between exponents in 

dimension d for one type of system and exponents in dimensions d + l and d + 2 for 

different types of problem! 

renormalization group ideas. 

Many of these relations also owe their genesis to 

One might mention, in closing our phenomenological discussion of scaling, that 

the scaling relations can also be obtained by making certain assumptions concerning 

the asymptotic homogeneity character of the functional relationship between 

thermodynamic variables. The formalism is elegant and the end results are the same, 

but this approach tends to obscure the physics of the situation, which is that near 

a criticai point each important quantity has a natura! scale or size. When these 

natura! scales are used, a reduced, universal description emerges. At the criticai 

point itself all the temperature and field scales vanish (or diverge) so that one is 

left with spatial self-similarity. The fluctuations of the or der parameter, for 

example, look statistically the same on all length scales if the magnitude of 

~(~) is rescaled appropriately. Likewise for the energy-energy fluctuations, etc., 

which, in the interests of simplicity, we have no t discussed. These and generai 

aspects of scaling theory are summarized briefly in the following subsection (which 

need not, however, be studied in order to follow the balance of these lectures). 

3.9 Anomalous or criticai dimensions: generai definitions and relations 

We present here, in note form, a suDD!lary10 of exponent definitions and scaling 

relations which emphasizes the correlation functions or, more properly, the 

cumulants or "connected correlation functions", for a generai se t of criticai 

operators (or local densities) A(~), B(~), •••• 

For operators or local variables A(~), B(!:,), ••• N(!:,), conj ugate t o fields hA, 

hB' •••• including: 

the order parameter ~<.~) conjugate t o fie l d h - h~, 

the energy density e <E) conjugate t o fie l d t h6 ., llT/Tc' 

anisotropy energy <12 <r) conjugate t o fie l d g h 't , etc., 

the generai Cumulant is 
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(3. 62) 

with 

)(A= <A>, K AB<!> = <A(Q)B(r)> - <A(Q)> <B(r)>, etc. (3. 63) 

The generai ecaling hypotheeie for criticai operatore A, B, ••• ie then 

for rl , ••• rn-l>>a, (3.64) 
and O ( t << l, other fielde being 

at their criticai valuee. 

Here the wA, wB•••• are the criticai (or anomaloue) dimension of A, B, ••• , while w* 
may be called the anomaloue dimeneion of the vacuum. Note that we write t in place 

of !ti, which is generally needed, merely to reduce the complexity of the formulae.) 

Hyperecaling means generally 

* w o, (3. 65) 

as predicted by forma l renormalization group analyeis (eee later); as found in the 

Ising mode! (n=l) for d=2, and in the epherical mode! (n:m) for d(4; but ae violated 

at criticai points for d > 4: see Appendix D. (Note that Kadanoff, in a notation 

adopted by many authors, writes xA, xB, etc. in place of wA, wB, etc. but also 

aeeumes hyperscaling and so sets w* = O. 

Thermodynamic scaling i.e., the ecaling of the free energy 

f = f -6. F /kBTV, obtained by integration of the cumulante and is expreseed by e ing. 

2-a h 
f(t,h, ••• ,hA'"".) "' t Y(6, 

t 

where (see further below) 

... ' 

* 2 -a - (d-w )/(d-w~ ) 

and 

À'!' 

A = ~'l' =x-e -

while the "croseover exponent" is defined by 

(3. 66) 

(3.67) 

(3.68) 

(3. 69) 
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where we have introduced 

* * d .. d-w • (3.70) 

and the genera! scaling eigenvalues or complementary exponents, ÀA' through 

d. (3. 71) 

(Kadanoff uses yA, yB, etc. in place of ÀA' ÀB' ••• ). Hyperscaling implies, of 

course, d* • d and other relations such as 

dv = 213 + y', Il = lf2 (d-2+n)v, 

etc, which can be found from the following genera! 

Exponent relations: 

Correlation exponents 

(unindicated fields set to their critica! values) 

Thermodynamics 

where 

while for first order cumulants 

* n = 2w'i'+ 2-d-w ; 

* w .. d-(2-a)/v. 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

(3.79) 
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with 

(3.80) 

For the cross-susceptibility one has 

r d! <A(Q)B(!)Ì' 

' 

(y (3.81) 

(3.82) 

Crossover (at multicritical points): 

q. A 
hA scales as t with 

~:; = 4>'1' = Il + y = Ilo, (3.83) 

an d ~ vfvA (3. 84) 

General relations 

(3.85) 

4. Microscopic Models 

4.1 The need for models 

The traditional approach of theoreticians, going back t o the foundation of 

quantum mechanics, is to run to Schrodinger's equation when confronted by a problem 

in atomic, molecular or solid state physics! One establishes the Hamiltonian, makes 

some (hopefully) sensible approximations and then proceeds to attempt to solve for 

the energy levels, eigenstates and so on. However, for truly complicated systems in 
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what, these days, is much better called "condensed ma.tter physics," this is a 

hopeless task; furthermore, in many ways it is not even a very sensible onel The 

modern attitude is, rather, that the task of the theorist is to understand what is 

going on and to elucidate which are the crucial features of the problem. For 

instance, if i t is asserted t ha t the exponent a depends on the dimensionality, d, 

and on the symmetry number, n, but on no other factors, then the theorist's job is 

to explain why this is so and subject to what provisos. If one had a large enough 

computer to solve Schr.Òdinger's equation and the answers carne out that way, one 

would still bave ~ understanding of why this was the case! Thus the need is to 

gain understanding, not just numerica! answers: that does not necessarily mean 

going back to Schr.Òdinger' s equation which, in any case, should be really regarded 

j ust as an approximation to some sort of gauge fie l d theory. So the crucial change 

of emphasis of the last 20 or 30 years that distinguishes the new era from the old 

one is that when we look at the theory of condensed ma.tter nowadays we inevitably 

talk about a "model". As a matter of fact even Schr';;dinger's equation and gauge 

field theories themselves are just models of the physical world, albeit pretty good 

ones as far as we can presently judge! 

We should be prepared to look even at rather crude models, and, in particular, 

to study the relations between different models. We may well try to simplify the 

nature of a model to the point where it represents a ""mere caricature" of reality. 

But notice that when one looks at a good politica! cartoon one can recognize the 

various characters even though the artist has portrayed them with but a few 

strokes. Those well chosen strokes tell one all one really needs to know about the 

individuai, his expression, his intentions and his character. So, accepting 

Frenkel's guidance, 11 a good theoretical model of a complex system should be like a 

good caricature: i t should emphasize those features which are most important and 

should downplay the inessential details. Now the only snag with this advice is that 

one does not really know which ~ the inessential details until one has understood 

the phenomena under study. Consequently, one should investigate a wide range of 

models and no t stake one 's life (or one 's theoretical insight) on one particular 

model alone. Nevertheless, one model which, historically, has been of particular 

importance and which has given us a great deal of confidence in the phenomenological 

descriptions of criticai exponents and scaling presented earlier deserves special 

attention: this is the so-called Ising mode l. Even today its study continues to 

provide us with new insights. 12 
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4.2 Ising model 

This model is absolutely the simplest model of a many body system! First of 

all we regard space as divided up into a lattice of cells of volume v0 , each 

represented by a single lattice point. The easiest lattice to think about in two 

dimensiona is the square lattice but, following our resolution, we should at least 

look also at some other types, such as the triangular lattice (see Fig. 4.1). At 

each lattice site we allow just two possible microscopic states: in the language of 

a ferromagnet we place an Ising "spin", s, on each si te. To distinguish spins on 

different sites I will usually label the spins with the position vectors !•!'···· of 

the lattice sites or with site indices i, j, ••• : thus sR or si' etc. 

Fig. 4.1 

j [ 
i B 

(a) (b) 

Two dimensionai lattice&: (a) the plane square lattice of coordination 
number 4; (b) the plane triangular lattice with coordinati0n number 6. 

As implied, an Ising spin is permitted to take just two values which are expressed 

numerically or symbolically as 

si • +l, (t, "up"), (4.1) 

~ -1, (.j., "down"). 

This two-valued variable is a similar but somewhat simpler entity than the quantum 

mechanical spin variable, S, for total spin S = 1/2, whose z-component can take the 

two values sz • ± lf2 • One must notice that the Ising model also constitutes a 

model for a fluid, albeit the very simplest one, namely, a lattice gas. In this 

model we replace continuum space by the lattice of sites and suppose that the atoms 

or molecules can sit only on the sites. Since two atoms cannot easily be forced on 

top of one another, only two possibilities are contemplated at each site: either 

there is an atom present or there is not. Thus one can obviously establish a one­

to-one correspondence between an Ising magnet and a lattice gas in which each 'down' 

spin, .j., represents an occupied site and each 'up' spin, t, represents a vacant 

site: pictorially we have: 
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t. !!l. 

-e~ /.!!\ 

_Il~ 
'<: 

Fig. 4.2 lattice gas Ising ferromagnet 

Similarly a direct correspondence exists between an Ising ferromagnet and the 

simplest models of a binary alloy or of a binary fluid whose composition is the 

important local physical variable. One can conveniently adopt the convention that 

an A-atom (molecule, or ion) is represented by an 'up' spin, t, while a B-atom then 

corresponds to a 'down' spin, ~. 

Mathematically all of these situations are precisely analogous: there is only 

one problem to salve! An Ising spin is, clearly, just a scalar and hence the Ising 

mode! is the prototype of an n=l system. 

In order to obtain any interesting behavior there must be some interactions 

between the spins. The standard, simplest Hamiltonian for an Ising mode!, given 

that there are N lattice sites, is 

(4.2) 

The first term in "N takes account of any externally applied magnetic field, H. 

This term on its own would give us only a paramagnet. The second term describes the 

interactions between spins. Far J > O it is of ferromagnetic character 

(approximating the so-called exchange coupling) and tends to line up the neighboring 

spins, si and sj• in the same direction. The notation (i,j) indicates that the sum 

extends only aver nearest neighbor pairs of lattice sites. (Sometimes the notation 

[i,j] is used.) When it is appropriate to consider interactions of longer range , 

the sum must run aver all pairs (i,j) and the coupling or "exchange parameter", J, 

is replaced by Jij .. J(~i '~j) with Jij : J(~j-~i) in the norma!, translationally 

invariant case. 
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4.3 Solution of tbe one-dimensional Ising model 

Tbe one-dimensional case of tbis simple model was originally solved by E. Ising 

in bis 1925 tbesis: 

statistica! mecbanics. 

tbe solution can be found in a number of text books on 

It will not be repeated bere in full but some of tbe 

essentisi steps will be outlined. (Tbey sbould be part of any graduate level course 

in statistica! mecbanics!) Tbe modern way of solving tbe Ising mode! in one-

dimension is first to recognize tbat wbat bas to be calculated is tbe partition 

function 

(4.3) 

Because t bere are so many spina tbe calculation is difficult. On facing a bo stile 

army in overwbelming numbers tbe classica! tacticians advised: "divide and 

conquer", or 1f possible, "pick tbem off one by one". Tbe easy metbod of solving 

tbe one-dimensional Ising model (wbicb, incidentally, is not tbe metbod Ising 

bimself used) follows tbe second adage. One considera a linear lattice of N spina 

in wbicb tbe spin summations, ~ 8 =:H' bave been done over all spina si (i=1,2, ••• ) 
i except t be las t one, sN" Tben one asks what bappens on adding one furtber spin, 

sN+1• Assuming one knows tbe "partial partition function" for the N-spin system, 

say ZN[~ ;sN], one sees that only one more summation, i. e., over sN, is needed to 

compute ZN+1 [~ ;sN+1 ], and so on. Finally one must take tbe thermodynamic limit in 

order to compute the bulk free energy density and see 1f it bas any singularities 

tbat might represent phase transitions or criticai bebavior. Explicitly, we define 

tbe reduced free energy density via 

f(T,H) (4.4) 

wbere v0 is tbe volume (lengtb in tbis d=1 case) per site. It turns out that the 

process of sequentially adding one spin at a time can be done very simply and 

directly in terms of a 2 x 2 matrix, wbicb depends on T and H. Furtbermore, on 

taking tbe tbermodynamic limit one finds tbat for any boundary conditions all one 

needs to know about tbe matrix is its largest eigenvalue, say, Amax(T,H). In terms 

of this maximal eigenvalue (wbich, since tbe matrix is nonnegative, bas to be real) 

one simply bas 

f(T,H) • ln Amax(T,H). (4.5) 

On deriving tbe appropriate 2 x 2 matrix and solving a quadratic equation for 

its eigenvalues tbe answer tbat comes out (after subtracting tbe barmless ground 

state contribution) is 

f(T,H) = ln[cosb h+ ~inb2h +x ]. (4.6) 
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Here we bave introduced tbe reduced variables 

(4.7) 

and taken 

-4K 
x • e • exp (-4J/~T). (4.8) 

Tbe variable x is a temperature-like quantity whicb vanisbes wben T + O. For H = O 

and T + O tbe ground state will be attained and, clearly, tbis will correspond to 

ali tbe spins pointing in tbe same direction, eitber 'up' or 'down'. To reverse a 

particular spin tben requires an energy input of 4J because of tbe interaction of 

tbis spin witb its two neigbbors. So tbis first, 'single-spin-flip' excited state 

comes witb a Boltzmann factor of exp(-4J/kBT) wbicb demonstrates wby, in Ising 

systems, x is t be natura! low temperature in terms of wbicb one would, .!. priori 

expect simple, analytic bebavior. 

What, bistorically, was disappointing to tbe early investigatore was tbat tbis 

mode! seemed not to give any pbase transition wbatsoeverl In particular it displays 

no sbarp specific beat anomaly at any finite (nonzero) temperature. This can be 

seen by setting H-D in (4.6) so obtaining f • ln(1+x112) wbicb is clearly a smootb 

function of x or T rigbt down to tbe absolute zero. In fact it is now known tbat 

one-dimensional systems witb quite generai finite range pair interactions cannot 

bave pbase transitions at any nonzero temperature. Nevertbeless, even tbe simplest 

nearest neigbbor, one-dimensional Ising mode! does bave a transition at T • O wbicb 

can properly be regarded as a criticai poi n t! This can be seen, for example, by 

studying small x (or T + O) for wbicb one bas 

(4.9) 

Since ..!_ priori we would bave expected f to vary simply as x (as explained above) we 

see tbat tbe power 1/2 must really be regarded as a special sort of criticai 

exponent (for tbe exponential temperature variable x). 

At first sigbt it may seem a bit artificial to regard tbis effect as signifying 

a pbase transition but, in fact, tbe case for doing so is strong! Consider, for 

example, tbe magnetization isotberms for tbe mode!, as sketcbed in Fig. 4.3. At T • 

O a discontinuity in M occurs as H passes tbrougb zero, wbereas for any nonzero 

temperature M varies smootbly witb H. Moreover, as T + O tbe 

susceptibility, x • (3M/3H)T diverges very strongly: in fact, one 
-'Yx 

bas x - x wbere Yx • 1/2. Tbis exponentially strong divergence of x witb T+ O 

sbould be contrasted witb tbe simple paramagnetic bebavior x - 1/T. Similar 

exponents can be defined for ali otber quantities of interest. Also scaling tbeory 
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M T=O 

Fig. 4.3 Magnetization curves for the one-dimensional Ising mode!. 

can be applied with (T-Te) replaced by x. (It is a good exercise for the student to 

check this and find the scaling functions!) 

4.4 The two-dimensional Ising mode! 

We will, here, just present some of the exact results, calculated for the two­

dimensional Ising mode!, which reinforce our belief in the scaling hypothesis. This 

mode! is almost synonymous with the name of Lars Onsager who solved it analytically 

in 1944 by a generalization of the matrix method sketched above for the one­

dimensional mode!. The first important result to emerge was that there was indeed a 

phase transition at Te > O. At the critica! point the specific heat diverged with 

exponents 

a =a' = O (log), (d=2, Ising). (4.10) 

The logarithmic divergence was the first striking demonstration that the classica! 

theory was quite wrong! Onsager also showed that 

13 l 
8 ' (d=2, Ising), (4.11) 
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which is very different from the classica! value of 1/2. (Onsager announced his 

result at an early stage but delayed publishing his derivation. The first published 

calculation for f3 is due to C. N. Yang.) Onsager also calculated the correlation 

length from which one finds 

v =v' l, (d=2, Ising), (4.12) 

which contrasta with the classica! value 1/2. Finally he set up the calculations 

which lead to the demonstration that 

l 
n=4, (d=2,Ising), (4.13) 

in disagreement with the classica! Ornstein-Zernike prediction n=O. 

investigators showed that 

y y t l l and o 
4 15, (d=2, Ising), 

the classica! values being y = y' =l and o= 3. 

(4.14) 

Later 

Note that precisely the same exponent values apply to all soluble two­

dimensional Ising models, which means all those with only nearest-neighbor 

interactions. Furthermore, the exact values satisfy al l the scaling and all the 

hyperscaling relations derived earlier. Unfortunately, the full scaling of the 

equation of state itself cannot be checked because the model has not yet been solved 

in the presence of a magnetic field. However, scaling of the pair correlation 

functions can be checked in detail. (One might remark that the exact solution of 

the two-dimensional Ising model in a magnetic field would probably teach us much 

more about phase transitions and critica! phenomena, at this stage, than the exact 

solution of the three-dimensional model in zero magnetic field: in particular, it 

would reveal the nature of the singularities on the approach to a first order 

transition, a fascinating but subtle matter beyond the scope of these lectures.) 

4.5 Ising model in three dimensiona: series expansions 

One thing that has been very clearly revealed by the exact analysis of two­

dimensional Ising models and by comparison of the results with experiment and with 

the classica! predictions, is that the dimensionality, d, must play a crucial role 

in determining the critical exponents. It is obvious, therefore, that one should 

also want to study the three-dimensional Ising model! This model cannot be solved 

analytically in the same way that Onsager solved the two-dimensional one (although 

there were, initially, quite a few attempts). However, answers to many of the 

crucial questiona have been obtained to rather good precision by means of numerica! 
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"solutions". The method that has been used is the technique of exact series 

expansions (pioneered by Cyril Domb13). To see how this works, the easiest quantity 

to consider is the reduced susceptibility 

(4.15) 

At high temperatures, as T + .. , any spin system will behave more and more like an 

ideal paramagnet, and so x + 1. Thus we may seek an approximation which will 

approach this result in the high temperature limi t but which we will, in fact, 

attempt to use also near in the critica! region. To this end, recall that for H • O 

the partiti~ function)is given by 

Z • TrN{ e- Jl./kBT} '\' [ \"' ] N =! _, exp K L si sj • 
{si =-±l} (i ,j > 

(4.16) 

It is a function of the single parameter K • -J/kBT which becomes small when 

T+ ... It is thus natura! to search for an expansion of the properties of the Ising 

mode!, for arbitrary dimensionalities, in powers of K. The most direct approach is 

to make use of the identity (see also the more detailed discussion in Appendix C4 

x l 2 
e =l+ x +I x+ ••• , (4.17) 

and thence obtain an expansion for ZN in powers of K. However, to simplify the 

calculations it turns out to be better to introduce another temperature-like 

variable, namely, 

3 v • tanh K • K + O(K ) + O as T + ... (4.18) 

Then, and this is not very difficult to show for the first few terms, one finds, for 

example, that the expansion for x in powers of v for the simple cubie Ising lattice 

is 

X = l + 6v + 30v2 + 150 v3 + 726 é + 3510 v5 + 16710 v6 + 79494 / (4.19) 

+ 375174 v8 + 1769686 v9 + •• + 86228667894 v 16+ 401225391222 v 17+ •• , 

where we now know even the coefficient of v19 although it is too long to write 

herel The coefficients have a fairly simple interpretation. Starting at the origin 

site on a simple cubie lattice, a1-6 is the number of ways to reach the first 

nearest neighbor sites; a2•30 to reach the second nearest neighbors and so on, 

except that from a5•3510 onwards further complications enter. The genera! 

coefficient, ~· is, in first approximation, just the total number of distinct self­

avoiding walks of m steps starting from the origin: however, this has to be 

corrected by allowing for a "gas of polygons" that use some of the m available 
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lattice bonds. A great deal of effort has been expended in calculating the higher 

order coefficients; computers are of some assistance but they by no means make the 

task trivial: indeed for many years they could not compete effectively with 

systematic band calculations! 

Now it is quite evident that the coefficients 8m in (4.19) are increasing in a 

rather regular fashion with m. To study this, let us examine the ratios ~m-am/8m-l 

of successive coefficients by plotting them versus 1/m. Readers are urged to do 

this for themselves using the data given in (4.19). (Note that the ratios forma l 

to 9 and for m ~ 17 can be plotted). Those lacking the energy or time may consult 

the literature. 14 For lattices like the triangular or fcc lattices that contain 

three-sided polygons, i. e., triangles, one finds that successive ratios fall close 

to a straight line of positive slope .!!. 1/m. For 'loose-packed' lattices like the 

square and simple cubie lattice (containing no triangles) there is an odd-even 

alternation of the ratios but both sets of ratios rapidly approach a similar 

straight line! 

What does this mean? Certainly one may conclude that, to apparently ever 

better approximation as m increases, one may write 

a 

~m 
m ----= 

a m-l 
~ [l+~+ ••• ), 

ca m (4.20) 

where the dots stand for terms vanishing more rapidly than 1/m (see below). Here ~ca 

represents the (asymptotic) intercept of the line of ratios with the m = ca, i. e., 

l /m • O axis, while g represents a dimensionless measure of the slope of the plot. 

But again, what is this telling us? 

Now it is a simple matter to see, with the aid of the binomia! expansion, that 

the power series expansion of the function 

A (v) • 1 = .ç.. (-l-g)(.!....)m • l + a 1v + a 2v 2 + ... , 
g [1-(v/v ))l+g ~O m ve 

c 

(4.21) 

produces coefficients which generate ratios given exactly by 

~ • ~ = ~ = ..!.__ [1 + K] (4.22) 
m am-l mvc ve m ' 

that is, which fall exactly on a straight line in a plot versus 1/m. Further we see 

that the limiting ratio determines the point of divergence of the series as v + ve­

via 

~ca • 1/v c' (4.23) 

More importantly, however, the slope, g, of the ratio plot evidently tells us the 

exponent of divergence! (Higher order terms in a ratio plot correspond, of course, 
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to deviations from the ideai, pure binomia! form (4.20): see further below). 

To apply this observation to the Ising mode! note the successive relations 

x(v) ~ [1-(!-)J-(l+g) 
v 

c 

(K -K)-(l+g) 
c 

(4.24) 

So that, on recalling the exponent definition x ~ 1/t Y, we see that the 

susceptibility ratio plots provide an estimate of the exponent y via 

y - l + g. (4.25) 

In a similar way 11..,, the intercept at l/11 = O, is directly related to the criticai 

temperature. In fact one finds for the square, honeycomb and triangular lattices 

that the ratios 11m extrapolate to the exactly known transition temperatures found by 

Onsager for these lattices to a precision of l in 104 to 105 or better (depending on 

the length of the series used). Likewise the estimates of y for the two-dimensional 

lattices come out very close (to within ±0.01 to ±0.003) to the exact value y=l.75. 

For three-dimensional Ising lattices a parallel analysis yields estimates for 

the criticai points (which, of course, depend on the lattice) of, apparently, quite 

comparabie precision. Furthermore, to within the apparent accuracy all three-

dimensionai Iattices studied (se, bee, fcc, and diamond) yieid the same vaiue of 

y. This checks the concept of universality. In 1966, a reasonable beat estimate 

obtained by these methods and various refinements was quoted as y = 1.250 ± 3, where 

the assessed uncertainty refers to the last decimai piace given. More recent work, 

stimulated in particular by renormaiization group caiculations, by the availability 

of longer series and by methods for studying corrections to (4.21) (see below) leads 

to series estimates like15 

y - 1.239 :1: 2. (4.26) 

which are about 1% lower. These latest estimates agree remarkably well witb 

experimentally measured values for fluida, binary alloys, and other n=l systems. 

Other exponent values obtained for three-dimensional Ising modeis by these 

techniques are: 

a~ 0.105 :1: 10, v 0.632 :1: 2, and B ~ 0.328 ± 8. (4.27) 

To within the apparent uncertainties these estimates satisfy ali the exponent 

relations including the hyperscaling relations. 

Series extrapolation methods are not applicable oniy to criticai phenomena, but 

can be used also in many other situations. Notice the fundamental difference in the 

approach from the norma! truncation method of just adding up those finite number of 
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terms of an infinite series that one has been able to calculate, and merely stopping 

there! Even for a convergent series this latter method must fail completely in 

criticai phenomena since it can yield no more than a finite polynomial which could 

never reproduce the divergence to infinity of the susceptibility or other more 

subtle singular behavior that occurs at criticai points. 

When a large number of terms in a series have been calculated one can hope to 

estimate the higher order coefficients in the asymptotic form (4.20) for the 

ratios. The actual variation of x for a reasonably wide range of t is, as seen 

earlier, given by 

(4.28) 

If the leading correction term is c1t (Le., e > 1), it turns out that c1 can 

be related to the coefficient of a l/m2 term in (4.20). If, however, there is a 
e singular correction term, ca t • with e < l, this will show up as a dominant non-

integrai power l/ml+6 in the expansion of ~m· Extracting reliable information from 

these terms has proved difficult but, as indicated before ( 4. 26), there has been 

recent progress on the problem. 

In the case of the spontaneous magnetization of three-dimensional Ising models 

the series turn out to be much more erratic in appearance. For example, the fcc 

Ising lattice yields, after much labor, the low temperature expansion 

l - 2x12 - 24x22 + 26x24 + 0+0-48x30 - 252x32 + 720x34 (4.29) 

- 438x36 - 192x38 - 984x40 - 100Bx42 + 12924x44 - 19536x46 

+ 3062x48 - ••• + 40057616Bx78 - 41028736Bx80 + ..... 

The ratio method evidently fails completely for a case like this! Fortunately, 

however, there is another method, the so-called Pad~ approximant technique 

(propounded originally for this sort of problem by G. A. Baker, Jr. and J. L. 

Gammel). Pad~ approximant methods and their generalizations are able to handle such 

series and yield estimates for t3 and other low temperature exponents like those 

quoted above. In addition Pad~ approximants and their extensions provide efficient 

methods of approximate summation of series over the whole range of temperatures. 

Considerable effort by various research groups has gone into these series 

expansion methods in an effort to calculate increasingly precise and reliable values 

for all the criticai exponents. An important historical motivation has been the 

desire to check universality over a variety of models beyond the simplest Ising 

models. Do the exponents depend on anything besides d and n, e.g., lattice 

structure, quantum effects, the magnitude S of the spin, further neighbor couplings 

and so on? As more extensive results have become available these calculations have 
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increasingly confirmed the surmise that for systems with interactions of finite 

range d and n are the only relevant quantities; other parameters embodying the 

fundamental constants ~. c, e etc., apparently play no role at all in this 

question! This was a great surprise to many of the earlier workers in the field but 

now, thanks to the work of Kadanoff, Wilson, and others, the reasons for this fact 

are much better understood. As we shall se e, the renormalization group conce p t 

provides a natura! explanation. 

4.6 The n-vector spin models 

As pointed out earlier, we need to study not just one model but, rather, a variety 

of models. A natura! hierarchy of classica! spin models is represented by the 

following choices of spin variables: 

(a) Ising model: ± l (n= l)' 

(n=2); 

l {n=3); 

and finally 

(d) n-vector models: ( (l) (2) (n) 
si ,si ' ••• , si ), 

In these models the spin components are simply regarded as classica! variables and 

there are no problems associa t ed with noncommutability, as in the more realistic 

quanta! Heisenberg mode! with spin S < "' (but stili with n=3). The t o tal spin 

magnitudes may be normalized to unity as indicated or, as is more appropriate if one 

wants to consider large n, to l~il 2 =n. 

The Hamiltonian in the simplest case would be 

(4.30) 

where the first term is the coupling between nearest neighbor spins and the second 

represents the interaction with the external magnetic field which one supposes is 

applied in such a way that it couples only to the first component of the 

+ l+s 12 = vectors si. With the spin normalization set by i n, the free energy density 

of interest is derived from the Hamiltonian via 
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d l 
f [.K l = lim - FN/nNa ~T = lim --d lnZN[-1(. l, 

N+-co N+co nNa 
(4.31) 

wbere we bave expressed tbe cell volume v0 in terms of tbe lattice spacing .!. 

supposing, for simpli'city, a d-dimensionai bypercubic lattice. The factor of n in 

tbe denominator means tbat f is a free energy evaluated not only per unit volume, 

but also per single spin component. When defined in tbis way one can extract 

sensible results even wben (as proposed by H. E. Stanley) tbe limit n+co i.e., of an 

infinite number of spin components, is taken! It transpires tbat tbis leads to tbe 

so-called spberical model invented by Mark Kac. The interest in tbis seemingly most 

artificial limit is not because tbe model is at all pbysical, but ratber because it 

can be solved exactly and it embodies important features, cbaracteristic of models 

witb n ) l whicb cannot be studied in tbe scalar case of Ising models. The exponent 

values tbat emerge for tbe exact solutions are 

l 
11 = O, and il = 2 , for all d, 

and, witb a striking dimensional-dependence, 

y 2V 

and, for tbe specific beat: 

2/(d-2), for d ( 4, 

for d ;. 4, 

a = e:/(d-2) wbere e: 4-d. 

(4.32) 

(4.33) 

(4.34) 

We see bere tbe appearance of tbe dimensionality ~arameter e:= 4-d; later on we will 

use tbis as a crucial expansion parameter in renormalization group tbeory. From a 

matbematical point of view it makes perfectly good sense (witb a little care) to 

treat tbe spatial dimensionality, d, as a continuous variable even tbougb it is only 

integra! values tbat bave a direct pbysical meaning. In tbis model tbere are 

clearly two special values of d, namely, d = 4, called tbe upper borderline (or 

margina!) dimensionality; and d 2, called tbe lower borderline dimensionality. 

For d > 4, classica! tbeory is seen to work. At d = 2 tbe critica! temperature 

vanisbes, Te = O, and for d < 2 tbere is no pbase transition at all. As d + 2+ some 

of tbe criticai exponents diverge to "" as can be seen from tbe results above. It 

turns out tbat tbese two borderlines apply for all n > l. Symptomatic of anotber 

feature tbat appears generally at borderline dimensionalities is tbat for d = 4 one 

finds tbat tbe full critica! bebavior of tbe susceptibility is 

c x "' t lnt as t + O+, (4.35) 
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i.e., there is a logarithmic correction factor to the leading power law behavior. 

The appearance of a logarithmic factor at the borderline dimensionality d = 4 

suggests, correctly, that simple power law scaling forms must break down somewhat at 

this margin. However, for d < 4 ( includ:i.ng continuous val'ues of d) the spherical 

model satisfies all the exponent relations and the thermodynamic and correlation 

functions scale completely in the standard way. Above d = 4 one finds that scaling 

again works: indeed the classica! theory is, asymptotically, valid. However, that 

does mean that the hyperscaling relations (that involve d explicitly) must fail for 

d > 4. This observation indicates the somewhat different status that should be 

accorded the hyperscaling relations: 

satisfied in the spherical mode!. 

below d = 4, however, they are precisely 

While the physically realizable values of d are severely limited, the values of 

n are much less restricted. Thus, as we have seen n = l ,2 and 3 are commonplace; 

but the case n = 18, for example, is of interest in describing the superfluid 

properties of He3 (where the order parameter can be represented as a complex 3 x 3 

matrix) and values as high as n = 48 are at least conceivable in connection with 

certain incommensurate phase transitions. In the apposite direction, n = O turns 

out to describe the pure self-avoiding walk problem or, in physical terms, the 

excluded volume problem for polymers in solution. Even a negative number of 

components may be considered! 

analytical features. 16 

Thus the case n -2 has certain attractive 

4.7 Continuous spin models 

In these models the spin is again regarded as an n-component classica l vector, 

but now each component is allowed to range from +oo to -m, so we bave 

. . . , s (n)) with -"' < si(\1) < + "'· 
i ' 

(4.36) 

As regards the interactions between the spins, the Hamiltonian is just the same as 

before, that is 

Jt 
in t 

(4.37) 

However, there is now a further feature one must consider: this is the spin 

distribution. If one were not to place some sort of constraint on the magnitudes of 

the spins, -;i, or on the way in which the components si (\l) can be distributed then 

the total energy could be made indefinitely large and negative over an infinitely 

large region of phase space; the partition function would thus diverge while all the 

spins become infinitely large! We may, however, choose to regard the standard Ising 
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model as a special class of continuous spin models, and this provides us with some 

guidance as to what to do to obtain a sensible mode!. An Ising spin si can be 

considered as a continuous, one-component spin, but with the constraint that it can 

take on only the values ±1. Another way of describing this would be to say that 

each spin is subject to a distribution function or spin weighting function 

(all i). (4.38) 

With the use of this weight function, the trace sums that are involved in 

calculating the partition function of an Ising spin system can be transformed into 

integrals so that we obtain 

/_ 
ao {.. -;:t /k TJI-

ZN[ 1e l • ds 1 • • • dsN e int B 1 1 
.... - i=l 

e-w(si>. (4.39) 

(In the case of the n-vector model with n > l each integrai becomes an n-fold 

integrai over the components si (Il). ) 

The simplest generalization of (4.37) that provides a genuinely continuous spin 

distribution, is the Gaussian mode!. This model (also due to Kac) is obtained by 

setting 

(all i). (4.40) 

The integrand in (4.38) is now just an exponential of a quadratic expression. 

Consequently the calculation of ZN[~ l reduces, after diagonalizing the quadratic 

form, simply to taking a product of Gaussian integrals. The model is thus exactly 

soluble! The Gaussian model happens to correspond precisely to the artificial limit 

n = -2 mentioned above! The exponent values that emerge from its solution are 

n = O, and y = 2v l for all d, (4.41) 

while the specific heat exponent is given by 

l 
a = 2 e: for d < 4, (4.42) 

= O for d > 4. 

Unfortunately, the Gaussian model has serious shortcomings. Its worst feature is 

t ha t it has no low t~m~erature behavior! The reason for this is that the 

exponential decrease e-lsl of the spin weighting function for large 1;1 is just not 

rapid enough to keep the attractive coupling terms under contro! when T is too 

small: as a consequence the integrals diverge and the model collapses! 

To overcome this fatai defect we introduce a generalization of fundamental 
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significance: t bis is the so-called s 4 mode l now often called the LGW or Landau­

Ginzburg-Wilson model. In thi8 model the 8pin weighting function is taken a8 

- .!.,~,2- ~,;,4 
e 2 with u > O. 

-w(~) 
e (4.43) 

~ ... 4 
The effect of the uisi term i8 to pull the tails of the Gaussian weighting function 

down rapidly and hence give it a squarer looking shape (8ee Fig. 4.4). It then 

approximates the Ising model more closely, a t least ina8far as t bere i8 little 

weight for large 5; unphysical feature8 of the Gaussian model below Te are quite 

absent. It i8 widely believed that the exponent values for the scalar (n a l) 84 

e-w(s) 
Ising (delta functions) 

s 

Fig. 4.4 Schematic comparison of th~ 8pin weighting functions exp[-w(s)] for 
the Ising, Gaussian and s model8. 

and Ising model8 are exactly the same. The only 8ad result of including the 84 

terms in the exponential is that the integra18 defining the partition function in 

(4.37) can now no longer be done exactly as before! Thi8, however, i8 where e:­

expansion8, which will be discu8sed in a later section, bave a valuable role to 

play. 

The weighting function contributions, w(8i), are often treated a8 an integrai 

part of the overall Hamiltonian: thus one writes the total reduced Hamiltonian as 

(4.44) 

and the partition function i8 given by 

ZN[ -r_, l- T { i( (~l' ••• , ~N)}{ .. n / .. n S( (; ••• ; ) (4 45) n - r e = d 8 d 8 e l' ' N • • 
N -oo 1··· ..... N 

These expressions will be our 8tarting point in di8cus8ing the renormalization group 

e: expansions. 
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At first sight the continuous spin models with smooth weighting functions seem 

intrinsically different from the discrete spin or fixed-length spin models. 

However, as we show in Appendix A, they can in fact represent the discrete and fixed 

length models exactlyl 

5 Renormalization Group Theory 

5.1 Preamble 

To start with let us concentrate on the essence of renormalization group 

theory, putting the ideas in their simplest form. An analogy may be useful to give 

some perspective. In the progression from classica! mechanics to a full account of 

quantum mechanics one starts first of all with the Bohr-Sommerfeld model or 

picture. Although this represents only a crude approximation, it nevertheless 

introduces some important ideas, such as quantization and energy levels, and it 

provides an explanation for the existence of discrete spectral linea and other 

specifically quantum-mechanical phenomena. Naturally one wants to move on from 

there to Schrodinger's equation and the particle-wave duality, to Bose-Einstein and 

Fermi-Dirac statistica, to Dirac's equation, and to quantized field theoryl 

Nevertheless, it is instructive to start with the simplest embodiment of the most 

basic ideas. 

In criticai phenomena, the counterpart of quantization is the concept of a 

renormalization group transformation. The simplest such transformation which 

corresponds to the Bohr-Sommerfeld picture, is realized in the renormalization group 

treatment of the one dimensionai nearest neighbor Ising model. This model can, as 

we bave seen, be solved exactly in a fairly easy way but an analysis using a 

renormalization group approach still serves to introduce some important concepts. 

From there one hopes to progress to more subtle models. In genera!, the mose basic 

task of renormalization group theory is to explain scaling, to show us where the 

critica! exponents come from, and to explain universality. Beyond that one would 

like to calculate, more-or-lesa explicitly, critica! exponents and scaling 

functions. Further, the theory should tell us where the simplest scaling ideas fail 

and what should replace them when they do! 

5.2 A renormalization group for the one-dimensional Ising model 

What always enters into the partition function, as discussed previously, is the 

quantity - J(. /kBT, which for brevity will be called 1{. • For the one-dimensional 

nearest neighbor Ising model we therefore bave 
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(5.1) 

while an extra term, equa! to CN, has been added. This has no physical consequences 

but turns out to serve a useful mathematical purpose in any full renormalization 

group treatment. It might be regarded as equa! to -E(O)/kBT where E(O) is some 

reference energy. 

This "reduced" Hamiltonian, is evidently "equivalent" to the set of 

variables (K, h, C): knowledge of these three variables specifies , and therefore 

determines the free energy completely in the thermodynamic limit. Thus 

regarded as a point in the space of the three parameters K,h, and C. 

physical variables T and H are changed this point moves around. 

can be 

As the 

One of the first approaches to renormalization group theory is to regard it 

merely as a special way of calculating the partition function which, in this case 

may be written 

~=±l (5.3) 

f--a-1 ~a~ 
~ )( ~ )( ~ )( ~ )( f8l )( ~ )( 

SI 52 53 54 s_ so s+ 52k-l 52k 

portici trace u 
l--2a--l l--2a---l 

spati:~"" 54
\ ... Ù l 5+ /·. / 

rescaling "" 1-a~a~ / / 
(a'= a) >< >< >< >< s; s2 

)( )( 

s' k 

)( 

Fig. 5.1 Schematic representation of the simplest "decimation" or "dedecaration" 
renormalization group for a one-dimensional nearest neighbor Ising mode! 
in which a partial 'trace is taken by summing over alternate spins (boxed) 
to reduce the number of spins, followed by a spatial rescaling to restore 
the originai appearance of the problem, (see text). 
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The factor l/2N has been introduced bere so that ZN is convenienÙy normalized to 

unity when T + m. This too has no physical consequences. The free energy per spin 

is then 

f[ H.]- f (K,h,C) = ~ lnZN[~ ]. (5.4) 

The renormalization group method of tackling the problem of evaluating f [ Ji. l is, 

like the matrix method discussed earlier, one of "di vide and conquer". The idea is 

that instead of trying to do all the N spin sui!DDations at once, one should somehow 

do the sui!DDa tions over only some of the spins a t one t ime, in such a way as to try 

to preserve the system looking as much as possible like it did before the suiiDDation, 

and in such a way that a spatial rescaling of the system is effected. 

To achieve these ends in the present case we perform a partial trace by sui!DDing 

over only every second spin variable along the chain, leaving the alternate spins 

unaffected. 17 In this way we obtain a "renormalized" chain with only half the 

number of originai spins as illustrated schematically in Fig. 5.1. To see what this 

really entails we first of all write the total Boltzmann weight in the factored form 

e = ••• 

(5.5) 

where (p can be regarded as the Boltzmann factor for a nearest neighbor "bond", and 

depends only on the two spins lying at the ends of that bond. The spins s 0 , s_, and 

s+ just denote one of the typical spins over which we wish to sum, together with its 

two nearest neighbors, respectively. The partial trace to be taken will eliminate 

the spin variable s0 , and result in a new Boltzmann factor, namely, 

' ( ) - l (p s_,s+ -2 (5.6) 

for the new "bond" connecting s_ and s+. It is unlikely that the new Boltzmann 

factor will look exactly like the old one and so it has been written with a prime 
l 

and is sai d to be "renormalized". The factor 2 is included in this relation because 
l 

with each spin eliminated one must remove a factor of 2 from the overall normalizing 

factor for the partition function in (5.3). This process of eliminating spins is 

usually called "decimation" although "secundation" might be a more appropriate term 

in view of the fact it is every second spin that is "killed off" rather than every 

tenth one (from which Roman disciplinary procedure the word derives!) The term 

"dedecoration" is sometimes also used since the process is the reverse of 

"decorating" every bond with a new spin. 
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Now the renormalization group ideai is to be able to express the new bond 

factor, GP'• in the same basic form as the old one i.e., we would like to have 

K's_s+ + ~'(s_+ s+) +C' 
• e (5. 7) 

so that the new spin chain would also be completely Ising-like. There is no reason, 

however, to expect that the new or renormalized parameters, K', h' and C' should 

take the same values as the old ones. Rather we suppose the new parameters define 

the renormalized Hamiltonian 

X ' - (K', h' , C'), (5.8) 

which will bave only balf as many spina. If one can indeed achieve this, one is 

said to have accomplished one step of a renormalization transformation. The result 

is written formally as 

(5.9) 

The important parameter b is called the spatial rescaling factor which in this case 

is simply equal to 2 (see Fig. 5.1). The change in the number of spina is described 

by b since N ~ N' = N/2 • N/b. In two spatial dimensiona, however, one could 

consider decimation by knocking out alternate rows of spina and alternate columns of 

spina: then one would bave N -::+ N' = N/ 4 • N/b2• Generally, in a d-dimensionai 

system the spatial rescaling factor is related to the reduction in the number of 

degress of freedom, here simply spina, b~ 

(5.10) 

Back in one dimension, we bave expressed the hope that p '(s_,s+) as obtained 

from (5.5) can somehow be expressed in the desired form (5.6). Now we bave three 

variables K', h' and C' that can be adjusted in order to make this hoped-for 

identity true. Since s_ and s+ can only take on the values (+1,+1), (-1,-1), (+1,-1) 

and (-1,+1), imposing the identity leads to four matching equations, the last two of 

which tum out to be identica! (because the two ends of a bond are symmetrically 

related). It is thus an elementary exercise to show that these mstching conditions 

are solved by 

4K' 
e 

cosh(2K + h) cosh(2K - h) 

cosh2h 

2h' • e2h cosh(2K + h) 
e cosh(2K- h)' 

(5.11) 

(5.12) 
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and, lastly, demonstrating why it was important to introduce the "constant" term C, 

~· ~ 2 e ~ e cosh(2K + h) cosh(2K - h) cosh q. (5.13) 

We thus see that the proposed renormalization group transformation can be 

performed explicitly and exactly in this case. It has resulted in a new Hamiltonian 

but one retaining the same generai form and it entails a reduction in the number of 

spins and, as we shall see shortly, an associated spatial rescaling. 

5.2.1 Spatial rescaling and spin correlations 

The originai Ising model consisted of a chain of spins each separated from its 

neighbors by the lattice spacing, a. After eliminating every second spin the 

remaining spins are now a distance 2a apart (see Fig. 5.1 ). In an effort to have 

the renormalized model look as much like the old as possible, we rescale all lengths 

in such a way that the new lattice spacing, a', equals the old one. Under this 
l scale transformation any distance R in the originai lattice becomes R' = 2 R in the 

new lattice when measured in units of the lattice spacing. In generai we have 

R '='+'R' ~ R/b. (5.14) 

This spatial rescaling is of particular importance in relation to the spin-spin 

correlation function, <s0sR). First let us notice that it obviously makes sense to 

renumber the remaining spins so that their labels again run consecutively. Thus, as 

shown in Fig. 5.1, we take 

s 2 ~ s l '' s 4 ~ s 2' ' • • • 's 2k ~ sk' ' • • • ' (5.15) 

which, if we regard the labels as distance coordinates, is the same as making the 

identification sR' = s 2R,. Second, note that (for this renormalization 

transformation) since the undecimated spins retain their characters and relation to 

one another the renormalized correlation function <s0 •s•R,) is actually equal to the 

originai correlation function <s0s 2R,>. It follows that if the renormalized 

correlation length is ~' = !; [ ~ 'l the originai correlation length, !; = !; [ ~ l, is 

just twice as longi More generally for a spatial rescaling factor b we have derived 

the important renormalization relation 

!;[~l- ~[.U 'l. (5.16) 

We see from this that the renormalization group procedure has the effect of 

shrinking the correlation length. Hence if we recall the centrai fact of criticai 
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phenomena, nameiy, that ~ becomes indefiniteiy Iarge as t + O, we see that a 

renormaiization transformation has the effect of driving a system away from 

criticality. It transpires t ha t this is, perhaps, the most cruciai feature of the 

method, the one that enabies us to focus on criticai points! 

5.2.2 Unitarity 

Another cruciai aspect that a renormaiization transformation shouid embody may 

be caiied unitarity (aithough the term is not here being used in the sense famiiiar 

in matrix theory or quantum mechanics). Recai I that the renormaiized Hamiltonian 

arese in the process of carrying out a partiai trace over some of the originai spin 

degrees of freedom. If one now simpiy compietes the trace operation by summing over 

the remaining spins as coupied through the renormaiized Hamiitonian to obtain the 

renormaiized partition function, the end resuit must be the same as if one had 

performed the entire trace operation in one go. 

first, the partiai trace 

e 1'- '(s') 

In mathematicai terms, we have, 

(5.17) 

where s'' stands for the N'' N-N' spins over which the decimation trace was taken, 

and then we compute 

(5.18) 

In other words the partition function is preserved under renormaiization or, 

equivaientiy, renormaiized by the simpie factor unity! 

This centrai resuit yieids the Iaw of renormaiization for the free energy 

itseif as foiiows: 

( NN') -, N' 1n ZN' ( U. ] (5.19) 
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Note t ha t for the sake of generality we ha ve used (5.10) which applies for any 

renormalization group. 

Having seen how to construct a renormalization group explicitly (in at least 

one case!), and having identified a number of important generai properties, le t us 

enquire into how it may be used to elucidate the nature of a criticai point. To 

this end, we will leave aside the particular algebraic forms that appear in 

analysing the one-dimensional Ising mode l, and focus instead upon the more abstract 

features which they illustrate, 

5.3 Flow equations, recursion relations, and fixed points 

A renormalization transformation, as we have just seen, fundamentally changes a 

given problem in t o a new one, which, however, stili contains the same essential 

information as the originai one. If we rewrite (5.19) and (5.17) [which entails 

(5.11)-(5.13)) we may describe the renormalization pro·cedure by a set of flow 

equations which describe the motion of a point describing the reduced 

Hamiltonian, i(. , in the appropriate space of parameters, which for our Ising chain 

are the variables K, h, and C. First, from (5.19) we obtain 

f[K,h,C) = b-df[K',h',C'), (5.20) 

for the free energy, and then we have 

K' = cR, (K h) K , , (5.21) 

(5.22) 

and, finally, 

(5.23) 

for the "coupling constants" or "thermodynamic fields" specifying ii. The last 

three flow equations are sometimes also called the recursion relations for the 

coupling constants: of course, for the Ising chain they are just (5.11)-(5.13) 

written in a more abstract form. 

Now since the temperature, T, is bui l t in t o the parameter K, these relations 
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also imply a flow equation for T. To explore tbe significance of tbis let us, for 

simplicity, first suppose tbat tbe magnetic field on our mode! vanisbes, i.e., 

H = O, so tbat tbis flow equation can be written simply as 

T ~T' <R, (T)' (5.24) 

w bere ~ (T) is tbe appropriate function of T. We will al so suppose, witbout 

justification at tbis point, tbat ~ (T) bas tbe form sbown in Fig. 5.2, tbe 

important feature being tbat tbe plot crosses tbe line T' = T. We may call tbe 

temperature, T*, a t t be crossing a fixed point be cause i t clearly satisfies t be 

relation 

(5.25) 

wbicb means t ba t wben t be recursion relation (5. 24) is iterated t be temperature T 

does not cbange if its initial value is set at T = T* i. e., it remains "fixed" at 

T*. Subsequently we will see tbat T*, in fact, represents tbe critica! point (in 

tbis simplified, "Bobr-Sommerfeld" description). 

* Now if one starts witb a temperature T1 > T then, as is easily seen from Fig. 

5.2 one finds tbat T1 ' = ~ (T1) > T1, so tbat if tbe renormalization transformation 

is iterated, i t dr i ves tbe temperature, T, furtber and furtber from T*. Tbe same 

tbing applies if tbe starting temperature, say T0 , is below T* as also illustrated 

in tbe figure. Consequently we see tbat T* is an unstable fixed point: tbe 

temperature always moves away from it under successive renormalizations. Of course, 

tbere is, in tbe figure anotber fixed point at T = O wbicb is stable, but tbis turns 

out to be only of limited interest. In practice a similar stable fixed poi n t al so 

occurs at T = "' as we migbt bave guessed. Tbese totally stable fixed points are 

usually referred to as "trivial" fixed points. 

As we bave seen, tbe flow equation for tbe correlation lengtb, is 

~(T) = ~(T'). (5.26) 

At a fixed point tberefore we must bave 

* * ~(T ) ~(T ), (5.27) 

but since b > l, tbis equation bas only two possible solutions, namely, 

(i) ~(T*) = "'• wbicb evidently cbaracterizes a 

critica! point, and 
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T' 

T' 

T* 

o~----------~--~--+-------------
0 T0 T* T1 T 

Fig. 5.2 Plot of the renormalization function or recursion relation, T' = CR. <I> 
for the temperature, showing the line T' = T, the fixed point at T • T , 
and successive renormalization "flows" resulting from iterating the 
recursion relation from two starting temperature& T0 and T1• 
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O, which corresponds to a trivial 

fixed point. 

The vanishing of the correlation length at infinite temperature where the spins are 

totally uncoupled, or at zero temperature where they are frozen in a ground state is 

of little physical interest here and we shall ignore i t. However, we ha ve clearly 

made good our promise to prove 

(5.28) 

i.e., to show that the criticai temperature is located at the fixed point. We will 

now show that the properties of the renormalization group in the vicinity of the 

fixed point determine the values of the criticai exponents. 

5.3.1 Linearization about a fixed point 

A renormalization transformation is, in generai, a non-linear transformation as 

evident, for example from (5.11)-(5.13), but in the close vicinity of a fixed point 

we should be able to linearize it on the assumption that it behaves sufficiently 

smoothly. In the present context this merely means replacing the curved plot 

of ~ (T) near T* by its tangent at T* Writing, as before 

(T-T c) (T-T*) 
t = --T-- = --*-

c T 
(5.29) 

it follows that after renormalization the temperature deviation will be given by 

(5.30) 

for small enough t, where A 1 (b) is the slope of the tangent, which, as has been 

indicated will depend explicitly on the spatial rescaling factor b. 

suppose one iterates twice so obtaining 

To see this 

(5.31) 

Clearly this should be quite equivalent to transforming with a spatial rescaling 

factor b2• Thus we conclude that one must also have 

(5.32) 

from which we see that 
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(5.33) 

We Iearn from this that A1 must depend on b in a rather speciai way, nameiy as 

(5.33a) 

where À 1 is some constant (independent of b). If the renormaiization 

transformation is iterated t times one cieariy obtains 

(5.34) 

whiie the effect on the correiation Iength foiiows from (5.26) as 

À t 
!;(t) .. bt!;{b l t). (5.35) 

We bave been expiicit in these equations about the fact that the behavior stated 

reaiiy hoids oniy asymptoticaliy ciose to the criticai point within the regime where 

the Iinearization represents a good approximation. 

Now t, the number of iterations, is quite arbitrary and so we may seiect its 

vaiue in a way which procures a major simpiification. Specificaiiy if we choose t 

to satisfy 

-1/À 
= t l 

' 

the fiow reiation for the correiation Iength becomes 

-1/À 
!; (t) ., t l !; (l) = co~ i~ • • 

t l 

(5.36) 

(5.37) 

This evidentiy matches the power Iaw behavior, !; .. l /t v, which we expect to see 

near a criticai point! On comparing exponents we make the identification 

(5.38) 

One can carry out a preciseiy simiiar anaiysis, based on (5.20), for the free 

energy. The resuit that emerges (on choosing C so that f vanishes at the fixed 

point) is 

(5.39) 

from which, again choosing b to satisfy (5.36), one obtains 
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d/À 
f(t) ~ t 1 f(l) * tdvf(l). (5.40) 

This we may compare with the standard criticai behavior for the free energy which we 

recall from (3.25) is f ~A t 2-a. Hence we deduce the hyperscaling relation o 

(5. 41) 

first introduced heuristically in Sec. 3.8. 

5.3.2 A second variable and scaling 

If the magnetic field H is no longer constrained to vanish, the renormalization 

group operator, TR. b• acts in a more complicated non-linear fashion to generate T' 

and H' from T and H. We can express this fact either in terms of the pair of 

coupled recursion relations 

T' ~ IR.T(T ,H), (5.42) 

H' = (R. H(T,H), (5.43) 

or as the "vector" recursion relation 

(5.44) 

Note that we may ignore the "constant" term C be'cause its flow, while depending on T 

and H, cannot itself have any influence on T and H, since it merely represents an 

additive contribution to the Hamiltonian and, thence, to the free energy but does 

not affect the coupling or spin configurations in any way. [This can, of course, be 

seen explicitly in (5.11)-(5.13)). On the other band, in neglecting other possible 

variables and focusing just on T and H we are presenting what, in our quantum­

mechanics analogy, might be termed only a "single-particle picture" rather than a 

many-particle theory which, in quantlDII mechanics, would entail discussion of Fermi 

and Bose statistics, and so on. To the extent that the nearest-neighbor one-

dimensionai Ising mode! can be treated correctly within this limited context it can 

be regarded as the "hydrogen atom" of criticai phenomena; however, as in mst of 

chemistry and physics, it will prove essential to move beyond the hydrogen atom to 

approach the most interesting problems! 

With these provisos in mind, let us, as before, assume t be existence of a 

nontrivial fixed point (T*, H*) which, from the symmetry of the magnetic 
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Hamiltonian, should occur at H* = O. By the previous arguments, t bis fixed point 

will again prove to be the critica! point since we still obtain 

-* * ~[ u l - ~ * ~ = ... (5.45) 

Near this fixed point we may linearize the recursion relations which yields 

( llT)' (llT) 
llH ., 1 llH ' (5.46) 

where the linear operator, 1 is now the matrix 

(5.47) 

the derivati ves being evaluated at the fixed point, while Il T = T-T* and llH = H-H* 

denote the deviations of T and H from their fixed point values. 

Now the 2 x 2 matrix 1 will bave two eigenvalues 

an d (5.48) 

with associated eigenvectors say, g1 and 9.2 in terms of which we may expand the 

deviation vector as 

(5.49) 

The coefficients, h1 and h2 , can evidently stand in for llT and llH which, in turn, 

represent the deviations from criticality since, in this simplified "Bohr­

Sommerfeld" treatment, the critica! point is ~ the fixed point. The parameters h 1 

and h2 are therefore called the critica! fields or, in a somewhat more genera! 

context, the linear scaling fields. In genera! we must expect to find, by solving 

(5.49), that h1 and h2 are linear combinations of llT and /lH: t bis would, for 

example, be the case at the critica! point of a fluid where H1 in particular, must 

be replaced by a particular combination of !lp • (p-pc), the pressure deviation, and 

llT • (T-Te) a: t. In the case of a simple ferromagnet, such as we bave in mind, 

symmetry under H ~ -H dictates that L is a diagonal matrix and hence that we bave 

(5.50) 

where we bave chosen a convenient normalization for the eigenvectors. 

On iterating the linearized renormalization group transformation (5.46) t times 
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we obtain 

an d (5.51) 

provided that T(R,) and H(R,) remai n in the linear region. If the iterations are 

repeated too often then, ultimately, the flow of T and H will become non-linear and 

the forms (5.51) break down. This can be seen explicitly by using the recursion 

relations derived for the one-dimensional Ising mode! for which the overall flow 

pattern is shown in Fig. 5.3. Notice that this actually displays a whole Une of 

trivial fixed points! The nontrivial fixed point of interest bere occurs at T*= O 

corresponding to the fact, discussed in Sec. 4.3, that criticai point behavior 

occurs at Te = Hc = O. 

In the linear region near the criticai point the flow of the free energy is now 

given by 

f(t,h) .. b -dR. 
À R. 

f(b l t (5.52) 

(where, again, C has been chosen so that f vanishes at the fixed point). On making 

use of the freedom to choose the value of R. we may set 

(5.53) 

where t t is a suitably small, fixed reference temperature, selected to keep the 

iterations within the linear regime. Thus we obtain the relation 

(L)d/À l f(t t' H ) 
t t --À /À • 

(t/tt) 2 

f(t,h) .. (5.54) 

But since tt is now just a fixed parameter, this result corresponds exactly to our 

originai scaling ansatz for the free energy, namely 

2-a ( H ) f(t,h) • A0t Y D """/l • 
t 

(5.55) 

Comparison yields the exponent identification 

an d (5.56) 

Thus we see how the renormalization group eigenvalues, Àl and À2, at the appropriate 

nontrivial fixed point determine the criticai exponents! At the same time scaling 

is implied just by the form of the transformation. The non-universal amplitudes, 

A0 and D, are also easily expressed in terms of t t, Àl and À2, while the scaling 

function itself is given formally by 
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Fig. 5.3 Overall flow pattern in the (T,H) plane for the decimation or 
dedecoration renormalization group for the one-dimensional Ising model 
(based on Nelson and Fisher (1975) loc. cit.). Recall tha K = J/kBT and 
h = H/kB T. The dashed curve de limi ts, approximately, the region over 
which a linearization of the renormalization group (in this case in the 
variables x = exp(-4J/kBT) and H) is justifiable. 
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Y(y) 
t 

f(t ,y)' (S. 57) 

where tt must evidently be chosen sufficiently small to eliminate the effects of the 

neglected nonlinearities. Sometimes the scaling function may be calculated by a 

"matching" procedure which involves iterating /R. sufficiently many times that a 

noncritical region is reached where the renormalized free energy can be matched, to 

sufficient accuracy, onto results obtained from some other theory, such as mean 

field theory or perturbation theory which can be regarded as valid away from 

criticality. 

At this point the reader will find it a very instructive exercise to return to 

the exact recursion relations (5.11)-(5.13) for the linear Ising chain and work 

explicitly through the chain of reasoning leading first to the zero-field fixed 

point and evaluation of the criticai exponents a, and v and then through the two­

variable situation to the scaling behavior (5. 54) and the gap exponent /:;.. I t will 

be found that the nontrivial fixed point occurs at T* = H* O. Because this is a 

zero-temperature fixed poi n t one finds i t appropriate to use the variable x = e - 4K 

in place of T, in terms of which the recursion relations are readily linearized. In 

this way all the criticai features derived in Sec. 4.3 are recaptured correctly 

without the need of solving exactly for the full free energy: t ha t, of course, is 

what the renormalization group is all about! Details will be found in Nelson and 

Fisher17 but we quote the exponents 

2 -a 
x 

l l 
vx = À = 2 

x 
and (5.58) 

where the subscript x denotes the use of x in place of t in the exponent definitions 

and scaling forms, while Àh is merely an alternative notation for the eigenvalue 

À2• The scaling function is found to be simply 

l 

Y(y) (l + i>2. (5.59) 

the nonuniversal amplitudes then being Ao = D l. 

5.4 Generai Renormalization Groups 

We have used the one-dimensional Ising model to introduce some of the most 

important aspects of renormalization group theory at an initial level. However, we 

have presented no explanation of the observed universality of criticai phenomena. 

Nor have we shown how one might construct a renormalization group transformation, 

1R, for systems of higher dimensionality or with other types of local variables 

than the simplest Ising spins. Neither have we seen how to calculate explicitly for 
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more complex systems. Accordingly, we will now resurvey the terrain, but from a 

generai perspective, presenting, as it were the Schrodinger picture of criticai 

phenomena. 

5.4.1 The space of Hamiltonians 

Let us start by listing some of the essential attributes of, and some of the 

important assumptions we will make (or that should be proved) about an effective 

renormalization group transformation. A crucially important point is the need, in 

formulating ~, for a "large" space, 1H , of Hamiltonians. Historically, this aspe c t 

was rather late in being generally recognized; it was K. G. Wilson who first 

emphasized it strongly. A simple example serves to illustrate why and how this need 

arises. Consider the double Ising chain or two-layer lattice which, pictorially, 

constitutes a ladder. What is the effect on the corresponding Hamiltonian of a b=2 

decimation which eliminates alternate pairs of spins? In the absence of a 

Fig. 5.4 A double-chain or two-layer Ising model ladder with nearest neighbor 
interactions of strength J 1 along the chains and J 2 between the chains. 
The boxed pairs of spins are summed over and thence eliminated in a b=2 
decimation transformation. 

magnetic field the originai Hamiltonian is specified, as shown in Fig. 5.4, by three 

interaction parameters, namely, J 1, the coupling between nearest neighbors along one 

chain, J 2 , the cross-chain coupling between adj ace n t spins on opposi te chains, and 

by C, the additional "constant" parameter that was introduced earlier in treating 

the simple Ising chain. Carrying out the partial trace clearly results in a new 

double chain, and we need to match the Hamiltonians for this renormalized system and 

for the originai system on sets of four untransformed spins like s 1 , s 2 , s3 and s4 

in Fig. 5.4. Now there are 16 possible configurations of these four spins and these 

give rise to 16 matching equations. For H=O a number of these equations turn out to 

be equivalent. Nevertheless, as each reader should convince him or herself, it is 
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quite impossible to achieve matching using only three renormalized coupling 

constante C', J 1 ', and J 2 ' as would be expected for 'a simple ladder. Rather it 

proves essential to introduce two more new parameters, namely, J 3 •, for pair 

couplings like s 1 s 3 and s 2 s4 , and J 4 ', fora quartic coupling term s 1 s 2 s 3 s 4 as 

illustrated in Fig. S.S. Thus we establish the need for an enlarged space,}1 , 

Fig. S.S A "braced ladder" of Ising spins with four-spin couplings resulting from 
renormalizing the simple Ising ladder of Fig. S.4 by a decimation 
transformation. 

of in this case five-parameter Hamiltonians. In the "initial", physically given 

Hamiltonian two of these, J 3 and J 4, just "happen" to vanish identically! After 

renormalization, however, they necessarily appear. 

In generai, then, one must allow fdr an indefinitely large space D-1 of 

Hamiltonians H.= (C,K1,K2 ,K3, ••• ), in arder to provide a reasonable chance for a 

useful renormalization group to exist. The Hamiltonians will be characterized by 

coupling parameters C, K1 - J 1/k8T, K2 = J 2/k8T, etc. which, in generai, will be 

infinite in number. For this reason renormalization group problema tend to be 

difficult, and as yet, there are not many that have been solved exactly or analyzed 

by rigorous methods. 

S.4.2 Renormalization group desiderata 

A renormalization group 1R. b for a space lH of Hamiltonians should satisfy the 

following requirements: 

A. Existence. There should, in the first place, clearly be a well-defined 

transformation, or mapping, 
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(5.60) 

which, in particuiar, remains unambiguous and weii-defined' in the thermodynamic 

Iimit N + oo (See aiso beiow.) 

B. Elimination. In the process of making the transformation there shouid be a 

reduction in the number (or density) of the originai degrees of freedom, so that we 

can write, as before, 

N~N' (5.61) 

where b is the spatiai rescaiing factor. 

C. Spatiai Iocaiity. The transformation shouid not be so drastic that it mixes up 

the Iocai degrees of freedom, the spins, in a hopeiessiy haphazard way! More 

concreteiy, one shouid be abie to identify the same regions of space and associated 

Iocai variabies before and after the transformation, although, of course, spatiai 

distances will have been changed: two regions of space originally separated by a 

distance ~ wiii be brought cioser together by a factor b after the transformation, 

(5.62) 

thus preserving the overaii density of degrees of freedom (which is what, basicaiiy, 

fixes distance scaies). 

Hand in hand with this rescaiing of space goes the transformation of the 

correiation Iength according to 

~ -=t- ~' "' ~/b. (5.63) 

However, this particuiar reiation must, in generai, be regarded as mainiy heuristic 

since the true transformation for ~. especiaiiy away from criticaiity, must depend 

on the detaiis of the particuiar definition of correiation Iength which is 

adopted. 18 

In momentum space the effect of 1R, b is to eniarge wave-vectors by a factor b, 

so that 

D. Unitarity. 

transformation. 

b!J.· (5.64) 

Thermodynamics shouid be preserved by a renormaiization group 

In other words, the two Hamiitonians shouid give rise to the 

equivaient thermodynamic functions under proper transformations of the thermodynamic 
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fields or the couplings. In particular the unitarity relation 

(5.65) 

preserves the total partition function and from this we obtain the flow equation or 

recursion relation for the overall free energy density, namely, 

f[i< l - b-d f['" 'l, (5.66) 

as already demonstrated in (5.19). 

E. Smoothness and uniformity. In employing a renormalization group transformation 

it is normally essential to assume that the transformation is smooth in the sense 

that if "U ~~· and U + 6'-' =:p U• + 6""/(,.' then as 6/C +O one hss 6 H' +O; 

or, more strongly, t ha t 6 Jt ' becomes proportional to 6 U so that a first 

derivative exists; and so on for one or more higher derivative&. Again, such 

smoothness is normally assumed to hold uniformly over interesting regions of the 

Hamiltonian space lr1 and to apply, in particular, to the flow equation for the free 

energy where, furthermore, one trusts that one is entitled to neglect the 

differences fN[ ~ l - f 00 [""U l and their derivative&, etc., in the thermodynamic 

limit N + ... These properties are not obviously guaranteed and really need thought 

and justification as the specific cases arise. (Indeed, smoothness hss been 

seriously questioned by Griffith's and Pearce19 for certain types of renormalization 

group transformation.) 

F. Aptness or focusability. For any given Hamiltonian or class of Hamiltonians 

there is not just one renormalization group - "the renormalization group" as some 

people say - but rather there are many that might be introduced, and one must 

question, for example, whether the process is best carried out in real space or 

momentum space and so on. A "good" renormalization group must be "apt" or 

appropriate for the problem at band, and it must, in particular, "focus" properly on 

the critica! phenomena of interest. To this end it is sometimes necessary to 

introduce additional devi c es t o make the renormalization group work 

satisfactorily. An important instance is provided by spin rescaling in which the 

(continuous) spin variables undergo the transformation 

+ + + 
s "=t s' = s/c, (5.67) 

where c, the spin rescaling factor, may hsve to be chosen appropriately as some 

function c = c(b) of the rescaling factor b (or, even, as c[ U ;b]). We will see 

concretely how this need arises in Section 6 when the momentum shell renormalization 

group is used to generate the E • 4-d expansion for critica! exponents. However, 
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the significance of c can be seen more generaiiy in the context of an important 

speciai ciass of renormaiization groups which we characterize as quasi Iinear. 

5.4.3 Quasi-Iinear renormaiization groups 

Spin rescaiing has an intimate connection with the correiation functions as we 

now show. The spin-spin correiation function for two points, say 2 and !• wiii 

depend on ! and aiso on the magnetic fieid and interaction terms in the Hamiitonian, 

so we may write quite generaiiy 

<s s > G[_!; ~ ]. 
2 ! 

(5.68) 

Now a renormaiization group transformation not oniy changes ! and ~ but aiso 

invoives some definition of the renormaiized spin variabies and their reiation to 

the originai spin variabies. In the decimation transformation this simpiy amounted 

to a re-identification (or reiabelling) of the originai spins. More generally, 

however, the reiation between sx and s~, may be, and usuaiiy will be more compiex. 

Consequentiy the transformation ~Iaw for~ G[!; ~ is not necessarily simpie. In the 

case of a quasi Iinear renormaiization group, however, an identification such as 

(5.67) hoids so that, in particuiar, the pair spin correiation function has the 

transformation law 

(5.69) 

The factor c2 appears simpiy because each spin in the definition (5.68) is to be 

rescaied. 

Now, granting such a reiation, consider the situation at a nontriviai fixed 

point which, by definition satisfies 

(5.70) 

so that (5.69) yieids, for the fixed point correiations 

(5.71) 

Since b is essentiaiiy arbitrary this represents a functionai equation for c* which 

has the unique soiution 

* D * * -w G (x) • Tw• with c = c[ #. ] • b , (5.72) 
x 
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where D and w are constants (independent of b). However, such power Iaw behavior is 

just what is to be expected at a fixed point which represents the criticai point of 

a system. Thus we can make the identification 

l 
w = 2 (d-2+n), (5.73) 

where n is the criticai point decay exponent introduced in (3.48). 

This conciusion can be restated in another way: in order to obtain a 

nontriviai fixed point of appropriate criticai character, i t is necessary to adj ust 
-* c (at Ieast ciose to ;K = -s<. ) to satisfy (S. 73), where n need not be known a 

priori. This is somewhat anaiogous to the adjustment of the energy in a Schrodinger 

equation for a stationary state so that the wave function satisfies proper boundary 

conditions, and the energy then yieids the desired eigenvaiue. 

If one now returns to our exact decimation soiution of the one-dimensionai 

Ising modei one sees that, without raising the question, we impiicitiy took a spin 

rescaiing factor c = l or w = O in (5.72). Further, as mentioned, the quasiiinear 

criterion, (5.69), was indeed satisfied. The fact that we then obtained a sensibie 

fixed point for one-dimensionai Ising criticaiity at T = O was thus reaiiy a resuit 

of the "accident" that n describes the scaling behavior of the Ising 

correiations via (3.52) as T + 0: this, happiiy, agrees with (5.73) since 

2w-d+2 = 0-1+2 l! It is evident, however, t ha t if one suspects t ha t n is no t 

simpiy equai to (2-d) it is inappropriate to use a quasiiinear renormaiization group 

uniess one aiiows for a spin rescaiing factor. 

5.5 Fiows, universaiity and scaiing 

The assumption of smoothness means that systems represented by Hamiitonians 

corresponding to nearby points in our muitidimensionai parameter space, D-J , fiow 

under renormaiization to other points which aiso Iie reiativeiy ciose together. Let 

us appiy this observation to the set of Hamiitonians representing a singie physicai 

system, say for concreteness the ferromagnet pure nickei, in the vicinity of its 

criticai point. We will enquire into the fiow trajectories generated by iteration 

of the renormaiization group and see how this Ieads naturaiiy to a concept of 

universaiity. 

5.5.1 Universaiity, reievance and irreievance 

Consider Fig. 5.6 which presents a visuaiization of the space, lt.t , of 

Hamiltonians and, in particuiar, exhibits a "physicai manifoid" described by the 
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Fig. 5.6 A representation of the space of Hamiltonians, D-J, showing initial or 
physical manifolds and subsequent renormalization group flows. f~itical 
trajectories are shown bold: they terminate on the fixed point H.. 
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(.Jl 
initial, unrenormalized Hamiltonians, ~ 1t,h), corresponding, as we agreed, to 

nickel near its ferromagnetic criticai point. At the criticai point itself, when 

the physical fields t and h vanish, we have ; E ~ because of the characteristic slow 
.u(=> -c> decay of the correlations. However, the criticai Hamiltonian "c • l' 0 (0,0) 

is ~. in genera!, a fixed pointl After one operation of the renormalization group 

transformation we obtain a new manifold, representing the first-renormalized 

Hamiltonians ~ '(t' ,h'), in which is embedded the renormalized criticai 

Hamiltonian, ~ ' = 1R, b[ ~ ]. It is crucial to realize that this also will be a c c 
criticai Hamiltonian [and, hence, equal to ~ '(t'-Q,h'•O)]: the reason for this is 

simply that the flow equation (5.63) for the correlation length tells us 

that ; ==+' ; ' = ; /b = ~ /b = ~l Thus under successive renormalization a line or 
c c c 

trajectory of criticai points is generated. In principle this criticai trajectory 

might eventually fly off to infinity or it might wander around in 11--J forever, even 

perhaps in some sort of turbulent or chaotic motion! Nevertheless in the light of 

the previous examples (and further calculations to be performed) it is also very 

plausible to suppose that the criticai trajectory eventually terminates at some 

fixed point Ù * at which, of course, further renormalization produces no further 

motion. The criticai trajectory starting from the criticai point of nickel and 

proceeding through a sequence of criticai points of renormalized forms of nickel, 
-* lies on the stable criticai manifold of the fixed point ~ i. e., the set of all 

points in Jl-1 which are ultimately carried by the renormalization group flows 
-* into U • Evidently all points on this stable criticai manifold, including the 

fixed point itself, correspond to systems at criticality. 

Now one might start in quite a different region of parameter space 

corresponding, say, to iron or gadolinium, as suggested by the other initial, 

physical manifold indicated in Fig. 5.6. Then, perhaps, under renormalization the 

criticai point Hamiltonians for iron and gadolinium flow to the ~ fixed point as 

before! If it happens this way, then Ni, Fe and Gd must all lie on the same 

criticai manifold. The universality of their criticai behavior then follows from 

this fact! To demonstrate this point consider what happens to the free energy under 

1 successive renormalization group iterations: by (5.66) we have 

We see that the behavior of f(t,h) for any U : (t,h) which lies near a criticai 

Hamiltonian is determined by the behavior of f[ ii l for a multiply renormalized 

Hamiltonian which will lie close to the fixed point. Thus the criticai behavior for 

Ni, Fe, and Gd, and for any other systems whose criticai points lie on the same 

manifold, will be essentially identica!. In particular, because of the smoothness 

of the mapping all will display the same criticai exponents and, furthermore, all 

will be described by the same scaling functions. It is only as regards the various 
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non-universal amplitudes that the various systems will differ. 

Not all systems, of course, are expected to have critica! Hamiltonians which 

flow to the same fixed point. For instance, suppose iron is placed under a uniaxial 

stress. The initial parameters, and hence the initial physical manifold, are now 

slightly altered. If the critica! point Hamiltonian were stili to flow to the same 

fixed point as before, we would call this uniaxial stress an irrelevant perturbation 

since it does not change any of the essential asymptotic critica! properties. On 

physical grounds, however, in this particular case we suspect strongly that the 

critica! behavior will change since the uniaxial stress should enhance parallel spin 

fluctuations but tend to suppress transverse fluctuations. Thus the new flow should 

carry i( to a different fixed point which may be described in terms of a single-c 
component, scalar or n ~ l Ising-like order parameter, whereas the origina! fixed 

point for unstressed iron is expected to correspond to an isotropic Heisenberg-like 

or (n .. 3)-component order parameter. Now there will be another manifold of 

Hamiltonians that all flow to the new Ising-like fixed point; the critica! 

properties of systems described by these Hamiltonians will be different from those 

of the former set. In such a case we say the uniaxial stress represents a relevant 

perturbation since i t causes the criticai Hamiitonian to flow to a distinct, new 

fixed point. 

The flow picture brings out cleariy the idea of various universaiity classes. 

Systems which beiong to the same universaiity ciass have criticai Hamiitonians which 

fiow into the same (or equivaient) fixed points. The corresponding criticai 

manifoids can be regarded as the catchment areas or basins of attraction of the 

different fixed points. 

5.5.2 Continuous fiows 

As we have seen, one utiiizes a renormaiization group transformation by 

iterating it, obtaining successive renormaiized Hamiitonians. Accordingly it 

usuaiiy proves convenient to introduce a discrete flow variabie 1, which counts the 

iterations. It can cieariy be thought of as a time-Iike renormaiization or 

rescaling variable which parameterizes the flow trajectories. To this end we 
1 rewrite the spatiai rescaiing factor as b • e , and recaii that the renormaiization 

transformation is parametrized by b as !'' = 7R.. bl-ie ]. Quite often, however, 

there arise situations in which 1 can be regarded as a continuous, truiy time-Iike 

fiow variabie. When this is so, the renormaiization group equations can be written 

more directly as differentiai flow equations. Thus for the Hamiitonian itseif the 

transformation is represented by 

(5.75) 
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where the ~ is the infinitesimai generator for ~ 
a Iimit operation as 

It can thus be expressed via 

li m 
b+l+ 

(5.76) 

Since U mereiy represents the poi n t (C, K1 , K2 , ••• ) , the fiow can aiso be written 

as a set of simuitaneous differentiai equations of the form 

(S. 77) 

for the parameters C, Kl' K2 , etc. (If, as before, C represents the "constant" term 

in X, it will not actuaiiy enter in the {/ i for i > O.) 

5.5.3 The fixed point spectrum 

In order to use a renormaiization group to describe criticai phenomena we must 

-* assume that there is an appropriate fixed point 1f.. • This assumption is backed up 

in many cases by various more-or-Iess detaiied caicuiations. A few, Iike those for 

the one-dimensionai Ising modei, are exact but most are at best systematic 

approximations. However, if we foiiow the assumption through, powerfui generai 

conciusions foiiow: converseiy if no proper fixed point exists we may expect 

scaiing and other consequences to faii. 

The first step, as we have seen, is Iinearization. To impiement the procedure 

we take il ciose to the fixed point and write 

-* 
1(, + g~' (5.78) 

where g is smaii and (Q is some "operator", i. e., a partiai Hamiitonian. On 

operating with~ band invoking the smoothness assumption, we obtain 

(5.79) 

where 1]...,. b = (eS i4 '/eS 1i ) is a linearized renormalization group opera t or. As a 

Iinear operator, i t can be expected to have a spectrum of eigenvaiues A. (b) and 
J 

associated "eigenvectors", ~ j, which are "operators" or partiai Hamiltonians. 

Sometimes the ~ j are caiied criticai densities or scaiing operators, etc. They 

are determined by the eigenvaiue equation 
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Each of the eigenvalues should be expressible in the form 

À. 

A. (b) = b J 
J 

(5.80) 

(5.81) 

where the individuai Àj 's are independent of b. (This reflects the semigroup 

property' 7R, b b = 1R, b m b ' of the renormalization group transformations.) 
l 2 l 2 

Typically, one can make the indentifications 

~l= é' ~2 - '1', (5.82) 

where 'l' denotes the order parameter and é the energy (see also below). 

If we assume the eigenvectors form a complete se t, or at least a sufficiently 

complete basis in some asymptotic sense, we may expand ~ in terms of them as 

- - * \' fll 
/(, = 1(. + 4 ' gj ~ j + • • • • 

J 

Acting on Ji. with 1R.b then yields 

X.' -*~\(Q 2 
J(. + Lt gjA. . + O(gJ. ,gi gJ.)' 

·i J J .. 
and on iterating ~ times we find 

The gj are called cri tical fields or linear scaling fields. 

express the ~-renormalized field as 

g (t) "' A~ 
j g .. 

J J 

where we must write "' ("asymptotically equals") in place of 

(5.83) 

(5.84) 

(5.85) 

Evidently we may 

(5.86) 

because we are 

neglecting the higher order terms in (5. 84) and (5. 85). Now as ~ increases t bere 

are three possible courses for gj(~): 
(a) If Àj > O then we bave Aj > l and gj (~) grows rapidly larger, carrying the 

system away from the fixed point and, hence, away from the corresponding 

criticality. In accord with our previous discussion, such gj are called relevant 

fields and the associa t ed (Jl j are called relevant operators. A t a normal criticai 

point we know that criticality is destroyed by varying the temperature, which 

couples t o the energy, é , from Te or by changing the ordering field, h, which 

couples to '1', from its criticai value, h= O. Thus we expect to find two relevant 
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scaling fields which, reflecting (5.82), may be identified as g1 = t and g2 = h. 

(b) If Àk < O one has Ak < l and gk (R.) shrinks steadily to zero. Ultimately, 

therefore, it should be possible to ignore such fields. For this reason, again in 

concordance with the earlier discussion, gk is called an irrelevant variable or 

fieid in such a case and the associated ~ k is an irrelevant operator. If the 

relevant fields are all set to zero the flows will take ~ to the fixed point, so it 

must then lie on the critica! manifold. Thus another way of stating universality is 

to note that the fixed point is insensitive to the irrelevant variables, so that 

systems differing from one another only with respect to irrelevant variables belong 

to the same universality class and are "governed" or "controlled" by the same fixed 

point. 

(c) Finally there is the borderline where À • O so that A • l. 
m m 

The corresponding 

gm are cailed margina! variables, and neither grow nor shrink very rapidly. Rather 

the fiow of a marginai variabie must be described by 

and so is determined by terms quadra tic in the fields. Thus a marginai variabie 

varies oniy reiativeiy siowiy with R.. On foiiowing through an anaiysis in which 

margina! variables feature (see e.g. in Sec. 6) one finds there are various speciai 

things that can happen, which violate the simpiest scaiing precept. One of the 

typical eJfects is the appearance of logarithmic correction factors, such 

as (lnltl)v, muitipiying the usual criticai power laws. The ability to identify and 

predict such departures from straight forward scaiing represents one of the powers 

of the renormalization group approach. 

5.5.4 Scaling of the free energy and hyperscaiing 

Let us now express the free energy in terms of the set of scaiing fieids 

gl,g2,g3, etc. 

asymptotic form 

The flow equation for the free energy then takes on the simple 

-dR. R.À l R.À2 
f(t, h, g3' ••• ) .. b f(b t, b h, 

R.Àj 
••• ,b gj, ••• )J (5.88) 

where we have made use of the identifications g1 = t and g2 = h. 

Now we can make the previous choice for b or R. by setting 

R.Àl 
b .. 1/t, (5.89) 

which yieids the generai scaling resuit 



91 

2-a h 
f(t,h, ... ,gj, ••• )•t f(l,6· 

t 
... ' i ' . . .. ) . 

t j 

(5.90) 

where the standard thermodynamic exponents are given, as before, by 

2-a .. d/À l an d (5. 91) 

while the "crossover exponent" for the scaling fieid gj is given by 

(5.92) 

' Now if 'j > O for some j, the scaied combination gj /t j becomes large as t + O and 

so it cieariy cannot be ignored: in other words gj is another reievant variabie and 

its presence wiii normaiiy Iead to crossover to different criticai behavior (or, 

perhaps, to noncriticaiity as for t and h). On the other band, when +k is negative 

one has 

4>k _ 8 k 
gk /t = ~t + O as t + O, (5.93) 

and so gk becomes inconsequentiai: i t is an irreievant variabie. By expanding 

(5.90) in terms of the scaied combination gk/toj)k, if this is allowed, we see that 

sue h irreievant variabies can contribute "corrections-to-scaiing" i. e., correction 
e 

factors to Ieading power Iaws of the form [l + cj t j + ••• ]. At some slight risk 

therefore (in case the gk enter in a "dangerous" way), one can thus discard ali the 

irreievant variabies and worry oniy about the reievant ones. Finaiiy, this 

justifies the postulate of asymptotic scaiing near a criticai point in terms of oniy 

a few important variabies. For a standard criticai point with oniy two reievant 

variabies we thus recapture the scaiing form 

(5.94) 

in considerabie generaiity. 

It is worth mentioning that in addition to the singuiar corrections to this 

asymptotic scaiing form which arise from the irreievant variabies and their exponents 

as factors (l+ct6+ ••• ), one must aiways expect farther anaiytic corrections to 

scaling which will appear as t and h depart increasingiy from criticality. At the 

most triviai Ievei the "harmiess" change from t = (T-Tc)/Tc to t' • 1-(T/T), which 

is often useful theoreticaiiy and experimentaiiy, introduces such correction terms 

since one has t' = t - t 2 + t 3 + More generaiiy, on soiving the recursion 

reiations near a fixed point beyond Iinear order one finds that the scaiing fieids 

t, h, ••• , gj , • • • in the scaiing reiation (5. 90) shouid, for greater accuracy, be 

repiaced by non-Iinear scaling fieids, t, h, ••• , gj, ••• which, in quadratic and 

higher order can coupie the originai fieids together so that, for exampie, one 
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2 2 2 has t= t+ a1t + a2h + a3 th + ••• , where symmetry may dictate that certain 

terms are absent although the coefficients ai bere are ·nonuniversal. Clearly 

further analytic corrections to asymptotic scaling arise from this source and can be 

significant in practice. 

Finally, let us appeal to the locality assumption for the renormalization group 

and recall (5.63) to obtain, for h = O, 

!Àl -1/Àl 
;(t,O, ••• ) • b;(b t,O, ••• ) • t ;(1,0,0, ••• ), (5.95) 

where we bave used (5.89) and allowed the irrelevant variables to go to zero. 

Comparing this with the definition ;(T)~ t-vas t+O (h=O) yields again (see (5.38)) 

the identification 

(5.96) 

which may, with good reason, be regarded as the most fundamental of the 

renormalization group exponent relations. However, the provisos explained after 

(5.63) and in Sec. 5.4.3 must be borne in mind and, more properly, one should work 

with the correlation flow equation (5.69) or its analogue for nonquasilinear 

renormalization groups. 

If we combine (5.96) with (5.91) we immediately obtain the hyperscaling 

relation, dV = 2 -a, first introduced in Sec. 3.8 on heuristic grounds [see (3.57) 

to (3.59)). From this and the previous d-independent scaling relations, follow all 

the other hyperscaling relations such as (3.60), which relates n and o, (3.65) and 

(3. 72). It is clear at this stage that hyperscaling is "built into" renormalization 

group theory in a rather intimate and deep way. Nevertheless hyperscaling fails, as 

mentioned previously, for classica! or mean field theory (unless one has d = 4); but 

we bave already seen evidence, most concretely through the exact results for 

spherical models, t ha t the classica! exponent values are valid for d > 4· , 
furthermore, this is confirmed generally by the explicit renormalization group e:­

expansion analysis presented below in Sec. 6! Thus we are faced with the paradox 

that hyperscaling seems to be predicted very generally by renormalization group 

analysis but, nonetheless, fails strongly for d > 4: this issue is discussed 

further in Appendix D where it is resolved in a consistent way in terms of the 

properties of dangerous irrelevant variables. 

This is also an appropriate place to caution the reader that one can encounter, 

in the criticai spectrum of operators, certain so-called redundant operators: these 

appear formally in the specification of the Hamitonian ~ and its flow under 

renormalization but the associated scaling fields bave no effect on the free energy 

or other observable properties! As discussed by lol!gner, 20 redundant operators may 

be envisaged as describing, in a continuous spin system, for example, a mere change 
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in the origin or scale of the spin variables (which, since all spina are eventually 

integrated out, cannot have an effect if all couplings, fields, etc. are changed in 

a covariant way as specified by the corresponding scaling field). In well­

controlled practical calculations redundant operatore do not normally cause problema 

and the reader will find little reference to them in the literature! 

5.6 The construction of renormalization groups 

The actual process of explicitly constructing a useful renormalization group is 

not trivial. we will only consider briefly a few particular renormalization groups, 

and then delve a little more deeply into one of them. A renormalization group 

typically involves going over from one set of local variables or spina to another 

set, { s} N =9- { s} N'. A rather generai form for 7R. can be expressed via 

1i. { s} ~ ~ '{s'} 
e _, e , where the renormalized Boltzmann factor, which is what really 

matters, is defined by 

e ~ '(s') .. s 
TrN 

~ iC(s)} 
{~N' N(s',s) e , . (5.97) 

in which the kernel (/(N' N( s' ,s) has N originai or unrenormalized variables, s, but 
• 

a smaller number N' of renormalized variables s'. [The rescaling factor b is 

defined as usual via (5.61).] Now in order to meet the unitarity requirement 

(5.65), this kernel must satisfy the condition 

s' li'> 
TrN' { U"t. N' N(s's)} = l for all s. . (5.98) 

Two of the simplest and more fashionable renormalization groups can then be 

specified as follows:-

5.6.1 Kadanoff's block spin renormalization group 

Kadanoff 21 was the first person to expose the intimate connection between the 

idea of a rescaled "block" or "cell" spin and the scaling properties of a criticai 

point, thereby prefiguring Wilson's development of the generai renormalization group 

approach. He was also the first to bring this particular approach to the point of 

being a practical computational scheme. (I t might be mentioned, however, t ha t the 

idea of block spina as a way of approaching criticai phenomena had been proposed 

independently a year or so earlier by M. J. Buckingham22 at one of the first 

conferences to explicitly recognize the unity and universality of diverse criticai 

phenomena.) The simplest way of picturing Kadanoff's construction is to considera 
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Fig. 5. 7 An illustration of Kadanoff 's block spin renormalization scheme for a 
square lattice Ising model. The originai spins are denoted by crosses; 
the renormalized block spins are shown by solid circles. The spatial 
rescaling factor bere is b • 2. 
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two-dimensional Ising model on a square lattice as illustrated in Fig, 5. 7. Tbe 

lattice is divided into blocks or cells eacb containing 2 x 2 .. 4 spins. On 

renormalization eacb cell of spins is replaced by a single block or renormalized 

spin. Tbus for tbis renormalization group we bave b • 2. Tbere are severa! 

algebraic wsys in whicb tbis replacement can be effected. 

One migbt, for example, imagine a pair coupling of strengtb J 0 between tbe 

block spins and the origina! spins in addition to the given couplings, say Jl' J 2 , 

etc., between the origina! spins. A full trace is then taken over the origina! 

spins leaving a square lattice of block spins. 

A crucial feature tbat appears directly one sums over tbe origina! spins in 

such a "real space" renormalization group for a lattice of dimensionality d > l is 

tbat couplings now apppear not only between first neighbor block spins but also 

between second neigbbors, tbird neigbbors, fourtb neigbbors, and so on. Worse in 

fact, since one is actually forced at tbe first step to go over to a space of 

Hamiltonians in which tbere are an infinite number of coupling constants not only 

between all pairs of spins but also between all triplets, all quartets, etc. 

Despite this inescapable complexity one can write down a formally exact expression 

for7ft • In the simplest genera! case this is expressed by tbe kernel 

lo q 

(RN' N= lf .!. [l + es' E s ], (5.99) 2 ~· ~ ' cells x in 

~· ~ell ~· 

where c serves as a spin rescaling factor. The product runs over all the blocks or 

cells; the sum runs over all tbe bd spins in a given cell. One can also check that 

tbis yields a quasilinear transformation (as discussed in Sec. 5,4,3), 

Altbougb (5.99) is a neat closed formula, it certainly does not mean tbat tbe 

problem is solvedl In fact tbe best tbat can be done (unless d=l) in order to 

actually implement tbis renormalization group, i,e,, to relate tbe new renormalized 

couplings explicitly to tbe old ones, is to invoke some approximation scbeme. 

Unfortunately, tbe metbods of approximation normally used entail truncating tbe 

number of interactions at eacb stage of renormalization to some finite number of 

more-or-less sbort range coupling terms. This is a fairly uncontrollable metbod of 

approximation, and really useful new results from tbis renormalization scbeme bave 

not been very plentiful. 

5.6. 2 Niemeijer and van Leeuwen 's msjority rule 

This method is most frequently applied to plane triangular lattices but can be 

adapted to otber geometries and dimensionalities. In tbe simplest case triangles of 
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adjacent spins, s, are formed into blocks and associated with a block spin, s'. Now 

in any block of three Ising spins, sl' s 2, and s 3 say, at least two will always be 

pointing in the same direction. The transformation rule then states that the 

corresponding block spin, s', points in the direction of the majority! The 

corresponding kernel can be written, with rescaling factor given by bd = 3, as 

where the sum and second product run 
l 

coefficients are fixed by co = -cl = z• 

(5.100) 

over the three spins in the cell ~·; the 

It is easily seen that this transformation 

is no t quasilinear so t ha t it is no t necessary to adj ust c0 or c1 t o achieve a 

condition such as (5.72) and (5.73). One may be tempted, however, to try different 

values for c0 and c1 and to try to optimize their choice in some way. However, the 

exact transformation again necessarily involves an infinite number of coupling 

constants so some sort of approximation scheme must be used. Many possibilities 

arise and it is hard to find a truly systematic procedure since no small parameter 

presents itself. Variational criteria for choosing the optimal c0 and c1 have been 

explored but they cannot be relied on to yield correct final results. 

5.6.3 Wilson's momentum shell integration 

This renormalization group, which is particularly important since it turns out 

to allow a systematic expansion procedure, is designed for or, perhaps more fairly, 

requires continuous spins, ~ - (s~) with -oo < s~ < oo as discussed in Sec. 4.7. If, 
:s lS ~ 

for simplicity, one considers a d-dimensionai hypercubic lattice of spacing a (i.e., 

a square lattice for d = 2, simple cubie for d = 3, etc.) one can introduce the 

associated Fourier transformed spin variables 

A L i,g•:s + 
s = e s n x' ;:, .lS ~ 

(5.101) 

where the wave vector ,g runs over the appropriate first Brillouin zone of the 

reciproca! space lattice: this can be expressed by 

l q l. l q l, • • • .;; qA x y 
TT/a, (5.102) 

where qA represents a momentum space cutoff which, of course, simply reflects the 

underlying lattice structure. The situation for a square lattice is illustrated in 

Fig. 5.8. For the origina! spins in real space one has, reciprocally, 

+ 
s 

.lS 
(5.103) 
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q~ 

Fig. 5. 8 Momentum space for a square lattice illustrating the construction of an 
inner zone, marked <, and an outer zone or shell marked > (upper part of 
figure). After integrating over spin variables with momenta in the 
shell, the inner zone is expanded by a factor b to form the new, 
renormalized Brillouin zone. 
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- ... 
In this way any reduced Hamiltonian f.<. (s ) , expressed in terms of the real 

x 
space (or la t tic e) spins, can be re-expressed precisely in terms of the Fourier 

spins, s as Jl ( s ). Likewise the trace operation 
.9 .9 

becomes simply 

s 

.9 J"' Tr =lT Tf 
N .9 ].l =l CD 

].l 
ds~, (5.104) 

(5.105) 

Now, motivated by the idea that it is the low momentum or long wavelength 

fluctuations that are of most importance for criticai phenomena, while the short 

wavelength, high momentum fluctuations are less crucial, Wilson divides the 

Brillouin zone into two regions as shown in Fig. 5.8. In the inner region, which we 

will indicate by a superscript <, the wavevectors g satisfy 

(5.106) 

while the 

thickness l! q 

remaining, outer region constitutes a "momentum shell" of 

(1-b -l) 1f l a which can, if convenient, be chosen infinitesimal. Now 

the originai Hamiltonian is a function of spin variables s with wavevectors 
g 

distributed uniformly throughout the whole zone. Let us partition these into a 
A< 

set, {s}, of all those N' = N/bd spins with wavevectors in the inner zone, and into 
.9 A> 

the remaining set, { s } , of the (N-N') spins in the shell. We can then wri te the 
.9 

reduced Hamiltonians as 

ii. (s ) 
.9 

(5.107) 

Evaluation of the partition function requires an integration over all these spins as 

implied by (5.105). Instead of doing this in one step, Wilson proposes that the 

integration be 

variables { ~>} 
q 

physical idea 

performed in stages, starting with an integration over only the spin 

in the outer zone or shell. This procedure clearly embodies the 

that the high momentum variables play a smaller role in the criticai 

behavior and hence may reasonably be eliminated first. (It should be stressed, 

however, that i t is a serious over-simplification to assert that all the criticai 

behavior occurs only at low momentum: this is not the case and is not assumed in 

the renormalization group approach which, on the contrary, allows properly for all 

contributions.) 

This renormalization procedure yields a new Hamiltonian 1(• given by 
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e = Tr { e (5.108) 
N,N' 

In this expression we have also allowed for spin and spatial rescaling. The latter 

proceeds simply in accord with (5.63) and (5.64). As illustrated in Fig. 5.8, the 

rescaling 
.9 ~ .9' = b,g, (5.109) 

of the wavevectors corresponds to an expansion of the inner region of the originai 

Brillouin zone to fill out the new, renormalized zone back to the size of the 

originai zone. 

A spin rescaling is needed since i t is no t hard to see, by examining the 

transformation of the Fourier space spin correlation functions G{n) = <s s >, that 
.. .9 -.9 

the renormalization group defined by (5.108) is quasilinear. Accordingly, the 

renormalized spina are defined via 

s ~s' 
.9 -r .9' 

s /c, 
.9 

where, in comparing with (5.67), we have the relation 

A d 
c = b c. 

(5.110) 

(5.111) 

It follows by the previous arguments that at a fixed point the Fourier spin 

rescaling factor is related to the exponent n via 

~* = b(d + 2 - n)/2 (5.112) 

Of course, other criticai exponents must come from an analysis of the fixed point 

spectrum. 

Naturally one cannot, in generai, implement this momentum shell transformation 

exactly. Nor can one be necessarily assured of smoothness, locality and aptness. 

However, in the same way that the one-dimensional Ising model can be treated exactly 

by the decimation or a block spin renormalization group - thus constituting an 

analogue to the quantum mechanical "particle in the box" problem - so can Gaussian 

models, as described in Sec. 4.7, be treated exactly by the momentum shell 

transformation. One might, indeed, regard the Gauss i an mode l as the "hydrogen atom" 

of critica! phenomena: unfortunately, however, in itself it is of distinctly less 

direct physical relevance t han the hydrogen atom. Even so, as we shall show in the 

next section, a solution of the Gaussian mode! via the momentum shell 

renormalization group provides a foundation on which can be built a systematic 

expansion procedure for solving more realistic and challenging models! 
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6. Dimensionality Expansions 

On the face of i t, the Wilson momentum space renormalization group seems to 

suffer from the same afflictions as the previously-described real-space 

renormalization groups; but i t turns out to have an overwhelming advantage in t ha t 

the unavoidable approximations can now be made in a systematic and controlled way. 

It has thus proved possible to make many useful, novel, and incisive calculations 

with the momentum shell integration technique and, even in rather low orders of 

approximation, quite accurate numerica! results have been obtained. 

As explained, the momentum shell renormalization group requires the use of 

continuous spins with, say, n-components so that ~ (s(~)) with 
() x x ~=1,2, ••• ,n 

.... < s ~ < .,. • At first sight this precludes lts application to discrete spin 

systems, like the spin 1/2 Ising model, or to systems with fixed length spins like 

the classica! Heisenberg model with, say, l; l = l. However, this view proves too 
x 

naive since, via a Kac-Hubbard-Stratonovich transformation, such models can be 

transformed exactly into thermodynamically equivalent continuous spin models with 

definite spin weighting functions of the generai sort discussed in Sec. 4. 7. How 

this works is explained in Appendix A. Here we will assume that a continuous spin 

model is given and we start by transforming it into a Fourier space representation 

suitable for application of the momentum shell procedure. 

6.1 Transformation of the Hamiltonian 

Following (4.44) we consider the total reduced Hamiltonian expressed in real 

space variables as 

- H,i (~ )/k T -'\'w(;), 
nt x ~B '-' x 

(6.1) 

- ! -

where the interaction Hamiltonian (or, for true spins, the "exchange" Hamiltonian) 

is given by 
l 

-~ Er 
!l !2 

(6.2) 

while the site vectors ~ range over a d-dimensionai hyper-cubic lattice of 

spacing ~· The single-spin weighting function is expanded as 

+ 1+2 -+4 -+6 
w(s) = 2lsl + ulsi +visi + (6.3) 

It is worth recalling at this point that, as mentioned in Sec. 4.7 and demonstrated 
l 

in Appendix A, the discrete variable spin 2 Ising model and the classica!, fixed-

length, n-vector models can all be cast exactly in the form of continuous spin 

models as considered here with no approximation. Now we introduce momentum space 

variables s via ( 5.103) with the inverse relation ( 5. 101). 
.9 

straightforward to transform (6.1) into the form 

It is then 
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l IL A A A =--- [1-K(g)]s •s 
2 N ~ -!1. 

.!l 

(s • s ) (s • s ) + ... , 
.!11 ~2 !13 .!14 

(6.4) 

where the wave vectors appearing in the multiple sums are restricted by 

.!l + .!l + !1. + ~ o, ~. (6.5) 
l 2 3 4 

for the fourth order term, and similarly in higher orders, where ~ is any reciproca! 

lattice vector. The interactions now appear via the Fourier transform 

A ig•x J(~) 
- K(.g) = l -\'e -D kBT 

~ 

(6.6) 

If the couplings are of reasonably short range it is possible to expand K(!J.) in a 

power series in g in which, for symmetry reasons the linear term vanishes and the 
2 

quadratic term is proportional to 1.!!1 . The result can be written in the form 

T-T A 

l - K(n) = __ O + J(O) R2 2 + O( 4) 
"' T k T Oq !1. ' 

B 

(6. 7) 

where the mean field critica! temperature, T0 , has been introduced via 

(6.8) 

while R0 measures the range of the interactions. 

Of course we will be interested in the thermodynamic limit N + m, The 

wavevector sums then become integrals and, to simplify formulae, we will employ the 

shorthand notation 

d q -f d f 
(21T)d = g' 

A rescaling of the spin variables by the substitution 

A + (T)l/2 l 
s = a T ----;r-;2, 
!l ~ O R a o 

transforms ii. into the more convenient standard form 

+ + 
a •a 

!1. -g 

n 

r 
\l,V=l 

(6.9) 

(6.10) 

(6.11) 
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with 

(6.12) 

which is known as the Landau-Ginzburg-Wilson (LGW) reduced Hamiltonian or as a 

field-theoretic Hamiltonian (or "action"). The coefficient e has been introduced in 

the quadratic term but, at this stage, it is simply equal to unity. The leading 

coefficient, r, now stands in for the temperature since one has 

r-r0 t 0 
r=--2=--2, 

TORO RO 

where t 0 measures the deviation from mean field criticality. 

coefficient of the fourth order term becomes 

(6.13) 

Finally, the 

(6.14) 

which reveals, for the first time, how the deviation in dimensionality 

& = 4 - d, (6.15) 

arises naturally. Note that "umklapp" processes, with ~ * O, have been ignored, é, 
q6 , • • • terms have been dropped and sixth and higher order terms in o have been 

Jl 
neglected: in the end one can (and should) return to check that all of these 

contributions represent irrelevant variables in the domain of interest. As 

usual, ii. can be regarded as a point, (r,e,u,v, ••• ) in the space of Hamiltonians 

where v represents the coefficient of the sixth order terms and so on. 

6.2 Computing with continuous spins 

Since we have continuous spin variables, computing the trace of the Boltzmann 

factor involves multiple integrale over the spins as indicated in (5.104) and 

(5.105). The generai Hamiltonian may be written 

(6.16) 

where the first term is quadratic in the s (and, hence, in the s and ; ) , while 
x Jl Jl 

the second is quartic, and so on. If thi' higher order terms could be dropped, 

leaving only a quadratic or "free-field" Hamiltonian, the Boltzmann 

factor exp( 1(. 2 ) would decompose into a product of Gaussian functions of the 
+ 

individuai o variables. The trace integrations would then be triviali The most 
.9 

obvious way of handling the higher order terms is thus to treat them as a 
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perturbation and to attempt an expansion of the free energy in powers of u, v, 

etc. Confining ourseives to the quartic term we wouid then expand as 

ii(.2 -l 2-2 
e (l - u il. 4 + Z! u R. 4 + ••• ) , (6.17) 

which represents a Gaussian function times poiynomials in the ~ • One is now 
.!l 

confronted by various combinations of products of integrais, ai I of the same basic 

type, namely, 

l 2 l 1112 f .., 2(r + eq ) o 
do11 e .9 

-- .!l 
(6.18) 

which integrate out as shown, Ik being a constant which vanishes for k odd. 

Since the wavevectors, .!l• form a quasicontinuum, the products referred to 

become infinite products in the thermodynamic limit and the process of taking the 

Iogari t hm of the overail trace to obtain an expression for the free energy, thus 

yields momentum integrais of the form 

(6.19) 

If we procede straight ahead in a perturbation theoretic spirit we now confront 

a major problem, nameiy, the so-caiied infra-red divergences. In the absence of the 

perturbation we have a Gaussian model which becòmes criticai as r + O. With the 

quartic term present we actuaiy expect the criticai point to be depressed to 

negative r but, in any case, if we want to study the criticai region we must at 

Ieast consider r + O. However, in that limit all the integrals will diverge for 

Iarge enough k owing to the singuiarity of the integrand as q + O (whence the 

terminology "infra-red"). Specificaiiy, counting powers of momentum shows 

that j k(d) diverges as k + O whenever d ( k. Since even the leading term in 

(6.17) involves k = 4 we see that the naive perturbation method fails immediately 

for d .; 4! 

The Wiison approach circumvents this basic problem by never actuaiiy 

integrating over momenta beneath the reduced cutoff qA/b (see Fig. 5.8). Thus no 

divergences are encountered. 

6.3 Implementation of momentum sheil renormalization 

In order to impiement Wiison's momentum sheii renormalization group in a 

perturbative manner we spiit the originai Hamiltonian (6.11) in the form 

(6.20) 
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-< - +( > 
where 1(. includes all t ho se parts of /(. which contai n only spins, o , ii. 2 is the 

Gaussian, free-field or quadra tic part of the total Hamiltonian with .9. spins ~> with 
.9. 

momenta lying in the outer shell (see Fig. 5.8). Finally u :ii. 4 consista of all the 
+) +( 

remaining terms which involve spins o (as well as, in generai, some o ). 
~ ~ 

The trace operation 

+) ~ (+( +)) 
T o { ~ o , o }, 

rN-N' e (6.21) 

which we want to carry out, can be expressed conveniently in a perturbation series 

if we make use of the notation 

(6.22) 

which represents averaging with the free-field Hamiltonian over only the higher 

momentum fluctuations, i.e., those with .9. in the shell. 

Hamiltonian can be written 

-< 
> 1( K ' = [ ln (Tr {e e 

-> 
1(.2 

Now the renormalized 

(6.23) 

-< 
Notice first that the factor e J<. commutes with the trace operation since it 

+( 
involves only spins o • Then, using the notation (6.22), one readily establishes 

~ 
the expansion 

-> 
11.. ii. ' = [ 1( < + ln (Tr> {e 2}) 

+.!. u2 <(< ~)>2) -(ii. >)2> +O (u3)] (6.24) 
2 4 > 4 > + ~ +, o -,o, 

9. 9. 
which we ha ve performed to order u2• We may now set about calculating more 

explicitly the recursion relations 



r' {](, (r,e,u, ... ) , 
r 

e' rR. (r,e,u, ••• ), 
e 

u' (/?. (r,e,u, ••• ), 
u 
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(6.25) 

to successive powers of u. (We will neglect the constant term since it cannot enter 

the recursion relations for r, e, u, etc. and cannot play a role in determining 

critical exponents. However, it would be needed for studying the full free 

energy.) The details of the d eri vation are presented more fully in Appendix B. In 

the lowest orders one finds just 

e' 

u' 
A 4 -3d l 
c b u r1 - r 2 

)+O(u)]. 

(6.26) 

( 6. 27) 

(6.28) 

The ori gin of the factors c bere is easy to understand. The spin rescaling 

introduces a factor of c for each unrenormalized spin component oll, and so 
-t !l 

(5.110) 

r' and 
'2 

of c • 

e', which 

Likewise 

are 

u, 

associated with the oll o11 
g -g 

which is associated with 

terms in i< , acquire factors 

the quartic term, acquires a 
'4 

factor c • The factors of b come from the spatial rescaling (5.109). Since the 

momentum integrals in (6.11) transform as 

J 2 -~.,.f.-d iq• ' 2 (r + eq ))<._,-r b --d [ r +e (q /b) lX ••• , 
s (~) 

(6.29) 

the expression for r' acquires a factor of b -d, and t ha t for e' a factor b -d-2 • 

Similarly, since there are integrations aver three different momenta involved in the 

quarti c spin term, a factor of b - 3d enters for u. The reader should check these 

statements carefully: although they involve only dimensionai analysis they turn out 

to be a most crucial ingredient! 

Now it is clear that the choice of an overall scale factor remains at our 

disposal [as used in writing ( 6.10) ]. This freedom can be used to fix one of the 

parameters: 

normalization) 

following (6.11) we will choose to maintain the constraint (or 

e' = e l. (6.30) 

The reason for this choice is t ha t the q2 term (or, in real space, the gradient 

squared term) is the one that sets the physical length scales. It follows that the 
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spin rescaling factors are determined (to leading order) by 

(6. 31) 

If we find a nontrivial fixed point under these conditions it must, via (5.112) or 

(5.73), mean that 

n a O + O(u). (6.32) 

The other two recursion relations then give us, in leading i. e., zeroth order, the 

results 

2 r' = b r, (6.33) 

4-d e 
u' = b u = b u. (6.34) 

The appearance of the factor be in this last equation is a vital feature. Note that 

it simply reflects the canonica! dimensione of u (in terme of lengths) as revealed 

in (6.14). 

6.4 The Gaussian fixed point 

The only fixed point that exists in the zeroth order approximation developed 

above is the Gaussian fixed point given by 

(6.35) 

With u • O the recursion relations are now diagonal as they stand, and the Gaussian 

eigenvalues are evidently 

(6.36) 

an d 

A • be so A .. e. 
u ' u 

(6.37) 

We see that the parameter u changes from being irrelevant at large d to being 

relevant at the border-line dimensionality e • O, i.e., d • 4. Thus for d > 4 the 

quarti c spin terme prove to be irrelevant, and u + O under renormalization. The 

first, relevant eigenvalue must clearly be identified as the thermal eigenvalue. 

Through (5.38) or (5.96) we tlms find 



l v =-
2' (d > 4)' 
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(6.38) 

wbicb is tbe classica! value! At d .. 4 we see t ba t u is marginai and, to t bis 

order, does not sbift under renormalization. Finally, u is relevant for d < 4 and 

flows away from tbe Gaussian fixed point. The crucial question is: "Where to?" 

Before answering tbat question, for wbicb we must study tbe recursion relations 

in big ber order, note t ba t we may stili consider tbe full scaling form (5. 90) for 

the free energy around tbe Gaussian fixed point. Evidently, crossover away from 

Gaussian) criticai bebavior (for wbicb all otber exponents also prove to be 

classica!) is controlled by tbe scaled combination 

Àu l 
witb <P =-=-e:. 

u Àl 2 
(6.39) 

But notice now, from (6.13) and (6.14), that both r and u depend inversely on the 

range of the forces R0 • It follows that the range enters in the combination 

ad /Ro dt0e: /2. Hence, if Rola is large the Gaussian fixed poi n t should describe the 

criticai point (whicb will then look classica!) until R0te:/2d;a becomes small. 

Since tbe exponent bere is comparatively small (being 1/6 for d = 3) the crossover 

to nonclassical bebavior may take place rather slowly. The exponent we bave found 23 

for tbe long range crossover agrees witb that following from tbe Ginzburg criterion 

for tbe validity of classica! theory. 24- 27 Its small value serves to explain, for 

example, wby tbe BCS tbeory of superconductivity, which is a classica! or mean field 

theory, works so well in practice; the ratio Ro/a is there measured by TF/Tc, wbere 

TF is the Fermi temperature and Te is the superconducting transition temperature. 

(Of course the BCS theory is quantum-mechanical in nature: the word "classica!" 

bere, as elsewhere, refers only to the neglect of fluctuations in the statistica! 

mecbanical treatment.) 

6.5 The renormalization group to order e: 

If we are to obtain useful results for d < 4, tbe unstable flow from the 

Gaussian fixed point must, for at least one direction of flow, terminate at some new 

nontrivial fixed point. Since (6.34), tbe zerotb order recursion relation for u, is 

linear tbis is impossible unless we carry tbe perturbation calculation explicitly to 

at least the next order. To do this, a diagrammatic formulation, modeled on field 

theory, is belpful as sketched in Appendix B: the requisite analysis serves to fill 

tbe blanks in (6.26) to (6.28) and yields, 

A2 -d 
r' = c b [r + 4u i > l 

(n+2) --2 + 
~ r+q 

(6.40) 
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e' 

an d 

u' 

We see from the second relation that in order to maintain e' = e 

2 
bd+2+0(u ) 

This implies that if there is a nontrivial fixed point at some u 

criticai point decay exponent satisfies 

*2 n = O(u ). 

(6.41) 

(6.42) 

l, we must set 

(6.43) 

u * O, then the 

(6.44) 

Although this is not an explicit formula it gives us some understanding of why n is 

so small in most physical systems relative to the deviations of other exponents from 

their classica! values. 

Now if we substitute with (6.43) in (6.42) the prefactor bE appears again. Let 

us, then, invoke the idea of continuous dimensionality and enquire as to what 

happens if E = 4 - d is small! First we can wri te 

(6.45) 

Then, keeping only terms linear in E and u, the recursion relation for u can be 

rewritten as 

u' - u = u[E ln b - 4 (n+8) u ( > 1 ) 
) !! (r+q2)2 ' 

(6.46) 

where the integrai is now to be evaluated at d 4. Evidently this recursion 

relation has a new fixed point at u = u* a: E/(n+8). Since, by supposition, E is 

small, u* is also small and therefore we can neglect the O(u2 ) corrections since, in 

the neighborhood of this fixed point they will be of order E2• This is the crux of 

the E -expansion idea: by expanding in powers of E we may utilize the field-

theoretic perturbation theory in powers of u in a systematic way. We rely on the 

renormalization group framework since although the initial, physical value of u may 

well be 'large', Le., of order unity, the flow of the criticai trajectory to the 

fixed point allows us to calculate only for u small, of order E. 

Clearly the integrale require a little further thought. Note, first, t ha t if 

we approximate the momentum shell by a hypersphere (instead of using a hypercube) we 
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ha ve 

(6.47) 

where the area of the unit hypersphere is, as before, 

(6.48) 

Since the gamma function is an analytic function of its argument, we certainly can 

see that any spherically symmetric integrale, such as involved here, can be extended 

to continuous dimension. (As indicated in Appendix C one can even extend hypercubic 

lattices to continuous d.) Accepting the hyperspherical approximation we can 

perform bot h the needed integrale in the criticai region, i. e., for small r. One 

finds 

(6.49) 

with K2 • l/Sn 2 and, similarly, 

r > l -2 2 
--- = K (1-b ) - K2 r lnb + O(e:,r ) • 

.9 (r+q2) l 
(6.50) 

The constant K1, has the value qA 2/1611 2 in the spherical approximation but its 

actual value proves to be immaterial as regards all universal quantities; conversely 

the value of K2 in these two equations is independent of the approximation, as is 

easily seen by·more careful analysis. 

We can now write the recursion relations correct to relative order e:, u and ur 

as 

r' 
2 2 br [l-4(n+2)K2u lnb] + 4(n+2)K1(b -l)u, (6.51) 

u' • u + u lnb [e: - 4(n+8)K2u]. (6.52) 

Before analyzing these relations it is worth noting that they can be cast in 

differentisi form, as in (5.75) to (5.77), by putting 

(6. 53) 

and taking the limit ~1 + O. Thus one obtains 



110 

dr dt • [2-4(n+2)K2u]r + 8(n+2)K1u, (6.54) 

du 
dR. = u[e: - 4(n+8)K2u]. (6.55) 

6.6 The n-vector fixed point 

28 Now we can investigate the new fixed point. From (6.52) or (6.55) we bave 

(6.56) 

which is, of course, only correct to order e:. Then from (6.51) or (6.54) we find 

r* = - Kl (n+2)e: (6.57) 
K2 n+8 ' 

where t be ratio the nonuniversal l 2 
value 2 qA in the spherical 

approximation. Evidently this new fixed point "breaks off" from the Gaussian fixed 

point as the dimensionality falls below the borderline d = 4. (Actually, it exists 

also for d ) 4 but at negative u* where it is unstable and plays no role 

since u;. O is needed if the partition function is to be well-defined, at least in 

the absence of any higher order stabilizing terms.) It is easy to determine the 

flows in the (r,u) plane near the fixed points. Their appearance for e:> O, i.e., 

d < 4 is shown in Fig. 6.1. 

To determine the criticai exponents and test the new fixed point for its 

stability we must linearize about (r*, u*). If we work with the discrete recursion 

relations (6.51) and (6.52), we may write 

* * l:J.r = r - r and l:J.u = u - u , 

and so obtain the matrix form 

[::] -[ •'o n+2 
- n+8 e: 

o 

lnb) 4(n+2)K1 (b2-1) l 
l - e: lnb 

(6.58) 

[::l (6.59) 

Note that K2 has cancelled out! The eigenvalues follows at once as 

n+2 ---e: n+8 

2 + n+2 
n+8 e:. 

lnb) • b (6.60) 
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u 

r a: t0 

Sketch of the renormalization group flows in the (r,u) plane for small 
e .. 4 - d. Note that the criticai manifold (or trajectory) is 
straight only to order e. 
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A '" l - e: Inb '" b-e:, 
u 
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n+2 2 
=2-n+8 e:+o(e:), 

(6.61) 

(6.62) 

(6.63) 

From the Iast resuit we see that u represents an irreievant variabie about the new 

fixed point when e: ) 0: in other words this fixed point is "stabie" when d < 4 and 

hence "controis" the fiow in piace of the Gaussian fixed point (see Fig. 6.1) which, 

as we found, is now unstabie. [Strictly we shouid say "stabie (or unstabie) ~ the 

criticai manifoid" but the restriction is Ieft unstated in practicai terminoiogy 

since the expected, reievant, unstabie directions are aiways understood.) 

Finaiiy, we may use the renormaiization group eigenvaiues to compute the 

criticai exponents. Thus for the correiation Iength we find from (5.96) 

(6.64) 

If we recaii our resuit for the correiation decay exponent, nameiy, 

*2 2 n .. O(u ) = O + O(e: ), (6.65) 

we may use a scaiing reiation (which may be verified independentiy by more detaiied 

caicuiations) to find 

n+2 + O(e:2). 
= 1 + 2(n+8) e: 

Likewise the hyperscaiing reiations yieid a from 2 - a = dv and 

a = .!.(d-2+n )v 
2 

l 3 2 
= 2- 2(n+8) e: + O(e: ). 

(6.66) 

(6.67) 

The other thermodynamic exponents foiiow simiiariy. In addition we obtain something 

new, nameiy, the Ieading correction-to-scaling exponent [see (5.93) ~ seq.] which 

is associated with u and hence given by 
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Àu l 2 
6 = - 4> u = - x; "'2 e: + O(e: ) • (6.68) 

Historically, the first theoretical predictions for the value of 6 come from the 

renormalization group e: expansion. 

6.7 Some numerica 

I t is natural to enquire how well, if at al l, the e: expansion works! To 

answer, recall first that the limit n + m should reproduce the spherical model (see 

Sec. 4.6). The exact results for the spherical model include a = 1/2 which 

certainly agrees with (6.67) and, more interestingly, 

y 2 
"' d-2 .. +.!. E: +.!. E2 + .!. E3 

2 4 8 + ••• ' (6.69) 

which confirms (6.66) precisely! In this limit we see, in fact, that the E 

expansions for the exponents represent convergent power series with a radius of 

convergence Ec = 2. 

For finite n it seems more likely that the e: expansion is only asymptotic (but, 

probably, "Borrel summable"), Nevertheless, we may, optimistically, hope that E = l 

(for d = 3) is relatively "small" in that it is only halfway to the undoubted 

breakdown around e:c = 2. This optimism turns out to be surprisingly well 

justified, Indeed, even the first order expansions yield values in much better 

agreement with bulk (d=3)-dimensional experiments than does classica! theory. Thus 

from (6.66) and (6.67) we find 

y(d .. 3, n .. l) 

a(d "' 3, n = l) 

li" 1.67, 

l 

while yexpt 1.24, 

3' while a " o.32 - o.33. expt 

In second order the results are even more encouraging. Thus from 

one obtains 

for 

4-n (n+2)2(n+28) E2 + O(E3), 
a = 2(n+8) E - 4(n+8)2 

a (d=3) " 0.08, 
n • l, 

-0.02, 
2, 

an d 
an d 

-0.10, 
3, 

respectively, which correlates well with the observed values 

a expt = 0.11' -0.02, and -0.14. 

(6.70) 
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The trends with n are clearly reproduced and the divergence of the specific beat 

for n ;o 2, but not for n < 2, is also predicted. 

By working harder one can calculate further terms in the expansion. Thus 

correct to fourth order one knows29 

n = (n+2)E 2 {l+ (-n2+56n+272) E 

2(n+B) 2 4(n+8) 2 

4 2 2 
+ [(-Sn -230n +1124n +17920n+46144 _ 24t(~~~~)+22))E2 

16(n+B) 2 

(6. 71) 

which is interesting because of the appearance of the Riemann zeta 
~ ~ k function t (s) = L 1 n in fourth order. All the other exponents are now also nown 

t o this orde r. 30 At this stage, however, one does not obtain better nmnerical 

results if one merely truncates the expansion: however, with suitable methods of 

smnmation30 rather satisfactory results are obtained which, for the mst part, 

appear to be accurate to within two or three parta in the third decimai placel 

6.8 Further developments in brief 

Having explained the concepts of scaling and universality, and having laid the 

foundations of renormalization group theory, these lectures must end. In a more 

extended course we would, at this point, proceed to survey some of the many 

significant applications of renormalization group theory. First we might 

demonstrate the appearance of factors like ln t to special powers at the borderline 

dimensionality. Then, following the historical developments, we might consider the 

effect of long range forces 31 with a spin coupling decaying as 

as R + "'• (6.72) 

with a > O. These are somewhat artificial but for a < 2 we would discover new 

criticai behavior with a new borderline dimensionality at d = 2a < 4 about which we 

could construct a modified E-expansion in powers of E0 = 2a-d. 

Next it would be logica! to examine the crossover from, say, Heisenberg (n=3) 

criticai behavior to Ising (n= l) or XY (n=2) behavior induced by anisotropy in the 

spin-spin couplings and, hence, in the quadratic part of the LGW Ramiltonian. This 

could lead to a discussion of bicritical points as observed in many antiferro­

magnets. 32 Spin anisotropies of higher symmetry (induced physially by coupling to 

the lattice) in particular those entering as cubie symmetry breaking terms in the 
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quartic spin terms, can lead to qui te new sorts of criticai behavior: so also do 

long-range forces of dipole-dipole character which must be examined for real 

ferromagnets, 33 although for n > 2 one finds that the numerica! values of the 

exponents hardly changel For uniaxial, Ising-like dipolar ferromagnets, on the 

other hand, a striking new phenomenon occurs: the criticai fluctuations at low 

momenta are suppressed and the borderline dimensionality drops from d=4 to 

d=3. 34 •35 Thus, except for subtle logarithmic correction factors, classica! theory 

becomes correct for a real bulk system! 

A borderline dimensionality d=3 arises also in the description of tricritical 

points, 36 which is accomplished within a single-component (n=l) model by allowing 

the coefficients of the s4 term to become negative but, as is needed for stability, 

retaining a term - vs6 with v > O. Tricritical points are observed in multi­

component fluid mixtures, in antiferromagnets, in superfluid helium three-four 

mixtures, etc. 

Then one would want to describe the expansions in powers of 1/n developed by 

Abe 37 (without explicit reference to the renormalization group) and those about the 

lower borderline dimensionality, 

Kosterlitz-Thouless39- 41 theory 

putting d=2+E, 

of XY-like or 

38 
devised to Polyakov. The 

systems a t the borderline 

dimensionality d•2, which describes thin superfluid helium filma, and the subsequent 

Halperin-Nelson-Young42 •43 theories of two-dimensional melting would be tempting 

topics -- and so on! Even then, we would not have touched on the development and 

application of real space renormalization group techniques44 including the versatile 

approximate renormalization group scheme of Migdal45 and Kadanoff. 46 No mention 

would have been made of dynamical criticai phenomena47 and the application of 

renormalization groups in that context. Nor would we have discussed methods for 

calculating equations of state, or correlation functions, or crossover scaling 

functions, 48 •49 or have described W:l.lson' s method for solving the Kondo problem, 50 

or applications to polymers, to liquid crystals, and more. 

It is evident that to present even a sketchy account of all these topics would 

require much more time and space. Indeed, our task would grow to resemble that of 

giving a full account of the applications of quantum mechanics! Truly the 

renormalization group approach, and the associated ideas of scaling and 

universality, have become basic tools of the condensed matter theorist and are 

constantly being applied to new and more challenging problema. Happily, however, 

for the reader who wishes to enquire further there are now a selection of reviews 

and text books at varioua levels in which to browse and dig deeper. Some of these 

have already been mentioned in passing but for convenience these and a few more have 

been gathered together in the Bibliography. Note that the Bibliography makes no 

claim to completeness: indeed, we should add that in these lectures we have been 

somewhat cavalier in mentioning individuai scientists and in making reference to the 

originai literature. Accordingly, apologies are offered here to any who feel 
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unj ustifiably unmentioned or otberwise sligbted. Tbe reader, bowever, sbould bave 

no difficulty in entering tbe literature tbrougb tbe sources cited in tbe 

Bibliograpby: please do so witb best wisbes for stimulating study and fruitful 

discovery! 
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APPENDIX A The Kac-Hubbard-Stratonovich Transformation 

The Kac-Hubbard-Stratonovich transformation is a way of turning one model into 

another. This device has played an increasingly valuable role in the theory of 

critica! phenomena. The main theoretical factor suggesting that various different 

models might be expected to transform into one-another is that of universality. To 

belong to the same universality class different models must, somehow, be 

mathematically equivalent, at least in their criticai regions, even though they have 

quite different physical interpretations and contrasting mathematical formulations. 

To illustrate how the transformation is carried out we will consider the 
l simplest example, namely, a spin 2 Ising model; however, the approach to be 

described can be readily extended. (The interested reader should work through the 

case of the fixed-length n-vector model.) 

Consider the generai Ising model partition function 

(Al) 

where the interactions satisfy 

(with Kii =: O), (A2) 

and the sum in (Al) runs over all distinct pairs (i,j). The Ising spins ai in this 

expression can take on only the two values ±l , and so the operation of taking the 

trace over any spin means 

a l '\' 
Tr = 2 i.J • 

a=±l 
(A3) 

The factor of 1/2 is incorporated in order to normalize the trace, i. e., so 

that Tra {l} = l. The aim now is to turn (Al) into a form which looks somewhat 

similar but involves a new set of continuous spin variables, si instead of the 

discrete a i. The result which we will obtain is 

lÌ dsi 
i=l 

exp (A4) 

where f 0 (K) is a smooth, analytic function of K and just provides a background free 

energy with (in generai) no interesting critica! behavior. The integrations are 

performed over all the continuous spin variables, si, of which there are as many as 

there were originai Ising spins; the limits for each integration are ~ and ~. The 

spin weighting function comes out to be 
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A weighting function is, of course, necessary because without it the integrals would 

diverge: in fact, ~i' which will be defined below, must be positive and 

sufficiently large. Our object now is to derive equations relating the origina! 

interactions Kij to the new spin-spin interactions, -Qij' and provide a 

justification for the particular form assumed by the weighting function w(si). (The 

fixed-length n-vector model yields a diff~rent but qualitatively similar set of 

weighting functions depending on n.) 

A genera! reason for going over to continuous spin variables is that they are 

easier to deal with mathematically. In particular, in order to carry out the 

spatial Fourier transformations on the set of spin variables, which play such a 

vital role in the renormalization group E-expansion theory, the spins have to be 

continuous, unbounded variables. 

For simplicity of exposition we will consider the fully ferromagnetic case 

Kij • Kji > O (K11 = O). If we then make use of the inequality 

(A6) 

we can rewrite the interactions as 

\' K •-.!_NP +.!_ 
~ ij 0 i 0 j 2 O 2 (i,j) 

(A7) 

where the symmetric, N x N matrix 

(AB) 

will be positive definite if P0 is chosen positive and sufficiently large: 

specifically, by (A6) it suffices to choose 

(A9) 

T 
If !l, • [o 1 , ••• , o N) is a raw vector and !!_ the corresponding (transposed) column 

vector, we can thus rewrite the partition function as 

- .!_ NP .!_ OT P a 
ZN(!) • e 2 O Tr~ {e2 - - -} • (AlO) 

Now consider another quadratic form in N continuous variables yi, namely, 

N N 

Q<x> = E I oijyiyj. 
i•l j•l 

(Al l) 

where ~ = [~j) is a symmetric, positive definite matrix: As such, g may be 

diagonalized by an orthogonal transformation with matrix Q• Explicitly, in terms of 
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the new variables 

(Al2) 

the quadratic form becomes 

(Al3) 

where the >..r (r•1t ••• t N) are the realt positive eigenvalues of S· It follows 

similarly that the determinant of g is given by 

N 

1.91 .. n >.r. 
r=l 

(Al4) 

The partition-function-like expression 

l T 
{

CD N -2x~x 
I(S)= dye t - (A15) 

may now be evaluated by changing variables from X to ~ and noticing that the 

Jacobian of the transformation is +l since Q is orthogonal. The integrals are then 

just Gaussian and we obtain 

N fm - .k x 2 N N/2 
I(Q) =TI dx e 2 r r =TI j(2'11) = (2'11) • 

r=l -m r r•l >..r ~ 
(A16) 

Next let us make a simple shift in the variables I according to 

with (Al7) 

where .!! represents a new set of variablest which will eventually be identified as 

the continuous spin variablest while the ~ bere represent only fixed shift 

parameters! In terms of the new variables the quadratic form Q becomes 

T T T T -1 T 
Q(x> - .! ~ + .! ~ + ~ .!! + !l Q !l = .! .9! + 2 (Al B) 

If we now choose the matrix .9 so that 

g = f-1 = 1/(Po! +!)t (A19) 

we see quickly how (A15) and (A16) apply to the problem in band since we obtain the 

identity 

I(Q.) = e-~TPa/: dNs exp [-t!!.T~- I siai], 
- i=1 



N/2 
i. e., I(Q) = ( 21r) 

1.91 
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(A20) 

Note that in the first line, the spin variables oi appear like nonuniform or random 

external fields acting upon the s variables. If we solve for the factor 

involving P and substitute in (AlO) we can write the result as 
-l 

-2 NPO 1"" 
ZN(19 = e N/2 .{Iii Tr~ { dNs exp[- ,L Qijsisj-1 

(211) l.~ l - (i,j) 
• (A21) 

l T Note that the diagonal terms of the expression 2 ! ~ have been separated off while 

what remains has been written as a sum over pairs of spins (i,j), 

At this point we make the crucial observation that the trace operation on 

the oi commutes with the integration over the si and affects only the last 

exponential factor in (A21). To perform the trace we use the simple result 

cosh si' (A22) 

This is clearly in the anticipated form (A4) with the spin weighting function given 

by (A5) while the new interactions, -Qij' etc. follow from (Al9) and (A8). Note 

that because f is positive definite by construction, so is g; it then follows, 

since ln cosh s vari es only as l s l for large s, t ha t the Qii coefficients are 

positive and sufficiently large to ensure covergence of the integrals over the si. 

We have t'bus achieved an exact transformation of the discrete spin Ising model 

with couplings, Rij• into a continuous spin mode! with new couplings, -~j' defined 
-l 

via the inverse matrix (PQl + !) . It is clearly of interest to gain some idea of 

the nature of these new interactions. To that end, le t us suppose that }$ describes 

only nearest neighbor ferromagnetic couplings. A little thought then shows 

that K2 describes next-nearest neighbor couplings (plus some self-coupling), 
-3 

that ! describes third-neighbor couplings (plus some further first neighbor 

couplings) and so on. Thus the identity 

2 -1 !<2 -2 3 
-P O .Q = -P oJ + ! - p O ·- + p O }$ - • • • ' (A24) 

which is valid when P0 satisfies (A9), shows that the couplings -Q:~ are, in first 

approximation , the same as the Kij but scaled by a factor Po • In higher 

approximation second-neighbor antiferromagnetic couplings appear but they are weaker 

by a factor l/P0, and so on. Thus the new couplings are no longer of pure nearest-
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neighbor character: however, they are of 'short range' in the sense that they decay 

exponentially with distance (and, evidently, they are oscillatory in sign although 

predominantly ferromagnetic in effect). 

If the lattice is translationally invariant it is advantageous, as seen in Sec. 

6.1, etc., to transform to continuous 

couplings are then directly expressed, 

transform 

Fourier space 

as in (6.4), 

with 

spin variables, s • The 
!l 

in terms of the Fourier 

This in turn is related to the corresponding transform K(g) of Kij - K(!i- !j) 

through 

-Q(g) 
-l -l K(g)-K(Q) 

---'";;--+----;:----;;-
po + K(Q> [Po + K(Q)J2 

(A26) 

This form is illuminating since in the case of predominantly ferromagnetic couplings 

of the a spins one has, for rapidly decaying interactions in a large system, 

A A 2 2 4 
K(g) = K(Q>[ l - R(j q +O( q >L (A27) 

where K(Q) > O, while the (real) length Ro measures the range of the interactions. 

By substitution in (A26) we see that the couplings of the s spins are likewise 

ferromagnetic with a comparable finite range. 

thermodynamic limit one has 

Finally, note that in the 

(A28) 

which is necessarily positive as required for a sensible weighting factor. 

APPENDIX B Details of the E-expansion calculation 

In this appendix we examine the derivation of the recursion relations (6.26)­

(6.27) and (6.40)-(6.42) for the perturbation-theoretic expansion of the Wilson 

momentum shell renormalization group near d=4 dimensiona and introduce the 

diagrammatic language that facilitates the caluclations. We are concerned bere with 

the LGW reduced Hamiltonian (6.4) which we rewrite, as in (6.11), in the form 

with the wavevectors restricted by 
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.S1 + .S2 + .S3 + .!14 • 0 • (B2) 

so that 'umkiapp' processes are negiected. Likewise, we suppose that the sixth and 

higher order terms may be negiected initiaiiy. The vaiidity of both these 

approximations, to Ieading order in E, may be checked by computing their effects by 

the same techniques. However, it is important to note that even if such terms are 

rigorousiy absent in the initiai, physicai Hamiitonian they may be generated and 

normaiiy will be generated, in the process of successive renormalization. The 

coefficient e of the q2 term will be constrained throughout (by spin rescaling) to 

be equai to unity. Thus J< is, effectiveiy, determined oniy by the two parameters 

r and u. 

As discussed in the main text, the first step is to spiit up ~ as foiiows 

.u < + - > 'H'"rt. 1(2-u 
-> 
1(. 4. (B3) 

-l 
Then we must compute the renormalized Hamiltonian, 11. , which is given to second 

order in u by 

Let us start by examining the Iower order terms. -< First, note that H. is of the 

same basic form as the originai LGW Hamiitonian except that the momentum integrais 

are Iimited to the inner region, <, of momentum space which contains oniy N' = N/bd 

spins. However, the spatiai rescalinp; restores the originai domain of integration 

through the transformations 

.9 ""*' .9 t /b: (BS) 

where uninfiected momentum integrais run over the full zone. Recaiiing the spin 
+ A + < 

rescaiing, a .9 =+ c a S,, we se e t ha t the quadratic part of i( transforms as 

11< 2 + + l i -d 2 -2 A2 + + --2 (r + eq) a.9• a -- b (r + eq' b ) c a' • a' 
.9 -.s 2 .!!' .9' -g' 

•-- (c b r) +(c b e)q' a' •a' li [ A2 -d A2 -d-2 2]+ + 
2 .s' .!!' -ll' 

, (B6) 

so that, ignoring possibie contributions from higher order terms, etc., the 
A2 -d A2 -d-2 

parameters r and e are simpiy renormaiized by factors c b and c b , 

respectiveiy. Notice that the momenta, g,', and spins, d' in (B6) are reaiiy 
.9: 
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'dummy variables', in the sense that they are to be integrated over, so we may 

actually drop all the primes in the final expression. Evidently the quartic term 
A4 -3d 

similarly generates a leading renormalization factor c b for u. 

- > > In the second term in (B4) the term exp( J(. 2) dépends only on spins a , in the 

outer zone and so when the operation Tr> is applied to it, the result is just a 

constant contribution which can be ignored for our present purposes since it cannot 

further affect other interactions. (Nevertheless, if we were concerned to calculate 

the free energy itself, we would have to retain this constant term in 1é '.) This 

complete& the calculation of the recursion relations to zeroth order in u: see 

(6.26) to (6.28). 

The evaluation of the first order term, u (U ~ )>, requires closer 

attention. First note that in the expression for ~ ~· which for finite N is just 

the multiple sum, 

n 

L 
ll,V•l 

v 
a ' !1.4 

(B7) 

at least one of the four momentum labels q1, q2 , q3 or !1.4 • -!1.1 -!1.2 -!1.3 must lie in 

the outer region, >. We must then evaluate the momentum shell average 

(B8) 

where -> similarly be written as a namely, 1<2 c an sum, 

-d n 
-> l a 2:> 2: 2 ali ali 
1(. 2 - -27 (r + eq ) 

.9 lJ•l !l -!1.' 
(B9) 

the momenta being all restricted to the outer zone. The trace operation has the 

explicit form 

> JCD 
Tr> =TT n 

.9 Il .... 

(BlO) 

which signifies a multiple integrai over all the spin components o11 with momenta in 
.9 

the outer region, >. In the thermodynamic limit, N + CD, this operation becomes a 

functional integrai. However, we may avoid this concept and the question of its 

proper definition by keeping N finite and doing the n( N-N') integrale over all 

the a > componente before taking the thermodynamic limit. (Note that in the spatial 

rescaling steps in (BS) and (B6) i t was advantageous to take the thermodynamic 

limit, as we did implicitly, at an early stage.) 

Each term in (B7) can be processed separately through (B8) and the results then 

added together. Consider the typical term o11 o11 a v a v If all ~ of the Qj li e 
.91 !1.2 .93 .94 
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in tbe > zone tben tbe result will be a constant and bence is of no furtber direct 

interest to us bere (altbougb it contributes to tbe constant term in ii•), If 

eitber one or tbree of tbe .!lj lie in tbe ) zone tbe result must vanisb. To see tbis 

note tbat tbe integrals involved in (B8) bave tbe symmetric Gaussian form sbown in 
jJ - > (6.18) and so vanisb by symmetry if an odd power of a is contributed by ii 4 • (See 

> .!l . 
furtber below.) At least one of tbe a integrals must be odd in tbe case posed. 

Thus tbe only terms tbat need be considered are tbose wbere two of tbe gj are equal 

in magnitude but apposite in sign and botb lie in tbe > zone, witb tbe associated 

spin 

aJJaJJ 
.9 -g 

will, 

component indices being the same. This generates a term 

• [Re(aJJ)] 2 + [Im(aJJ)] 2 • Tbe other two g., then belong to tbe inner zone and 
.!l .!l J 

per force, also be equal in mgnitude and apposite in sign; their associated 

spin component indices, v, will likewise match. Taking into account all possible 

combinations tbat satisfy these criteria, leads to 

-d <-)) (~N)3 1( 4 > = 

n 

< > .[ 
~( ~) JJ,V=l 

(Bll) 

Now all the spin variables commute. Furtber, tbe spins a< are not affected by the 

Tr> operation and can thus be removed from under the angular brackets. In addition, 

because of tbe equivalence of the different components for each spin we bave 

n 

bl (a~a~.s)> =n (a;a:g)>, 

and bence find that 

-d <- )) (~N )3 
1(.4 >"' 

(Bl2) 

(Bl3) 

wbere we bave dropped the < subscripts on .!l since tbey are no longer essential. 

Note t ba t t be combinatoria! factor (2n+4) is of centrai import ance to tbe final 

answers! 

The next 

integrals over 

step is to calculate ~;/~s )>, It is 

all the a>, divided by a simi~ar product. 

equal to a product of 

Cancellation occurs for 
\1 

all these integrals except for tbose over a 
.!l) 

and a\1 • hence the result is 
-s>' 
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• (Bl4) 

carried out by making use of the equivalence 

The integration over pairs of complex conjugate spina av 
!!.) 

and 

(BIS) 

By this meana we arrive at a product of two separate Gaussian integrals over rea! 

variables divided by two other similar integrals: ali are readily evaluated and 

yield 

(Bl6) 

Substituting back into (Bl3), letting N + .. and replacing the momentwn sums by 

integrals yields 

- > !> l !< ... ... (1< 4 )> = 2(n+2) 2 a •a • 
S (r+eq ) S !l. !l. 

(Bl7) 

Finally, momentum and spin rescaling introduce a factor ~2 b -d as discussed 

earlier. Bearing in mind the factor -u associated with_(ii ~ )> in (B4) and the 

factor -1/2 in the definition of the quadratic part of ~ , we see that to first 

order in u, the renormalized Hamiltonian has modified values, r' ande', of r ande 

given by the recursion relations 

A2 -d i> l 2 r' .. cb [r + 4u(n+2) 2 + O(u )], 
!l. (r+eq ) 

(Bl8) 

(Bl9) 

just as stated in (6.40) and (6.41). 

The rest of the calculation proceeds in a similar fashion, with intermediate 

algebraic expressions of the type displayed in (Bll) becoming considerably more 

complex. However, the combinatoria! problem of deciding just which terms can 

contribute is greatly simplified by the use of graphical or diagramatic notation. 

We define, first, the free inverse "propagator" by 

(B20) 

This carries both a momentum and a spin component index, and serves to represent the 



126 

quadratic or "free field" part of the total Hamiltonian. In field-theoretic 

language r represents the "bare mass". 

Hamiltonian we introduce the 

To represent the quartic part of the 

~l ~ ~3 v 

four-point vertex ';;; )· ••••• ·( v 
.llz ~ ll4 

(B21) 

This hasfour incoming lines which carry momentum and spin component indices ~. ~. v 

and v corresponding to the term CJ~ CJ~ C1 v C1 v in (BI). Momentum is conserved 
.91 .9z .93 .94 

1 through 1 a vertex in accord with the cond:rtion (B2). Each vertex also carri es a 

"coupling constant" factor u (: u4 ) • 

The process of calculating the renormalized (or "dressed") propaga t or can now 

be represented graphically as 

.9 ,... .9> v 

[< }·····O>+ <O·····{> 
-,g, ... 

(B22) 

.9~ -g~ A 
+ ( u ) + ((./{) + (~) + ( •••••• )j + O(u2). 

;j/4 
The first order diagrams, here, have been arranged in the same order as the 

corresponding terms in (Bll) to facilitate comparison. Evidently they correspond 

simply to all possible ways of joing up two "legs" of the four-point vertex with 

matching spin componente and momenta in order to leave a propagator-like term. The 

rules that must be adhered to in constructing the integrale associated with the 

allowed diagrams are as follows: Each vertex li ne is accompanied by a factor u. 

Interna! lines carry a propagator factor G0(g) and (in this renormalization group 

application) imply integration over the outer zone, >. If an "interna! Une" (i. e., 

one for which .9 is to be integrated) forms a closed loop then its spin index is 

"free" and can be SUDDlled over to yield a factor n. In higher orders of the 

perturbation theory there is a factor of 1/m! arising from the expansion of the 

exponential as in (B4). Diagrams that decompose in t o disconnected parts, i. e. , 

"separated" or "unlinked" diagrams factorize and then cancell when 

computed. (This is an example of the "linked cluster theorem"). 

1(. 1 is 

The diagrammatic expansion for the renormalized vertex itself is thus found to 

be 
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.91 \l .93 v .91 \l .93 v .91 \l .9 a. .93 v 

( ~ •••••• ~)· = ( ~ •••••• ~)--~![ () ...... <;:> ...... ~) + ( ) •••• ~) + ••• 
.9z \l .94 v .9z,.. .94 v .9z Il .9 'a' !1.4 v ~ 

8 (diagrams) x n (free spin componente) 

~ v 
+ () ••••.•. <' >· ....... ( 

\l ~ 
+ ••• 

32 (diagrams) of weight l 

\l v v 
+ ( ) ••••••• t:""> ....... ( ) + ••• ] + O(u3 ) 

\l v~ 
(B23) 

32 (diagrams) of weight l 

Note that diagrams such as 

.s> .9 l 

O······~··· .... < 
.9 

with an "articulation" line or "cut bond" cannot arise, 51 since momentum 

conservation would require that .9 (in <) = - .9' (in >) which is impossible. 

The two interna! lines in the two-vertex diagrams yield, on integration, a 

factor 

l 2 , with .9 + .9' = .91 + .92· 
(r+eq' ) 

(B24) 

A little reflection shows that the renormalized vertex has, in fact, become q­

dependent in that it no longer carries only a constant coupling constant factor, u, 

but rather involves a kernel u4( g 1, g2, !1_3 ). However, we may expand this kernel in 

powers of the .9j and associate the coupling constant u with u4 (0,0,0). Likewise 

then, the renormalized coupling constant u' is to be associated with u• 4 (0,0,0). 

Consequently we can put .9 1 = ~ = O so that .9 = -g' and the factor for the interna! 
-;;> 2 -2 

lines thus becomes simply .f.\r+eq ) • After allowing for spin 

rescaling, the recursion rela~fon for u that follows is seen to be 

and spatial 

A4 3d l f> l 2 u' = c b- u [l - 2 u ( 8n + 64) 2 2 + O( u ) l , 
.!l (r+eq ) 

(B25) 

in agreement with (6.42). Note that the combinatoria! factor (8n+24) = 8(n+8) 

directly represents the breakdown of the diagrams in (B24). With practice one 

learns how to write down such combinatoria! factors by inspection for such simple 

diagrams as here, and by fairly rapid analysis for more complex diagrams like those 
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that enter in calculation of the e: 2 and e: 3 terms. Reference to the e:-expansions 

(6.64), etc. shows that it is just these combinatoria! factors that determine the n 

ande: dependence of the various exponents! 

The discovery of a q-dependence in the renormalized vertex is typical of how 

new terms are generated on renormalization. I t indicates t ha t, in principle, such 

q2 , q4 , ••• o 4-terms should bave been included in the origina! Hamiltonian, along 

with q0 , q2, q4 , ••• o 6 terms and so on. However, on renormalization each q2 factor 

would gai n an extra renormalization factor b - 2 , etc., so that one sees that sue h 

terms represent, at least near d=4, successively more irrelevant critica! 

operators. Nonetheless, it is clear t ha t care and thought are required: blind 

calculation may lead to a correct answer but an awareness of the genera! structure 

of the renormalization group process is a necessary guide if pitfalls are to be 

avoided! 

We saw in (Bl9) that there is no first order contribution to the 

renormalization of the coefficient e which determines the decay exponent n. It is 

worthwhile recording that the required leading correction comes from the second 

order propagator diagrams 

16, + 

which yield the recursion relation (with e - l) 

where 

e' 

1281r4 L>~> I= lim --
'--'" ln b , 
u-r"" .!l .!l 

l 
2 ,2< 2+ ,2) = z· q q q q 

(B26) 

(B27) 

This recursion relation then yields n correct to order e: 2 as quoted in (6.71). Thus 

one need not go to third order in u to find n to O(e: 2) although this is necessary 

for the other exponents. 

APPENDIX C Dimensionality as a Continuous Variable 

In the (e:=4-d)-expansion for critica! exponents the spatial dimensionality, d, 

is treated as a continuously variable parameter. One way of giving definite meaning 

to this procedure is based on the observation that the only place that 

dimensionality enters into the calculations is in performing various integrals which 



129 

are of the form J ddqf(~) where, in the simplest case, the integrand, f(~), is 

actually spherically symmetric and therefore a function only of q2 rather than of 

the individuai components of q. When d has a standard integrai value the simplest 

way of doing this type of integrai is to transform to hyperspherical coordinates. 

The integrand depends only on the radiai component, and so the integration can be 

performed immediately over the angular coordinates. Thus, as mentioned in the text 

of Sec. 6.5, one obtains 

t• 2 d-1 
cd}o f(q )q dq, 

where the area of a unit d-sphere is given, as in the text, by 

(Cl) 

(C2) 

l The gamma function, r (]'<i), is a well-defined analytic function of its argument so 

t ha t (Cl) is meaningful mathematically even when d is nonintegral. Thus the 

extension to arbitrary (even complex!) values of d is straightforward for functions 

which are spherically symmetric. 

At the next stage one encounters integrals which also involve scalar products 

such as .9 • l'• where J.> is some reference momentum. Such integrals can be dealt with 

by the formula 

f d 2 [, .. d-1 r 
d q f(q , ~·E> =cd-l o q dqlo 

d-2 2 (sin9) d9 f(q , pqcosB). (C3) 

More generally, following Wilson52 one only needs the following properties of 

generai d-dimensionai integrals: 

(a) Linearity: fiq [fl(g) + f2(g)) /ddq fl(g) + /dd q f2(g), (C4) 

(b) Translation Invariance: fiq f(g +E) .. /dd q f(g). (CS) 

(c) Scaling: /ddq f(b~) b -d f dd q f(g). (C6) 

Normalization: /ddq 
2 

d/2 (d) e -q 
- 1T • (C7) 

Then, by way of illustration, if one needs an integrai such as 

J d (~· 
2 2 

E1> (g•E2) 
(C8) 11 <21 • .1?2 > = d q 

r +q 
2 

one first uses the identity 
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l e -(r + q )s ds f .. 2 

r + q2 • O 1 
(C9) 

to reduce the problem to the Gaussian-type integrai 

(CIO) 

But this can be obtained by differentiating the generating function 

J d -sq2 + g• ~i aifi 
r0 (a;s) - d q e , (Cll) 

with respect to a 1 and a 2 twice and setting all the ai to zero. On the other band 

the generating function may be evaluated for generai d, using (C4) to (C7), simply 

as: 

-d/2 d/2 ( t )2 r 0 (a;s) • s 1r exp[ L ai ~i /4s). 
i 

(Cl2) 

These considerations suffice for field-theoretic applications and hence for the 

forma! developments of e:-expansions. One may, however, be concerned about the use 

of a lattice cut off such as enters in, say, the exact solution of the spherical 

model. If one has nearest neighbor couplings on a hypercubic lattice one then 

encounters d-fold integrals like 

(d) !'Il" d61 ['Il" d6d 
I (z) • 211 • • • 211 

-11 -11 

d 
[z + ~ cos 

j•l 
(Cl3) 

However, by using (C9) and the integrai expression for the Besse! ftmction J 0(x) 

this can be transformed to 

d -zs 
[J0 (s)) e ds, (Cl4) 

which is again well-defined for genera! d. The d-dependent critica! exponents 

obtained for the spherical model this way agree precisely (to the orders of e: 

available) with the e: expansion expressions evaluated with n + ... (see sec. 4.6). 

One may discuss the continuation of dimensionality for lattice models more 

generally. It is natura! to restrict attention to hypercubic lattices which a 

moment's thought shows bave a coordination number 2d. This statement, of course, 

immediately extends to nonintegral values of d!. To see how to proceed further, 

consider, to be concrete, the susceptibility of a spin 1/2 Ising model with nearest 

neighbor coupling of strength J. The susceptibility may be expressed in terms of 

the spin-spin correlation functions <sQs~> between sites Q and ! as 

X(T) = r 
! 

(CIS) 
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where, as usual, the angular brackets denote the statistica! expectation defined 

bere by 

(Cl6) 

the sums running over all spin states of the lattice. In the high temperature 

limit, K = J/kBT + O, one can, as pointed out in Sec. 4.5, expand the exponential 

factors in powers of K as 

(Cl7) 

Each power of K in the full expansion of (Cl7) is clearly associated with a nearest 

neighbor lattice bond. When calculating the susceptibility an extra pair of 

spins, s0 and S!, will appear in the expression for the numerator of (Cl6). The 

resulting expansion in terms of multiple spin products must be summed over all 

possible spin configurations. The contribution of any given product of spins may 

then be evaluated by using the identity 

l, for k even, 

.. O, for k odd. 

(Cl8) 

Finally, by collecting up similar terms one sees that the expansion for the 

susceptibility can be written for any lattice in the diagrammatic form 

(Cl9) 

The coefficiente a 1 = l, a 2 , a 3 , etc. depend on the topology of t be associated 

diagram, representing bonds on the lattice, but are independent of the lattice 

structure (or dimensionality) which, in turn, is embodied only in the values 

ascribed to the graph embedding constante, [~), [~, etc. (The reader should 

go through the derivation of the first few terms to see how this works (See also 

Sec. 4.5). 

Now, more explicitly, [~) denotes the number of bonds per lattice site. In a 
l 

d-dimensiona! hypercubic lattice, this is evidently [ /) = 2 (2d) • d, bearing in 

mind that each nearest-neighbor bond is shared between two lattice sites. In a 

similar way, [~) denotes the number of chains of lengtb two bonds (per lattice 

site) where successive bonds of the chain must not lie on top of one another: since 
l 

there are 2 (2d) choices per site for the first bond and (2d-l) remaining choices 

for placing the second bond at one end of the first bond, we obtain [~) = d(2d-l). 
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Likewise, the square yields [ O l 
yields the series quoted in (4.19). 

2d(d-l), and so on. Evaluation at d=3 then 

For completeness we digress a moment to recall that the Ising series presented 

in (4.19) is given in terms of the variable 

v = tanh K + • • • ' (C20) 

rather than in powers of K directly. The usefulness of this variable, in fact, 

arises directly from the diagramma tic or graphical expansion technique: thus, for 

Ising variables, for which sisj can take only the two values +l or -1, it is simpler 

to replace the infinite expansion (Cl7) by the two-term identity 

(cosh K) [l + vsi sj l, (C21) 

which is easily checked. In making expansions of (Cl6) in powers of v, each bond 

now appears only once, with weight v, rather than multiply with weights K, K2 , K3 , 

as entailed in the use of (Cl7). 

To return t o the generai theme, i t should now be clear t ha t even the most 

complicated diagram entering in a graphical expansion will have embedding constants 

or weights that are just polynomials in the dimensionality d. It follows that each 

term in the high temperature expansion of X(T) can be analytically continued to 

arbitrary values of d. Thus, at least while the series converges, the 

susceptibility itself can also be defined for continuous dimensionality. 

The same procedure works for all other properties. This lattice definition and 

the prescription of introducing continuous d through various integrals do not 

obviously agree in generai (and no such proofs have been presented). Wherever they 

have been tested, however, the different prescriptions appear to coincide and, in 

particular, i t is reasonable to expect that they will all yield the same results in 

the criticai region. 

APPENDIX D Hyperscaling and Dangerous Irrelevant Variables 

Consider the hyperscaling relation dv = 2-a. This relation was obtained in 

Sec. 5.5.4 from the renormalization of the correlation length according to 

;[i?,) 
_, -\) 

~ [ 1<. l' with ; - t (D l) 

which merely represents the basic rescaling of lengths, and of the free energy 

according to 

f [ iC l (D2) 
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The question is: "How can the arguments go wrong, as the breakdown of hyperscaling 

in large dimensionalities implies must happen?". There are, in fact, various 

mechanisms by which hyperscaling can fai!. To explain the most likely mechanism, 

which does not actually violate the basic structure of the renormalization group 

theoryS3 let us recapitulate the argument for hyperscaling. 

As seen in Sec. S.S, near a fixed point the free energy depends on a number of 

scaling fields, g1, g2, ••• , in terms of which it should scale asymptotically in the 

form 

If we make the standard choice and identification 

we obtain 

d/À g 
t lf(l 2 

·~· t 2 l 

g3 
À3/Àl' ••• ). 

t 

(D3) 

(D4) 

(DS) 

The natura! example to consider is provided by the simplest continuous spin 

ferromagnet where g2 ~ H and À zlÀ 1 = /:;., while g3 = u represents the coefficient of 

the quartic spin term [see Sec. 6.1] with À3/À 1 = ~ 3 = ~. More generally, however, 

we need not specify the nature of u. Then we bave 

d/À l H 
f(t,H,u) .. t y0(-;;. u~), 

t t 
with Y0 (y,z) ,. f(l,y,z,O,O, ••• ), (D6) 

where, for simplicity, we now ignore all further variables which we thus assume are 

"harmless" irrelevant variables. 

The scaling exponent ~ may, in principle, be positive, negative or zero. If it 

is positive then u is actually a relevant yariable and its flow under 

renormalization is away from the fixed poi n t selected. One is then dealing with 

some sort of multicritical situation which is not pertinant to the present issue. 

On the other band, if ~ is negati ve u is formally irrelevant and on approach to the 

criticai point, one has 

as t + o. (D7) 

Therefore however large u was initially, the scaled combination u/t~ becomes 

arbitrarily small asymptotically close to the criticai point, and so, formally, one 

has 
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(DS) 

as argued in Sec. 5.5.4. On making the identification 

2 - a = d/A 1, (D9) 

and using the generai result v = l/A 1 [see (5.96)] we arrive at the hyperscaling 

relation dv = 2 - a. Evidently the asymptotic scaling function is given by 

(DIO) 

Now this analysis relies implicitly on the assumption t ha t 

Y0(y,O) = f(l,y,O, ••• ) has a well-defined value. It may happen, however, that the 

full function Y0(y,z) actually diverges when z + O. Note that the fact that u is an 

irrelevant variable in no way excludes this possibility! To examine the likely 

consequences of such a situation let us postulate a simple power law divergence of 

the form 

Y0(y,z) • W(y) as z + O+ with 11 > o. 
zii 

(D l l) 

An irrelevant variable, u, giving rise to this type of behavior is characterized as 

a dangerous irrelevant variable. Substituting this assumption into (D6) and letting 

ut l+ l + O as t + O now yields 

i( H l). 
t 

(Dl2) 

where Y(y) • W(y)/u11 evidently represents a new asymptotic scaling function. 

Interpretation of this new behavior in terms of the standard thermodynamic exponents 

(still accepting v = l/A 1) yields the modified relation 

2 - a = dv - lll+ l· (Dl3) 

This clearly represents a breakdown of the originai hyperscaling relationl Notice, 

nevertheless, that the renormalization group framework has been preserved intact: 

the only flaw in the originai argument was a failure to recognize and allow for 

possible singular behavior of the scaling function. 

But how far-fetched is the idea of a scaling function diverging as in (Dll)? 

The answer is "Not at all! ". Indeed, when u represents the coefficient of the s4 

term in a continuous spin model, just such a divergence is found when one calculates 

the form of the free energy scaling function (for nonzero but small u) above four 
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dimensiona. Since the us4 term with u ) O is essential for the convergence of the 

partition function below the mean field criticai temperature a divergence as u + O 

is hardly very surprising. Nevertheless, the actual behavior is, in fact, a little 

more subtle even than supposed in (Dll). 

renormalization group eigenvalues 

What one finds, first, are the 

(Dl4) 

which pertain to the Gaussian fixed point studied in Sec. 6.4 which is stable for 

d ) 4 since À3 - Àu and hence, 

(DlS) 

are then negative. The standard renormalization group exponent identifications 
l yield v = l/À 1 = 2• which is the expected classica! value, but also 

2 -a 
d l À2 l l 

= ~ = 2 d, and A = ~ = 4 d + 2• (Dl6) 

neither of which correspond to the classica! values, a = O and A = 3/2. However, 

the scaling function Y0(y,z) entering (D6) does behave in a singular manner when 

z + 0: specifically one finds 

where w0(w) is a well-behaved function. This resembles the postulate (Dll) with ~=l 

and so, via (Dl3), yields the 'operative' or observed criticai exponent 

2 - a = dv - ~l <P l =.!. d 1 (d-4) 2 -2 2. (Dl8) 

Thus we obtain a = O which is now in accord with the classica! predictions (and, of 

course, violates hyperscaling). 

Evidently, then, u _!! a dangerous irrelevant variable at the Gaussian fixed 

point when d > 4. Further, however, u, in the guise of the scaled variable 

z = uti<P l, also enters as a factor in the argument of the scaling function w0• This 

argument thus becomes 

Z i H 1 fi<PI Hui 
w= y =--1- (u& t ) =-.--. 

À2 Àl t" 
t 

(Dl9) 

where now the operative scaling exponent for the ordering field is seen to be 

À2 l l+.!._.!. 3 
A = ~ - 2 l <P l = 4 d 2 4 (d-4 ) = 2" (D20) 
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This contrasts sharply with (D15) but agrees with the classical prediction! 

The moral of this story is that the standard scaling relations for critical 

exponents depend, in their derivation, on assumptions, usually left tacit, about the 

nonsingular or nonvanishing behavior of various scaling functions and their 

arguments. In many cases these assumptions are valid and may be confirmed by 

explicit calculation (or other knowledge) but in certain circumstances they may 

fail, in which case an exponent relation may change its form. Other nontrivial 

cases of dangerous irrelevant. variables are known so that the phenomenon, although 

not common, is not truly exceptional. 
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