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Preface

These lecture notes present an informal review of the experi
mental facts and theories concerning critical points, especially in
fl uid and magnetic systems. The main emphasis is on the fundamen
tal problems and recent theoretical developments. In writing the
notes I have retained the informal style of the lectures and have not
attempted, for example, to give a complete bibliography of the field.
Relatively little background knowledge is assumed and the mathe
matical level is quite low. Readers familiar with the subject but
interested in the newer developments might wish to skim the early
chapters or start directly with, say Chapter VII.

Much of the material in these notes was first presented as a
series of invited lectures at Yale University. I would like to thank
Professor W. P. Wolf of Yale for the stimulus that lead to their prepa
ration.
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Chapter I

1. Introduction
The study of phase transitions and critical points cuts across

the familiar divisions of the sciences. Much of the original thinking
about the states of matter and their interrelations was done by engi
neers who wanted to design efficient heat engines, turbines, and
other devices. In present times it overlaps the domains of low-tem
perature physics, solid -state physics, physical chemistry, chemical
engineering, and metallurgy. At further remove some of the ideas
developed in the study of phase transitions have been applied in bio
chemistry and biophysics to the study of macromolecules, and in
nuclear physics in the understanding of nuclear structure and spectra.

Needless to say I will not, in these lectures, attempt to cover
the whole field! My approach to the subject will be mainly that of a
theorist aiming at a general understanding of the phenomena rather
than a detailed description of the peculiarities of specific physical
and chemical systems. My philosophy at this stage has been well
expressed by Frenkel (in a review article devoted to the theory of
metals, quoted by Tamm is his obituary of Frenkel) .

Frenkel states his views on the task of a theoretical physicist
as follows:

The more complicated the system considered, the more sim
plified must its theoretical description be. One cannot demand
that a theoretical description of a complicated atom, and all
the more of a molecule or a crystal, have the same degree



of accuracy as of the theory of the simplest hydrogen atom. In
cidentally, such a requirement is not only impossible to fulfill
but also essentially useless. . . . An exact calculation of the
constants characterizing the simplest physical system has es
sential significance as a test on the correctness of the basic
principles of the theory. However, once it passes this test
brilliantly there is no sense in subjecting it to further tests as
applied to more complicated systems. The most ideal theory
cannot pass such tests, owing to the practically unsurmounta
ble mathematical difficulties unavoidably encountered in appli
cations to complicated systems. In this case all that is de
manded of the theory is a correct interpretation of the general
character of the quantities and laws pertaining to such a sys
tem. The theoretical physicist is in this respect like a car
toonist, who must depict the original, not in all details like a
photographic camera, but simplify and schematize it in a way
as to disclose and emphasize the most characteristic features.
Photographic accuracy can and should be required only of the
description of the simplest system. A good theory of compli
cated systems should represent only a good "caricature" of
these systems, exaggerating the properties that are most diffi
cult, and purposely ignoring all the remaining inessential
properties.

It is fair to add, however, that it is not always easy to see
beforehand just what are the essential properties of a system in rela
tion to the particular phenomena studied. Indeed in our discussion of
critical points there will appear some surprises in this direction! Of
course it is one of the jobs of theory to decide just what properties of
the system, or more formally of its Hamiltonian, are res ponsible for
the observed behaviour at a critical point.

In the spirit of Frenkel's remarks I will consider mainly the
simplest examples of the various types of physical systems displaying
critical phenomena-especially monoatomic fluids, simple ferromag
nets and anti-ferromagnets and binary alloys. I will not discuss
superconductivity or superfluidity which at the present time seem to
stand apart, owing to their essentially quantum mechanical origin;
although one may hope that eventually a theory will be developed
which will also encompass them naturally.

Nor will I consider ferroelectricity in which the long-range
na ture of the Coulomb forces appears to playa dominant role.

In the next few sections the salient features of the systems
of interest will be reviewed briefly and I will point out some striking
experimental res ul ts that challenge our theoretical imagination!

8 MICHAEL E. FISHER
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2. Critical Point of a Fluid
If a gas is compressed at a temperature below its critical

temperature Tc it reaches a certain density PG and then condenses
at constant pressure to a liquid of greater density PL' As T is in
creased towards Tc the discontinuity (PL - PG) becomes smaller and
disappears altogether at the critical point where T=Tc , PL=PG=Pc
and p= pc. These familiar facts are illustrated in the typical (p,v)
isotherms (v= lip) sketched in Figure 2.1.

r= Tc

Figure 2.1. Typical isotherms for a simple fluid.

9

By com pre s sing a gas at a temperature above Tc , one can, ex
perimentally,pass from the gaseous to the liquid state without any
discontinuity and, as far as can be told, without an "anomaly" in
any of the derivative s of the free energy. This topological fact is
illustrated in Figure 2.2 which shows the phase diagram for a simple
system with one solid phase. The critical point is, of course, lo
cated at the end of the vapour pressure curve. Whether, despite the
experimental results, there is some subtle kind of higher order singu
larity which persists above the critical point on a continuation of the
vapour pressure curve, is a difficult theoretical question. The
answer is generally believed to be "No" and we shall accept this in
these lectures. Recently, however, I have constructed some soluble
(although necessarily somewhat artificial) models for which such a
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Figure 2.2. Phase diagram for a simple fluid.

SoUd

Be that as it may, one does, in passing over the critical
point, observe a well defined maximum in the isothermal compressi
bility.

distinction between liquid and gas does remain above the critical
point!

which occurs close to the critical density Pc' If we lower the tem
perature at constant density P = Pc the compressibility increases
rapidly (corresponding to the flattening of the isotherms in Figure 2.1)
and the critical point may be characterized by

This fact, and other propertie s of KT I make it a quantity of central
theoretical interest.

As observed I we may also characterize the critical point by
the "closure" of the coexistence curve Ii. e. I by



Figure 2.3 (taken from a paper of Guggenheim in 1945) shows experi
mental data on the coexistence curve for the simple gases Ne, Ar, Kr,
Xe, N2' etc. (These are ideal "physicists I gases"!) We observe

THE NATURE OF CRITICAL POINTS 11

(2.4)

.sIO .2 " .6 .8 1.0 1.2 1.. 1.6 1.8 2.0 2.Z l ••

fl/Q
Reduced densities of coexlSling liquid and gas phaSe!.

Figure 2.3. Coexistence curve for neon, argon, krypton, etc.
[from E. A. Guggenheim, J. Chem. Phys. Q, 253(1945)1.

first that they follow, to a good approximation, a law of corre
sponding states which means essentially that there is a unique be
haviour for the theorist to calculate. Of more crucial intere st to us,
however, is the shape of the solid curve drawn through the data
which gives a very good fit near Tc (to within ±O. 5 per cent in 6p / Pc
and!:>. T/Tc from T/Tc ~ O. 6 to within ~ per cent of Tel. Guggenheim
looked for a simple power law and discovered

1

(PL - PG) ~ A(Tc - T)3,

i. e., a one-third power law! (One should also note the law of



rectilinear diameter which is quite well obeyed by most gases I

namely,
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(2.5)

where ~ usually has a value close to 2.5.)
Actually Michels, Blaisse and Michels in 1937 had noted that

for CO2 the index (3 = 0.357 in (2.4) g ave a very good fit to their
data. A more recent and very careful test of the one third law (by
Weinberger an,d Schneider) is illustrated in Figure 2.4. The drnsity
discontinuity (PL - PG) for xenon is plotted vel'S us [1 - (T/Td 13" and a
very good straight line is observed. It should be noted that the data
go up to temperatures differing from Tc by only one part in 30,000,
the temperature being controlled to within ±O. 001 0 C!

.50

.40

,10

0.050 0.075

T "ll--)
T,

0.100 0.125 0.150

Plbtof PL -PaYS, (1 - TITc)!'

Figure 2.4. Coexistence curve for xenon close to Tc [from
M. A. WeinbergerandW. G.Schneider, Can. J. Chem. 30,
422 (1952)1 . -
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A small peculiarity in Figure 2.4 is that the straight line I

through the data points I does not intercept the origin (PL = PG = Pc
when T = Tel as it should. * This may be understood by postulating I

more generally I

(T - Tc -) (2.6)

and asking the data what value of. the exponent {3 they prefer-rather
than forcing {3 = ~ on them! One discovers that

{3 = 0.345 ± 0.015 (2.7)

best expresses the experimental measurements. This value is a little
larger I but is not inconsistent with t.

Finally we must note that the critical point is associated with
a striking thermal anomaly. It has been known for some time that the
specific heat Cv exhibits a maximum above Tc near P= Pc and that
this maximum increases as the critical point is approached. It has
only been revealed recently I however, by Russian measurements on
argon (and on oxygen) how sharp the peak really is -see Figure 2.5
where the configurational specific heat at constant critical volume is
plotted versus T from the triple point to above the critical point. Ex
perimentally we may conclude

(2.8)

where the "infinity" seems to be limited by the considerable difficul
ties of measurement but in any case exceeds the usual kinetic spe
cific heat (3/2)k, by a factor of eleven or twelve.

Of course, the way in which Cv(T) and KT(T) diverge to in
finity will be of prime interest to us but we will review the experi
mental data on these points when we have discussed some of the
theories.

*We might remark I parenthetically, that some ten to fifteen years
ago the question was raised, notably by O. K. Rice (see, for exam
ple, J. Phys. (Colloid) Chem. 21, 1293(1950)), as to whether the
coexistence curve might have a "flat top." Although this has not
been ruled out theoretically I more recent and accurate experiments
establish that the coexistence curves for simple systems do not
have a significant flat top.
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Figure 2.5. Constant volume configurational specific heat
for argon at critical density [from M. E. Fisher (to be pub
lished) after measurements by M. 1. Bagatskii, A. V.
Voronel' and B. G. Gusak, Soviet Phys. JETP l2., 517(1963)1.

3. Curie Point of a Ferromagnet
A ferromagnet is characterized by a spontaneous or residual

magnetization which remains even when a magnetizing field H is re
duced to zero. Physically, of course, the phenomenon arises because
the forces between the electronic spins are such as favour parallel
alignment. Formally we may define the spontaneous magnetization
as

*we must remember that the magnetization process in real magnets is
rather complicated and hysterisis and other nonequilibrium phenomena
may be difficult to avoid experimentally, expecially at

Mo(T) = lim M(T ,H)
H-O+

where M(T,H) is the equilibrium magnetization in a field H. *

(3.1)
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As the temperature is increased, the spontaneous magnetiza
tion decreases and finally vanishes sharply at the Curie point Tc (see
Figure 3. 1), i. e. ,

Mo(T) - 0 (3.2)

Above Tc the magnetization in zero field is identically zero. However,
the initial susceptibility

(3.3)

is positive and as T - Tc ' Xo (T) diverges to infinity, signalling, as it
were, the onset of spontaneous magnetization (see Figure 3.1).

~ T
Figure 3.1. Spontaneous magnetization and initial suscepti
bility of a ferromagnet near its Curie point.

low-temperatures. The problem may be reduced by working with
single-crystal single-domain specimens. A further point concerns
the magnetic field H: we will always mean the "true" or "internal
field" but owing to the demagnetizing effects, which find their origin
in the long-range dipolar nature of magnetic forces, this will differ
from the "external field" observed by the experimentalist. Correc
tions, dependent on the shape of the specimen, must be made to ob
tain H and this becomes especially significant for ferromagnets with
low Curie temperatures.
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If thn };[Jecific heat in zero field is measured, an anomaly is
obIH\lv/,c! at 'fc , although in the case of iron and nickel-the classical

-this is superimposed on a relatively large lattice spe
(:JUel he,at of Debye type (see Figure 3.2). However, the more

CrT)

Figure 3.2. Sketch of the specific heat of nickel in zero field.

recently discovered ferromagnets Gd, EuO, EuS, etc. have critical
points in the low-temperature region and the magnetic specific heats
may be studied without interference from lattice contributions. Such
experiments are in progress.

If we change the sign of the field H in (3. 1) the sign of
Mo(T) changes. Consequently the (ideal) magnetization curve below
Tc has a discontinuity 2Mo as a function of field (see Figure 3.3).
If we make a correspondence between changes in magnetization and
changes in density of a fluid and similarly between the magnetic field
and the pressure, we see that there is an analogy between a magnetic
isotherm below Tc and a p, p isotherm of a fluid below its critical
point; rotate Figure 3.3 anticlockwise through a right angle and com
pi1re with Figure 2.1. Similarly if we complete the spontaneous mag
notizdtion curve by reflecting it in the M = 0 axis in Figure 3.1 and
rotate the resulting figure anticlockwise through a right angle, we
see a close analogy with gas -liquid coexistence curve, Figure 2.3!

It is evident that the magnetic susceptibility X(T) will simi
Inri y be analoqous to the fl uid compres sibility KT. In particular,
both d.1v(~rge as T-Tc .

'rho andlogy continues if we look at the phase diagram or
(II, '1') plane of a ferromagnet (see Figure 3.4). The Curie point, like



THE NATURE OF CRITICAL POINTS 17

T>T;;

H

Figure 3.3. Ideal magnetization curve of a ferromagnet.

H;;: 00 ,..-----------

H==-O

H=- 00'------------

Figure 3.4. Phase diagram for a ferromagnet.

T



*TI1Ci exper.l:mental results have now been published in Phys. Rev.
Letters '71 (1965).

(3.4)

(4.1)
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M (T) = A(T - T)f3 (T- T -)
OCt C

til

where the index f3=0.33 ± 0.01! In other words a one third law
seems also to apply to ferromagnets!

with f3 close to 0.33! Indeed this one third power law is known to
hold to qood approximation for many different binary solutions. (See
the book by J. S. Rowlinson, "Liquids and Liquid Mixtures, "
Butl:erworths, London, 1959.)

The analogy with the single component fluid is clear: we
m(0rely forqet about one of the components, say B, and regard the

tl)(l c.rUlcHl1 poInt, appc)ars at the end of a line of discontinuity.
113 no phase transition in a nonzero field.) By passing around

lli,) C;Ullo point (or critical point as we shall usually call it) we see
llHH tlj(ij Iwo opposite magnetic "phases" can be transformed con
Unuously into one another as can liquid and gas.

We will show theoretically that this analogy, between what
tHC) I1t first sight very different physical systems, is not merely
fluperfi.cial, but can be made quite precise. A strong hint of its sig
nificance is given by the way in which Mo(T) vanishes as T-Tc '
Magnetic resonance experiments by Heller and Benedek (as yet un
pUblished*; but see also Section 5) on the insulating ferromagnet
EuS indicate that

4. Binary Sol utions
If in a binary fl uid mixture of two components A and B, the A

molecules preferentially attract A molecules while the B molecules
preferentially attract B molecules, the system may undergo phase
se paration into an A-rich phase and a B-rich phase. At constant
overall pressure the conditions of equilibrium depend on the tempera
ture and the solution composition as expressed in terms of the mole
fractions xA and xB (XA + xB = 1). Coexistence curves of the usual
appearance for gases are observed (see Figure 4.1) with a critical
temperature above which only one homogeneous phase occurs.

A typical system studied is perfluoromethylcyclohexane in
carbon tetrachloride (such systems have convenient critical tempera
tures and compositions). This has been the subject of very accurate
experiments by O. K. Rice and coworkers whose most recent results
confirm that the coexistence curve obeys the law
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space it occupies as "vacuum." Then xA corresponds to p and the
partial pressure to p.

T

o

Ohe Phase

Two
Phases

1
Figure 4.1. Coexistence curve for a binary fluid mixture.

T
Two

Phases

Ohe Phase

o 1
Figure 4.2. Coexistence curve illustrating a lower critical'
point in a binary solution.



T
Figure 5.1. Sketch of the susceptibility of a typical antiferromagnet.
The dashed line indicates the free s pin susceptibility.
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5. Antiferromagnetism
The physical systems discussed above might be characterized

as "like-attracts-like": molecules of type A attract molecules of
type A rather than of type B in binary solutions; "up" spins attract
II Up ll spins and repel "down" spins in ferromagnets; molecules of a
fluid attract one another and coalesce in condensatior.. Other sys
terns might be characterized as lllike-repels-like ll or "unlikes at
tract." The most prominent examples of this are antiferromagnets in
which neighboring spins tend to align antiparallel, and homogeneous
binary alloys which tend to crystallize with a regular alternation of A
and B ions.

Historically, antiferromagnets were detected by a suscepti
bility versus temperature curve falling below the free, uncoupled, curve
and exhibiting a more-or-less sharp maximum (see Figure 5. 1). At a
temperature near this susceptibility maximum a sharp anomaly in the
specific heat is observed. Friedberg's measurements on Ni C12"6H2 0

It is interesting to note that certain binary mixtures exhibit a
lower critical point below which the system remains in one phase and
above which phase separation occurs (see Figure 4.2 on preceding
page). Experiment shows that even in the vicinity of these lower
critical points the one third law (4.3) is followed quite closely!

\
\
\/ free sfLns

""""
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Figure 5.2. Specific heat of the antiferromagnet NiC12' 6H20
[from W. K. Robinson and S. A. Friedberg, Phys. Rev. 117,
402(1960)] •
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4

shown in Figure 5.2 illustrate the typical lambda shape of the magnetic
specific heat (superimposed here on a relatively small lattice contri
bution). The occurrence of a sharp specific heat peak at a tempera
ture Tc (often called the NeEd temperature) suggests that some sort of
ordering process sets in below that point. This is confirmed very
directly by neutron scattering experiments which show that above Tc
the spin directions are disordered (becoming completely random as
T - co although exhibiting some short-range order near Tel, while be
low Tc a long-range alternating order occurs. Thus, the antiferro
magnet MnF2 has a body centered cubic lattice (of magnetic ions) and
below Tc spins on alternate lattice sites point "up" and "down" (with
respect to the "easy axis").
5r--....---,---,---r---,----,---,--r--.,.---,---,
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The long-range order may be measured by the intensity of the
"super-lattice" line in the neutron scattering which appears below Tc•
Its position corresponds to a periodicity appropriate to the larger
magnetic unit cell implied by the alternating order. The square ro()t
of this intensity is proportional to what is usually termed the



6. Homogeneous Binary Alloys
Many binary alloys undergo an order-disorder phase change

as sociated with a thermal anomaly. The most famous and historically

"sublattice magnetization," MO (T). This is rather analagous to the
spontaneous magnetization of a ferromagnet, except in that it cannot
be observed magnetically, since it is always cancelled by an equal
but opposite "magnetization" on the second sublattice. As the tem
perature rises towards the critical point, MO (T) falls sharply and
vanishes at Tc .

The most accurate measurements of the sublattice magnetiza
tion have been performed by Heller and Benedek who observed the
nuclear magnetic resonance of the fluorine nuclei in MnF2. The
average field at a fluorine nucleus is proportional to the sublattice
magnetizati0\l of one set of manganese ions, consequently MO is in
turn proportional to the measured resonance frequency (in zero exter
nal field). Heller and Benedek found that

(5.2)

(5. 1)

f3 = 0.335 ± 0.005.

MICHAEL E. FISHER

Md (T) = A(Tc - T)f3
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with

This "one third law" held with remarkable accuracy up to within milli
degrees of the critical point (AT/Tc = 0.007%) as can be seen from
Figure 5.3 where the cube of the resonance frequency (- M6 3) is
plotted versus T. The result of Equation (5.2) really does suggest
that f3 is exactly one third!

The analogy between an antiferromagnet and a ferromagnet in
zero field (which corresponds essentially to calling "up spins" "down
spins" on alternate lattice sites) no longer holds in a magnetic field.
Antiferromagnetic ordering is not destroyed by a field although the
critical temperature drops as H increases. This topological distinc
tion can be seen from a typical antiferromagnetic phase diagram
shown in Figure 5.4. It is not possible to pass from the ordered to
the disordered region without undergoing some detectable phase
changes (notably a specific heat anomaly). We will not, however,
discuss the additional phase that appears at lower temperatures in
some antiferromagnets nor the many interesting but complicated spi
ral and layer spin orderings that have been discovered in ferrimagnets,
metamagnets and related magnetic systems.
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TEMPERATURE IN DEGREES KELVIN

Figure 5.3. Cube of the sublattice magnetization of MnF2 I

as measured by the NMR frequency, versus temperature [from
P. Heller and G. B. Benedek, Phys. Rev. Letters ~, 428
(1962)] .
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Phase diagram for a typical antiferromagnet.
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Figure 5.4.



important example is j3-brass, which is approximately 50 per cent
CuZn. The specific heat displays a large and sharp lambda anomaly,
the peak of which locates the ordering temperature Tc . Other exam
ples are FeCo, FeNi, CU3Au, and Ni3Mn. X-ray and neutron scat
tering experiments verify the appearance of superlattice reflections
below Tc indicating the presence of long range alternating order with
A ions preferentially on one sublattice and B ions preferentially on
the other sublattice. The intensity of the superlattice line (or its
square root R(T)) again measures the degree of long range order. As
T- Tc - the order R(T) drops and vanishes at Tc • To my knowledge,
however, there '1re at present no experiments accurate enough to de
cide if a (Tc - T)3 law is followed here also.

One does not have, in this case, a direct analogue of the
susceptibility of a ferro- or antiferromagnet. However, the diffuse
low angle scattering above Tc corresponds essentially to a wave
length dependent (ferromagnetic) susceptibility and becomes large as
Tc is approached from above.

The topology of the phase diagram is similar to that of an
antiferromagnet in that the ordered phase cannot be reached from the
disordered phase without cros sing a line of phase change.
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Chapter II

After our healthy dose of experimental results, let us turn to
theory! The first task, recalling Frenkel's advice, is to construct
some simple physical models on which to base our theoretical calcu
lations.

7. Simple Models
Our first model is so familiar that the theorist is apt to forget

that it is only a model of real physical systems. This is:

A. The Classical Continuum Gas which normally embodies three
assumptions:

(i) the use of classical mechanics,
(ii) pairwise forces,

(iii) central forces.
Actually, the use of classical mechanics seems quite justifia

ble for most gases near their critical temperatures. Only in the case
of hydrogen, helium, and perhaps neon should one have serious re ser
vations.

Quantum mechanical calculations of many-body forces be
tween atoms and molecules show that assumption (ii) is not entirely
correct. However, except at high densities the three-body and higher
order forces are numerically small and it seems safe to neglect them



where H is the magnetic field g(3B is essentially the magnetic mo
ment per spin, and
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(7. 1)

(7.2)
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near critical densities (pc is usually about a third of Pmax) in a first
discussion.

The assumption (iii) of central forces with a potential tp(r)
should be a good one for the monotonic gases. Presumably it is less
accurate for diatomic and other nonsymmetric molecules but the law
of corresponding states evidence indicates that this should not be
crucial for critical phenomena.

One knows I of course, that the correct pair potential, tp(r) I

should have a strongly repulsive core followed by a relatively weak
attractive well and an attractive tail decaying as 1/r6 . For theoreti
cal purposes it is often useful, however, to consider a potential of
strictly finite range b (tp (r) == 0 for r> b]: one feels that this should
not matter too seriously.

By considering tp(d as an "effective potential" between mole
cules of one species and neglecting the second species I we can also
use the model to discus s binary sol utions.

is the II exchange energy II between spins i and j . (Note that J is
positive for ferromagnetic coupling and negative for antiferromagnetic
coupling. )

The Hamiltonian (7.2) embodies the further assumptions of
(ii) Pairwise interactions I which again seems reasonable in

a first approach.
(iii) Complete isotropy; that is I JI is invariant under rotation

B. Heisenberg Model for Magnetism.
This model is based on the principle assumption of

(i) Well-localized spins.
One supposes the spins can be localized to a good approxi

mation on the lattice of magnetic ions so that a spin variable ~ may
be associated with the jth lattice site. This should be justifiable for
insulating crystals but is certainly open to question for good conduc
tors such as iron and nickel. Indeed in the latter case the zero tem
perature saturation moment indicates that only 0.6 of the usual elec
tronic magnetic moment is available per ion.

Accepting (i) we may write the general Heisenberg Hamil
tonian for N ions



where a:, {3 = x, y, z, or by adding dipolar forces of the form

[- - - - _.... J 3S, . S, - 3 (Sl" r .. ) (S, . r
1
,),) / r" .

1 ) 1)) 1)

\' a: {3 a: {3
LJ (3 J.. s, S,a: , 1) 1 )

to
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However, in many cases we may hope to avoid these refinements and
indeed simplify (7.1) still further by restricting the interactions to
nearest neighbour pairs described by a single exchange constant J.
Although there is ample evidence to show that second and further
neighbour interactions are not in general negligible they should not
matter crucially if they do not oppose the ordering tendencies of the
dominant first neighbour interactions. Conversely, when this is not
true one sees the more complicated magnetic behaviour which we
have elected not to discus s.

Our last "fairly realistic" simple model is for:

of the total spin. All real magnetic materials show some anisotropy.
Although this is frequently quite small numerically it can play an im
portant role, especially in antiferromagnets, by "stabiliZing" the
direction of magnetization. It may be taken into account by adding to
J:I terms of the form L: (BiZ) 2, for example, by modifying

C. Binary Alloys.
One assumes:
(i) A fixed lattice, each site of which is occupied by an A

or a B atom.
(ii) That only fixed nearest neighbour interaction energies

EM, EAB = EBA and EBB enter (although one may consider more distant
interactions) •

Assumptions (i) and (ii) imply the neglect of any interactions
with the lattice vibrations. This cannot be very accurate since if the
masses mA and mB are distinct even the zero point lattice energy will
de pend on the degree of order. However, if the E do not vary too
rapidly with lattice spacing and the masses are not too different, lat
tice vibrations probably lead only to a "renormalization" of the inter
action energies (and presumably to an increase in the range of the ef
fective direct interactions). The assumptions also neglect effects
due to different atomic sizes of A and B ions which might well be im
portant if these differ appreciably. Nevertheless, one feels that the
model ought to yield a fairly reliable description of the ordering
phenomenon.
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II, .tHmpler Models
Of the three models discussed, the classical continuum gas

Inodel is probably the most realistic. Unfortunately, however, it is
IlO difficult to discuss mathematically except at low densities that
CHlsentially no progress has been possible in calculating critical be
lHlviour reliably. Accordingly, we will simplify and schematize still
further by introducing the:

A'. Lattice Gas.
In the most general form of the model one introduces a regular

space lattice of spacing 0 and requires that the molecules be re
stricted to the lattice site and that no site be occupied by more than
one molecule. Essentially, this merely replaces the configurational
integrals in the partition function by approximating Riemann sums.
Consequently, if the lattice spacing 0 is small compared with the
distances over which the pair potential varies appreciably, any errors
should be negligible except perhaps at densities near close-packing.
Indeed, .one can verify by explicit calculation for various one-di
mensional systems that in the limit 0 - 0 (holding tp(r) constant) the
lattice gas results agree exactly with the continuum model results for
P> Pmax·

Unfortunately in practice if 0 is small, the mathematical dif
ficulties are still severe. One is thus forced, at least in the first
instance, * to consider the extreme case where the hard core of the
potential is represented merely by the restriction forbidding double
occupancy of lattice sites while the attractive part is represented by
a nearest neighbour energy, i. e. ,

00

(8.1)

Some artificial features of such a model can easily be seen. The high
density behavior cannot be correct and one should clearly not expect
close numerical agreement in comparison with real gases.

However, the model, which as we will indicate is now mathe
matically eqUivalent to the binary alloy model C (except for the sign
of tp(6)) still contains the "seeds of reality" and it transpires that it
yields a surprisingly accurate account of the critical point phenomena.

Finally, let us simplify the Heisenberg model. Although in
many ways this is not as intractable as the continuum gas model (thus

*Recently some progress has been made for hard cores extending to
first neighbour sites.



SI S-ll" .. -(S-l)/-S,

*Studied by W. P. Wolf and coworkers: M. Balli M. J. M. Leask l

W. P. Wolf and A. F. G. Wyatt I J. Appli. Phys. I MI 1104(1963);
M. Balli M. T. Hutchings l M. J. M. Leask and W. P. Wolf I Proc.
8th Int. Congr. on Low Temperature Physics (in press).

the low temperature properties may be described accurately I even
though only asymptotically I in terms of spin waves and progress can
also be made at high temperatures) I the noncommutation of the opera
tors makes extensive calculation difficult. Accordingly I let us in
troduce the
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In the simplest and most commonly considered case I S = ~ and
Sp=±t corresponding just to "up" and "down" spins. In practice we
will usually also suppose that the interactions are restricted to
nearest neighbours. However l one should remember that longer range
interactions can be discussed (and some progress has been made).
Furthermore I if the field is not parallel to the z-axis the noncommu
tative properties of the sf will come into play. Indeed I it has
proved possible to calculate the perpendicular susceptibility of the
Ising model exactly in two dimensions!

One of the most artificial aspects of the Ising interaction is
its extreme anisotropy which results I in particular I in an essentially
complete absence of spin wave behaviour at low temperatures. How
ever lour interests will be at higher temperatures close to the critical
point where this deficiency can be expected to be less significant
(and where the concept of a spin wave loses its validity). On the
other hand I some extremely anisotropic magnetic crystals have been
discovered (notably the antiferromagnet dysprosium aluminium gar
net*) I and these should be well approximated by Ising models even
at lower temperatures!

BI. Ising Model of Magnetism-by replacing the isotropic Heisen
berg coupling Si' S; by the anisotropic Ising coupling Siz . Sf.

If the field H is parallel to the z-axis I the Ising Hamiltonian
may be diagonalized trivially and the operators sl may be replaced
by "semiclassical" variables taking the 28+ 1 values

9. Basic Statistical Mechanical Formulas
Having accepted a model of a physical system we must calcu

late its thermodynamic properties with the aid of statistical mechan
ics. To establish our notation let us put down the basic formulas
with which we will work.

For a classical system of N identical particles of mass m
with coordinates fl ... fN confined in some domain 0 of volume
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v v(n) the canonical configurational partition function is

29

(9. 1)

where {3= llkT and UN= UNCrl." fN) is the total potential energy of
interaction. The factor liN! is present since we must only count
,gLstinct configurations of the particles. The connection with thermo
dynamics is provided by

F -FN 1- - = - = - e-n Q (N n) - 3 e-n A
kT NkT N '

(9.2)

where the Helmholtz free energy per particle F, is regarded as a func
tion of T (or f3) and the specific volume,

v= lip = vlN
and where

2 2
A = h 127TmkT

h being Planck's constant. The equation of state is given by

(
SFN) (SF)P = - SV T = - Sv f3 = p(f3, v) .

(9.3)

(9.4)

(9.5)

In practice it is often more convenient to work with the grand
canonical partition function

00

2(z ,n) = ~ zNQ(N ,0)
N=O

(9.6)

where the activity z is related to the chemical potential IJ. (or Gibbs
free energy per particle) by

(9.7)

The corresponding grand canonical pressure and density follow from

ki = 7T(f3, z) = [l/V(o)] e-n 2(z,O) (9.8)

(9.9)



For a quanturn mechanical system, such as a ferromagnet,
one must defIne the partItion function by

when) J/ n is the Hamiltonian for the domain 12, and the trace is taken
wIth a set of orthogonal normalized states complete in n and of ap
propriate symmetry. The free energy density f({3) is then given by

(9.10)

(9. 11)
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For a magnet, f will normally be expressed as a free energy per spin
(but it should be noted that this is still a free energy density while F
defined in (9.2) is not a density). The magnetization density is ob
tained from

(9. 12)

where the first summation is over all pairs (i,j) of distinct spins.

which in the literature have been variously denoted (Tf, (Ti' or lJ.i' If
we write for the magnetic moment per spin

(10.3)

(l0.5)

(10.4)m = %gf3B

the Hamiltonian becomes

10. Equivalence of Ising Magnet and Lattice Gas
We may now formulate explicitly the partition function for the

Ising model. For the present we will consider only the case S = %
with the field H parallel to the z-axis. On diagonalizing the Hamil
tonian in a basis of up and down spins at each site, the trace opera
tion becomes simply a sum over sl = ±% for all i= 1,2, ••. 11.. (We
use a script symbol 11. here for the number of spins, or lattice sites,
so as to avoid confusion with N, the number of atoms in a lattice gas.
In later sections, when there is no risk of confusion, we will use the
more conventional N for the number of spins and lattice sites.) It is
convenient to introduce the scalar variables
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One should be warned that in the literature on the Ising model an al
ternative convention is common in which the symbol Jij replaces tJij
as we have defined it here and in (7. 1). Introducing the temperature
and field variable s

the partition function is

L mH/kT, (10.6)

Z(T ,H,h) =
h

~ exp[ ~ K"s,s, + L ~ SiJ.
-±l (, ,) 1) 1 ) '-1sr ~ ~

(10.7)

It is useful to notice that when the interactions are restricted
to the q nearest neighbour spins of a given spin (so that one has
only the single exchange parameter Jij = J} the partition function is
merely a polynomial in the temperature and field variables

-2K
x=e

except for a leading factor

and
-2L

y=e (l 0.8)

(10.9)

corresponding to the configuration with all spins up. (Notice that if
q is the coordination number of the lattice, the number of bonds is
~qh, ignoring boundary corrections.)

To formulate the lattice gas model we suppose the lattice has
h sites ("cells") and that a lattice cell has volume v o ' Since each
site is either occupied by one atom or is vacant we may introduce the
occupation variables

1 if the ith site is occupied

o if the ith site is vacant. (10. 10)

Evidently the total number of atoms in a given configuration specified
by a set {ti} is

N (10.11)

The grand partition function may thus be written



where rij is the distance vector for the lth and jth sites and the
symbol N{ti} on the second sum denotes that we sum over values of
ti = 0 or 1 subject to the condition (l0.11), Le., over all distinct
configurations of N atoms. However, if we substitute for N in
(l0.12) with (l0.11), we may replace the two summations by a single
unrestricted summation over all ti = 0 or 1, so that
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E (/3, z,nv0) = f zN }, exp [-f3 L: tpCi\jltit.]
N=O Ntt'i} (ij) J

(10.12)

(10.13)

To see that the calculation of E for the lattice gas is mathe
matically equivalent to the calculation of Z for the magnet consider
the identity

(10.14)

which associates (by common convention) an "up" spin on the lth
site of the magnet with the absence of an atom in the gas and a
"down" or "overturned" spin with the presence of an atom. Evidently

t.t. = i-h. - is. + h.s. (10.15)
1 J 1 J 1 )

so that the quadratic in ti in (l0.13) can be reduced to a quadratic in
the si. Comparison with (10.7) then leads directly to the identifica
tions

and

or

0nz

-2J ..
1)

-2L - 2/3Eo

(l0.16)

(l0.17)

fJ. = -2mH - 2E O + 3kT 0nA

where the essentially uninteresting constant is

(l0.18)

(l0.20)
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When each site has just q nearest neighbours interactions,

and for the activity one gets simply

33

00.21)

00.22)

Thus we conclude that the grand canonical partition function
of the lattice gas corresponds to the canonical partition function for
the Ising ferromagnet and that changes in chemical potential (or ac
tivity) correspond to changes in magnetic field. From the standard
formulas of the last section we find that the lattice gas pressure is
given by

pVo = -f - mH - iEO

while density depends on the magnetization:

p=_l [l_MJ.
2vO m

00.23)

(10.24)

Notice that zero density corresponds to positive saturation magneti
zation while p = Pmax= llvo (close packing) corresponds to negative
saturation.

This formula might have been an.ticipated directly from the
definition (l0. 14) since it is equivalent to

P = (t.) = io - (s·») = iO-M)
1 1

00.25)

where the angular brackets denote the thermodynamic average and
where for simplicity we have now chosen units in which m = 1 and
va = 1.

In the same units we find for the compressibility

2
4p KT = X(T)

and for the specific heats

00.26)

00.27)

(In zero field we may identify C M with CH')
The expressions (10.16) to 00.27) spell out formally the anal

ogy between a ferromagnet and a gas which we noticed in studying



Clearly this can also be reduced to the Ising model form and one
finds the relation

(10.30)

(l0.28)
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*One should perhaps draw attention to one detail in which the analogy
is a little more complicated than anticipated. Equation (10. 18) shows
that the magnetic field is to be identified (up to a constant) with the
chemical potential whereas we had previously identified changes in
field with changes in pressure. The correct formula for the pressure,
(l0. 23), involves the free energy as well as the field. In general,
however, the changes in f will be of higher order than the changes in
H so then there is no serious loss of accuracy in making the identi
fications .6.H ~ .6.f.1 ~ .6. p.

the experimental data. * Of course, these relations are only exact for
an Ising ferromagnet and a lattice gas. However, in as far as we be
lieve that these models are at all "realistic ," we may now draw the
theoretical conclusion that we should expect the critical behaviour
for gases and ferromagnets to be very similar! In particular, in addi
tion to the correspondence between the spontaneous magnetization
and coexistence curves, the divergence of the susceptibility and com
pressibility, and the specific heat anomalies should match.

In discussing the Ising model theoretically, it is often easier
to think in terms of the magnetic analogy because the symmetries of
the model are then apparent. We will, however, freely use either
interpretation and leave the reader to supply the complementary one.

Finally, let us note that a grand canonical formulation of the
binary alloy model C can be obtained by introducing, in addition to
the occupancy variables t i for the A species (say), complementary
variables

E{t.} = \' [EAACr1·)·)t.t. + EAB (7.. )(t.t. + t.t.} + EBBCr.. )t.t.J. (10.29)
1 d1) 1 ) 1) 1) 1 ) 1) 1)

If only nearest neighbour interactions enter, the relevant energy pa
rameter is

which will take the val ues 1 or 0 according as a B ion occupies the
ith site or not. The total energy of a configuration may now be writ
ten
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A binary alloy with the same numerical concentration for each
species will, by symmetry, correspond to the Ising model in zero
field (and hence zero mean magnetization). More generally, the
concentration difference corresponds to the magnetization and the
field H must be chosen accordingly (at each temperature).

Chapter III

11. General Statistical Questions
Before going ahead in an attempt to calculate explicitly the

partition functions for our chosen models I we will pause to consider
a few fundamental questions that might be asked when one uses sta
tistical mechanics to discuss phase transitions. Two natural ques
tions are:

(a) Is statistical mechanics applicable to phase transitions?
(b) Is there a unique statistical mechanical answer? In.2££

ticular do the canonical and grand canonical ensembles
agree ?-even at a critical point?

Historically the affirmative answer to (a) was strongly
doubted. People wondered how atoms separated by macroscopic dis
tances could "know" when they should condense. It was suggested
that extra conditions might be needed to tell the system which phase
to go into. It was thought that one ought to calculate the (Gibbs) free
onergy separately for each phase and'decide where a phase change
took place by equating the two free energies. The phase with the
lower free energy would be realized (while the higher one could corre
spond to a "metastable phase").

Today, however I with the striking example of Onsager's solu
tion of the plane Ising model before us, the answer to (a) should be
"Yes." Onsager's work (which we will describe) showed unequivo
oally how a phase change could and should come out of a rigorous
:Hatistical calculation without the need for any additional constraints
or supplementary conditions. One proviso to our "Yes" is I however I

needed: true equilibrium must have been established in the experi
mental situations we wish to describe. This requirement is not al
ways so easy to fulfill in the laboratory since "settling times" often
become very long near critical points I and il'reversible and meta
IHable tendencies often plague systems which are close to first order
phase changes. We will, however, always assume that equilibrium
is attained.

Des pite our affirmative answer to (a) which, to my knowledge,
11l no longer questioned, there are people who still seem to think and
l,'l1k as if they accepted the historical doubts! (Of course, it should



*See D. Ruelle, Helv. Phys. Acta.l§., 183, 789(1963); M. E.
Fisher, Arch. Ratl. Mech. Anal. 11., 377 (1964).

where C, C' and E, E' are positive constants.
The first condition says the potential must decay reasonably rapidly
at infinity (and rules out dipolar and unshielded Coulomb forces)
while the second condition ensures that the potential has a suffi
ciently strong repulsive cone to prevent the system "collapsing."

(B) On the domains:
The sequence fJk may be constructed from any finite set

(11,2)

(11, 1)

(11, 4)

(11,3)

as r - a

as r - 00
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<p(r) ~ C' /r3+E
'(ii)

- kFT = lim (l/N)0nQ(N,fJk) - 30nA
k- oo
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bo said that as a matter of the practical computation of a numerical
answer, it may well be a good tactic to calculate approximately and
separately for each phase. However, the question of principle is
what matters here.)

The uniqueness question (b) must be answered negatively if
wo have in mind finite physical systems. Thus the canonical free
onergy per particle, even of a large system, does depend to some ex
tent on the size and shape of the system, and it also differs from the
corresponding grand canonical free energy. However, we know that
to obtain true thermodynamic behaviour we must consider the limit of
a very large' system in which the intensive parameters, temperature,
density, chemical potential, etc., are held fixed. Formally we can
define the thermodynamic limit for the canonical ensemble by
choosing a sequence of domains fJk (k = 1,2,3, ... ) whose volumes
V=V(fJk) approach infinity. (It is not enough just to specify the
vol ume and forget about the shape!) The correct limiting free energy
per particle is then given by

Of course, the existence and uniqueness of this limit can be
expected only for "reasonable" shapes of domain and for systems
with "reasonable" forces. Completely rigorous existence proofs
have been given only recently. * For our present purposes the fol
lowing set of sufficient conditions is useful to know:

(A) On the pair potential s:

j<p(r) I :;; C/r3+E

where the limit is taken at fixed density
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of bounded domains by an arbitrary sequence of isotropic expansions
such that V(r2k)"" 00 as k .... 00,

A necessary condition on the domains is that the volume
V(j(h,r2) within a distance h of the boundary should satisfy

lim V(j(h,r2k)/V(r2k) = o. (11.3)
h.... O

Under conditions (A) and (B) one can prove that F(!3, v) is a
well-defined continuous function of !3 and v, Furthermore F is a
montonic decreasing function of v differentiable almost everywhere,
This means (compare with Equation (9.5)) that the pressure is well
defined everywhere except for possible step discontinuities (which
have not been ruled out in general-see Figure 1l.1).

F

v

~,

/ ,
, I

v

Figure 11.l. Canonical free energy and pressure versus spe
cific volume illustrating possible (solid line) and impossible
(dashed line) behaviour,

An important theorem that follows (a proof of these results
for a sequence of doubling cubes under slightly more restrictive con
ditions on the potentials is given in Appendix A) is:

Theorem: The canonical pressure p(v) is a monotonic non
increasing function of the specific volume v.
Thus the pressure falls as v increases or, as in condensa

tion, remains constant (nonincreasing) over some interval (see
Figure 11.1), However, we see that "Van der Waals" or "metastable
loops," such as illustrated by the dashed lines in Figure 11. I, can
never arise in a correct canonical calculation. 1£ we calculate a
canonical pressure and find such a loop, we have made a mistake!

The magnetic analogue of our theorem is that H is a monotonic
nondecreasing function of M (and vice versa). Thus equally in the
magnetic case a rigorous calculation based on the partition function
cannot yield a hysterisis loop.



The thermodynamic limit for the grand canonical ensemble is
defined in the analogous manner once a sequence of domains Ok is
given. As before, one can prove that the grand canonical pressure
p(z) is a unique, continuous,differentiable (almost everywhere) func
tion of the activity z. Furthermore, if the grand canonical density
p(z) is computed by Equation (9.9), the function pCp) agrees exactly
with the canonical pressure function p(p) even at critical and con
densation points. The same holds for all other thermodynamic quan
tities computed in the two ensembles. Indeed, it has recently been
shown that this result is true for the correlation functions also.
One must, of course, remember that the grand canonical ensemble
does not explicitly describe the two-phase region in a condensation
process since p(z) changes discontinuously at a condensation point
(see Figure 11.2). *
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p(z)

In. z.

Figure 11.2. Grand canonical pressure and density
illustrating pos sible behaviour.

To summarize, we see that if we want well-defined thermody
namically correct answers we must always compute the thermodynamic
limit. If we do this we may use whichever ensemble is the most con
venient in the knowledge that the answers will be unchanged. In the
discussions that follow we will always assume that the thermody
namic limit is taken unless we expressly mention otherwise.

*Conversely, the canonical ensemble would not describe the interme
diate points of a discontinuity in p(v) (if such a phenomena were ob
served) whereas the grand canonical ensemble would do so. The pres
sure must increase linearly with en z through the jump (see Figure 11. 2).
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12. The Mathematical Mechanism of Phase Transitions
Our examination of phase transitions and critical points has

shown that they correspond to mathematical singularities in the free
energy F({3, v) or in the grand potential 1T({3, z) and their derivatives;
thus the compressibility becomes infinite at the critical point, the
spontaneous magnetization vanishes identically, and p(z) is discon
tinuous at a condensation point. For theoretical purposes we will
consider any nonanalytic point* of F({3, v) or 1T({3, z) occurring for real
positive {3, v or z as a phase transition point.

However, when we look at the partition functions that we
have written down we observe that they are completely smooth ana
lytic functions for real {3 and z. Indeed they are usually entire ana
lytic functions over the whole complex {3 and z plane s. (Recall that
the Ising partition function was merely a polynomial in x and y). Of
course, this result is only true for finite systems; but it does estab
lish that a finite system cannot display a true phase transition. Evi
dently, only the limiting free energy per particle (and limiting grand
potential) could have mathematical singularities of the type we seek.
This shows again the importance of taking the thermodynamic limit in
the study of phase transitions.

It might be objected, however, that all real systems studied
in the laboratory are actually finite! The answer to this objection is,
of course, that the number of particles in. a typical macroscopic sys
tem is of order

N ~ 1022 to 1024

so that we might expect departures from the ideal limiting behaviour
only of order 1 in 1022 ; but such accuracy is way beyond the pos s i
bilities of most experiments. However, we know from fl uctuation
theory that this is an oversimplification; we should expect relative
fluctuations, e.g., 6.T/Tc ' 6.p/Pc to be of order l/-FN ~ 10- 11 . For
tunately, this is -also safely beyond normal experimental accuracy.
Nevertheless we should be on our guard, especially near a critical
point. For example, it is plausible that the maximum of a specific
heat peak of a finite system grows only as

en N ~ 50

so that really accurate experiments at critical points might reveal a

*Nonanalytic means that the function cannot be expressed by a Taylor
series expansion about the point in question which converges in
every neighbourhood of the point. It is not necessary that any par
ticular derivative of F({3,v) or 1T({3,V) display a discontinuity or be
come infinite.
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finite size dependence. At present, however, even the most accurate
experiments on carefully purified, homogeneous systems do not seem
to reach these limits.

Since a phase transition only appears in the thermodynamic
limit it is natural to ask, "How can a phase transition grow?" An il
luminating answer to this question for the grand canonical ensemble
was first g.iven by Yang and Lee (Phys. Rev. 87, 404(1952)) and is
now quite well known.

If, as in the lattice gas model, the particle s have an infinite
"hard core," Z(z,~) is just a polynomial in z of degree R, equal to
the maximum humber of particles that can be packed in~. Now a
polynomial is completely characterized by its zeros. (Indeed, the
zeros are the only analytic feature a polynomial has!) We may thus
write *

(12. 1)

where the zeros zr = zr({3) will lie in the complex z-plane off the real
axis (for real {3) as indicated in Figure 12. 1. For the grand potential
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Figure 12.1. Possible distribution of zeros of Z(z,~)

in the complex z plane.

*More generally if there is no hard core but the potentials satisfy
(11.4), say, Z (z) will be an entire function with an infinite number of
zeros. The factorization formula (12.1) will still be valid, however,
if R = 00.
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of the finite system we have
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(12.2)

which expresses 'if as the total (two-dimensional) electrostatic poten
tial due to R positive point charges of strength l/V(~) at the positions
Zr. As we take the thermodynamic limit, R.. 00 and the zeros may close
up to form lines of charge density as illustrated in Figure 12.2. For a

Figure 12.2. Possible limiting distribution of zeros in z plane.

finite system, the zeros cannot touch the real axis but in the limit a
line of charge might cut the axis. If this happens at z = Zt we know
from elementary electrostatics that the potential (Le. , the pressure)
will be continuous at Zt but its derivative the field (which corre-
s ponds to the density) will be discontinuous. * Such a point will thus
represent a first order transition.

In general we must also expect that some of the charge may
coalesce to form macroscopic point charges in the limit (see dots in
Figure 12.2). Furthermore, one cannot rule out the possibility that
the charge might spread out over some finite area of the z-plane as
suggested by the dots in Figure 12.2. If this happened in the neigh
borhood of the positive real axis, it would correspond again to some
sort of phase transition. It is generally believed, however, that
"lines of charge" are more "natural" than areas. One heuristic

*Assuming the charge density on the real axis is not zero.
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argument in favour of this is Lee and Yang's strong result for the Ising
model with totally attractive potentials (Iij ~ 0). They proved that
all zeros lie on the circle

where we suppose K(f3) is an entire function of f3 and that E and f3*

i. e., Yt =' 1 which corres ponds to zero magnetic field (see Equa tions
(10.22) and (10.8)). Unfortunately, they were not able to calculate
the density of charge on this circle for the two-dimensional model
(although in one dimension it is not difficult to find). The theorem
fails if antiferromagnetic interactions are allowed.

(12. 3)

(13.1)

(13.2)

Iz I = z = xq
t '

00

L N-len [1 - (f3/f3r)] + const.
r=l

((3) NK (f3) 1 *)Z . , N = 2 e cosh 2 NE (f3 - f3

13. Singularities in the Canonic al Partition Function
It is not always realized that the Yang-Lee analysis in terms

of the zeros of E(z, r2) has a direct analogue for the canonical parti
tion functions Q(f3, N ,r2) and Z(f3, N ,r2) at fixed density N/V(r2). Since
these partition functions are essentially sums of terms of the form
e-f3E they are entire functions of f3. Consequently, subject to a few
conditions, we may express the free energy per particle for the finite
system in terms of the complex zeros f3r = f3r(v) of Z(f3 ,r2). In general
these will be infinite in number so that

(For the Ising model, however, we may use the temperature variable
x rather than (j, and there will then be only a finite number of zeros.)

As in the grand canonical case, the zeros will lie off the real
positive temperature axis (f3 axis) for a finite system but may close
up on the axis in the thermodynamic limit. The point f3c where a
limiting line of zeros cuts the axis will locate a critical temperature.
In the limit N - 00 we expect the summation in (13. 1) to go over into
an integration.

We will show explicitly (in Section 19) that this sort of be
haviour is just what happens for the two-dimensional Ising model in
zero field. It may nevertheless be useful to examine in a little de
tail a simpler example based on the "mock partition function. "
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are fixed. This Z({3) is, of course, just the sum of two exponentials
and is clearly an entire function. Notice that the zeros

{3r = {3* ± (2r + 1) 7Ti/NE (r = 0, 1 , 2 , 3 , . • . ) (l3.3)

are spaced at constant intervals I t..{3! = 27T/NE along a line parallel
to the J} "Y\ {{3} axis but cutting the~{f3}axis at (:3*. As N ... oo the
zeros close up to yield a uniform line density. Now

and so the energy per particle is

8 -1
U((:3) = - 8{3 N fl/n Z((:3,N)

(l3.5)

This is a perfectly smooth analytic function of {3 (see solid
line in Figure 13. 1). However, as we let N increase, the variation
of U({3) becomes very rapid near {3 ={3* and in the limit N ... 00 we find

U ({3) = - K' ({3) ({3 > (3*)

({3 < (3*). (13.6)

-

-:: K'{~)

N =- c{)

---

N finite

Figure 13.1. Energy versus {3 showing approach to a first
order phase change.
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tUsing the factorization of cos a = cosh ia.

On the other hand, in terms of the zeros '3. 3), we have t

(13.9)

(13. 7)

(13.8)

(13.10)

(13.11)

d8 = -27T/N,

6.U = E,

1 500

Eg(8)d8
-K' ((3) + 27Ti 8 - iE(j3-J3*)

_00

-(2r+ l}7T/N,

(27T)-1 Sd8 as N- 00

8

U({3)

+ constants.

00

-F/kT= K({3) + (1/27T) S g(8) 10g[E({3-{3*)+iSld8.
_00

+00
-1 -1 '\' * /N ~Z({3,N) = K({3) + N 6 ~ [E{3-E{3 - (2r+1)7Ti N]

r=-oo

Now put

so that

becomes

Thus the limiting energy function is nonanalytic at {3 = {3* which we
identify as a first order transition point with ener~.JY discontinuity

and the limiting free energy per particle is

For generality we have introduced the line density g(b) which
is simply unity in this case. Differentiating under the integral sign
we get

where the contour runs along the real 8 axis. The integrand has a
simple pole at 80 = iE(J3 - 13*). As 13 varies, this pole crosses the
axis when (3 = 13* and its contribution to the integral then changes by
27Ti Eg(O). Of course, this just corresponds to the energy discon
tinuity found previously.

In the present case g(8) is constant but the above argument
would go through in general provided g(8) can be extended into a
function of 8 analytic in the complex 8 plane at 8 = O. (For real 8
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we must have g(6) real, positive with g(-8)=g(6).) It is by no means
clear that we should always expect such analyticity. On the contrary,
the subtlety of the thermodynamic behaviour at a transition point is
probably reflected in the nature of the nonanalyticity of g (6) at 6 = 0
(accepting for the moment that a line of charge will be what occurs).

To see this more clearly suppose that g(8) varies as a 16 I as
8 - O. I will leave it as an exercise to show that this implies a
"continuous" or "second order" transition at {3 = (3* where the energy
varies as

U({3) = U({3*) + A({3 - (3*) log I {3 - (3* I + .... (13.12)

Differentiation yields a symmetric logarithmically diverging specific
heat! Conversely, such a specific heat singularity implies a non
analyticity of g(6).

Chapter IV

Let us now leave aside general considerations and discuss
the explicit calculation of the critical behaviour of our chosen models.
I will start by reviewing briefly the well established approximate
theories which, for want of a better name, I will term the "classical
theories" of the critical point. t

14. The Mean Field and Van der Waals Equation
A fundamental idea in the standard treatments of many-body

systems and phase transitions is the "mean field" or "internal field"
whose genesis goes back to Pierre Weiss (1907) if not farther. One
attempts to replace the complicated pairwise interations between par
ticles (or between s pins) by a uniform internal field with which each
particle interacts directly. Of course this field must be chosen in a
self-consistent manner so that, say, the average interaction of each
particle with its neighbours is correctly preserved.

In the case of a magnet the mean field is taken proportional to
the total magnetization and each spin is considered to move freely in
a sum of the internal and external (i. e. , true) magnetic fields. The
details of the theory are rather well knownt and will not be repro
duced here. Rather I will follow Uhlenbeck and sketch Ornstein's

tOf course, "classical" is used here with its dictionary meaning:
"often referred to, standard," rather than as a synonym for "nonquan
tum -mechanical. "
tSee, for example, Kittel, "Solid State Physics," John Wiley & Sons,
New York (1956), p. 402.



where we have taken account of the hard cores by introducing the
theta functions defined by

(14.1)

(14.2)

(14.3)

(14.4)

(14.5)

(14. 6)

if r;2 a

otherwise.

o
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I
N!

kTc = t S(S + l)q(2J}.

o =
N
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by treating the two parts of the potential separately.
For most allowable configurations, the mean potential energy

of one molecule will be approximately

S<P 0(-;) p df"' = (-wtp) p

To obtain an approximate equation of state for a classical
fluid with pijirwise forces let us suppose that the potential <p(r) is
characterized (i) ~ a small hard core of radius ~ and (il) by a weak
attractive tail <PO(r) of relatively long-range Q. The idea is to
eval uate the configurational integral

(19013) derIvation of the Van der Waals equation which employs the
same basic idea. Let us recall, however, that for a Heisenberg fer
romdgnet of spin S, with a lattice of coordination number q and
nedrest neighbour interactions of strength J, a critical point is pre
dicted by the mean field theory at

where p = N/V is the mean density, w ~(4/3)JTb3 is the volume of the
effective sphere of interaction, and -liJ is the corres ponding mean
strength of the potential. For the total potential (excluding, of
course I the ha'rd core contribution) we have

where the factor ~ must be included to avoid the double counting of
each pair interaction. Replacing UN in (14.2) by its mean value
(14.4) yields

~NPW'iiiS S - - ITON ~ (l/N!) e • • • dr1 •.. drN e (rij)
(ij) a
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Now the integral remaining in (14.5) is just that needed for
the partition function of a gas of nonattracting hard spheres of radius
£. As such, its computation is a difficult and essentially unsolved
problem. For a one-dimensional gas, however, the exact value is
(V - NvO)N where V is the total (one-dimensional) volume and Vo is
the (one -dimensional) volume of each particle. For the present pur
poses this should be sufficiently exact in three dimensions also) if
we set vo=(4/3ha3 • (Notice that for a lattice gas with a single site
hard core the exact result for a lattice of 11, sites in all dimensions is
just 11,1/(h-N)l.) Accepting this result and using Stirling's formula
yields, in the limit N - 00, the free energy

-F/kT == ~f3PWlP + 0n (v-vO) + 1.

Consequently the equation of state is

-2... - _P- 1- (WlP) 2
kT - 1 - pvO - 2 kT P.

(14. 7)

(14. 8)

This is, of course, identical with the more familiar Van der Waals
form

(14.9)

but has the merit that the two terms on the right hand side explicitly
represent the separate contributions of the hard core repulsions and
the weak long-range attractions. (For a lattice gas the first term on
the right of (14.8) would be (l/vOXe.n. (1 - pvO) I.)

A plot of the isotherms (14.8) shows that at high temperatures
p increases monotonically with P. However, at a density

and a temperature

4 (W)-kTc == 27 Vo <jl

(14.10)

(14.11)

the isotherm flattens out and the compressibility KT becomes infinite
for the first time. We naturally identify this point as the critical
point. It is interesting to notice the similarity of (14. II) with the
mean field prediction (14. I); consider the identifications:
t S(S + 1) = 4/27, q = (w/vO) == (attractive volume/repulsive volume of
potential), and 2J =<0. (Note, incidentally, that for a lattice Van der
Waals gas Pc == ~(1/vO) == ~Pmax')
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Figure 14. lao Van del' Waals isotherm below Tc showing
Maxwell construction.
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At temperatures below Tc ' as given by (14.11), all the iso
thenns display the famous Van del' Waals loops, the pressure being
no longer monotonic in the specific volume (see Figure 14.1a). Now
(lUI' rigorous theorems tell us that this cannot be correct! Conse
quently, we must agree that our approximations are no longer valid
in this region and we should not expect to draw reliable conclusions
from them either below Tc or at the critical point, where, after all,
the "disease" is just setting in. Although I maintain that this is the
correct interpretation which we must place on the theory (and on simi
lar theories elsewhere), this viewpoint was not accepted historically.

Maxwell proposed that the disease be cured by a supplemen
tary appeal to thermodynamics (recall the discussion of Section 11).
On this basis he proposed an "equal area" construction which gave a
prescription for cutting off the loops by a horizontal line corre
sponding, presumably, to the coexistence of phases. This construc
tion is particularly unsatisfactory in that it entails giving meaning to
the thermodynamically unstable parts of the isotherm where the com
pressibility is negative! More convincing is the "double tangent"
construction illustrated in Figure 14.lb which does not require the
complete isotherm. This construction is equivalent to equating the
Gibbs free energy, as a function of pressure, for the two branches
of the isotherm. It mus t be recognized, however, that all these de
vices are in the nature of repairs to what is really a faulty, albeit
very suggestive, theory. * (Nevertheless, we will see that the

*It is interesting to note that if a grand canonical formalism is used,
the Maxwell or Gibbs constructions come rather naturally and it is
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Van der Waals theory does have a theoretical validity in a certain
limiting sense (see Section 17).
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F

v
Figure 14. lb. Van der Waals free energy below Tc showing
"double tangent" construction.

15. Classical Critical Point Predictions
Now what predictions do the Van der Waals and mean field

theories make about the critical behaviour? We may summarize as
follows:

(a) Compressibility and Susceptibility

(T- Tc ±). (15. 1)

where above the critical point KT is taken at P = PO' while below Tc
it represents the compressibility at condensation. The amplitude B
is appreciably smaller than B+. The simple hyperbolic divergence of
XO(T) above Tc is the famous Curie-Weiss law.

(b) Coexistence Curve and Spontaneous Magnetization
1

(PL-PG)=A(Tc -T)2=Mo(T), (T-Tc-)' (15.2)

i. e., a square root law or, in our previous notation, i3=~.

(c) Specific Heats (p = Pc; H = 0)

easier to feel that "nothing has been done"!



so that C(T) drops discontinuously as T increases through Tc but
varies smoothly on either side of Tc .

(d) Critical Isotherm (T = Tel

Le., a cubic law.
Now it turns out that these predictions show a surprizing de

gree of invariance under improvements of the theory! To be more ex
plicit, if we use a better approximation like Bethe' s, which takes
some account of the short-range order, we still obtain the formulas
(15.1) to (15.4) near Tc . The amplitudes A, B, C, D, etc., alter
somewhat}and the expression for the critical point in terms of mole
cular parameters changes by some 5 to 20 per cent (in typical cases)
but the predicted analytic behaviour is unchanged. The same is true
of various higher order cluster treatments such as Kikuchi's method
and its generlizations developed by De Boer and collaborators, of the
constant coupling method and of the truncated Green's function ap
proach, etc. Many of these approximations give more accurate ac
counts of the properties of the model away from the critical region,
e. g. , at high temperatures or low temperatures or high fields, and
they often yield more accurate estimates of Tc but (except for a few
very misleading approximations) the predictions (15.1) to (15.4) are
common to all!

The same invariance holds in the theory of gases. Thus
Dieterici's equation, the superposition approximation, the ring ap
proximation, the hypernetted integral equation, etc., all yield es
sentially similar critical behavior.

Unfortunately, this invariance does not mean the classical
results are correct! Certainly the square root coexistence and mag
netization laws do not match up with the experimentally observed one
third law. At one time people were inclined to blame the admittedly
over simplified aspects of the models used for such disagreements,
but we will show that this was unjustified. Let us ask, however,
"Why do all the theories make the same predictions?"

(15.3)

(15.4a)

(15.4b)(H - 0).

3a(p - pc)
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± ±
Cc - Dcl T - Tc I

- +6.C = C - C > 0,

3
H = aM ,

p - Pc
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with
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16. Phenomenological Treatment of Critical Points
In answer to the question just raised we will describe a phe

nomenological treatment of a system near a critical point which has
been developed particularly by Landau and the Russian school. It is
based on the natural, and apparently harmless, assumption that the
free energy may be expanded as a Taylor series in convenient varia
bles at the critical point. This assumption looks quite general and
nonspecific but we will show that, when supplemented by a thermo
dynamic argument, it necessarily leads to the classical critical point
predictions. At the same time one can see that it is explicit or im
plicit in all the approximate theories cited.

We will give the argument for a ferromagnet since we con
sidered a gas previously. As independent variables, let us choose
the temperature and the magnetization. * The appropriate free energy
is then the magnetic Gibbs free energy per spin, namely,

g = g(T, M) = f + HM,

in terms of which the field and the entropy are

Now expand g in powers of M. By symmetry only even
powers can occur, so that,

g = aCT) + c(T)M2 + e(T)M4 + ....

By Equation (16.2)

H = 2c(T)M + 4e(T)M3 + ...

and so the inverse susceptibility is

1 (8H\ 2X= 8M) T = 2c(T) + 12e(T)M + ....

(16. 1)

(16.2)

(16.3)

(16.4)

(16.5)

But by our assumption we may expand the coefficients in terms of
6.T=T-Tc , so that,

*The magnetization is chosen rather than the field H, since we know
that the free energy varies abruptly with H.
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e (T) = e + e 6.T + . .o 1
(16. 6)

where we have set Co '= 0 since we know that I/X - 0 as T .... Tc when
M = O. Subs tituting in (16. 5) yield s

(I/Zq)
(16.7)

In zero field above Tc we have from (16. 4) that M = 0 and (16. 7) re
duces to the Curie-Weiss law (15.1)!

Below Tc in zero field the relation (16.4) gives three solu
tions, namely, M = 0 and

(16.8)

It is easy to see from (16.3) that the solution M=O corresponds to a
maximum of the free energy g(T, M) and so is thermodynamically "un
stable." The two solutions (16.8), on the other hand, are both "sta
ble." We recognize (16.8) as nothing but the square root Law (15. Z)
for the spontaneous magnetization! Substituting (16.8) in (16.7)
shows that the initial susceptibility also obeys a Curie-Weiss law
below Tc but with amplitude (1/4cl) so that B- = ~B+ in (15.1).

Since c(Tc ) '= 0, Equation (16.4) yields the cubic critical iso
therm (15.4). Finally from the entropy we can derive the specific
heat. In zero field above Tc

(
8

Za ) + +C == -T - = C - D AT +
H 8TZ

(16.9)

(16.10)

expanding a(T). Below Tc in zero field we must substitute (16.8) into
(16.3) before differentiation. This yields an additional term,

+ (C1Z TC) _C = C + -- + D AT + ••.
H=O ZeO

so that there is a specific heat discontinuity of magnitude (crTc/ZeO)'

17. Validity of Clas sical Theory
Despite the naturalness and seeming generality of the phe

nomenological arguments, we know experimentally that they cannot
be valid. The accurate measurements cited in earlier sections defi
nitely rule out a square root law for the coexistence or spontaneous
magnetization curves. Similarly accurate experimental specific heat
curves are not satisfactorily described as simple discontinuities.



We will show, when we examine experimental data again in later sec
tions, that the Curie-Weiss and cubic critical isotherm laws are also
not realized in real systems. Consequently on experimental grounds
we cannot accept the Taylor series assumption.

Theoretically, the rigorous calculations on the Ising model
which we describe next lead to the same conclusion. Certainly for
the two-dimensional Ising model with nearest neighbour forces, an
expansion of F in powers of (T - Tel cannot be made. Good evidence
indicates that the same is true in higher dimensions if the forces are
of "short range. "

Recently, however, theoretical calculations by various
authors have shown that for" infinitely long ranged" and "infinitely
weak" attractive forces the classical predictions should become cor
rect. To be more explicit, Kac, Uhlenbeck and Hemmer (J. Math.
Phys. i, 216(1963)) have considered a one-dimensional gas with the
pair potential
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<jJ (r) co , (r < a)

-Ke -Kr (r > a). (17.1)

(Note that faco<P(r)dr is independent of K.) For K> 0 this potential
satisfies the conditions of Section 11 so the limiting free energy and
press ure exist and are monotonic in v. An exact calculation verifies
this and shows that no phase transition occurs. However Kac,
Uhlenbeck and Hemmer now consider the limit K- 0 in which the poten
tial becomes infinitely weak but of infinite range (and, of course, can
not really be considered a proper potential any longer). In this limit
they show rigorously that the equation of state becomes precisely the
Van derWaals equation except that the flat portions of the isotherms
no longer have to be grafted on by supplementary thermodynamic argu
ments but come properly out of the mathematics!

This result, which might have been guessed on the basis of
Ornstein I s derivation of the Van der Waals equation, and which is
also suggested by work of Brout, has been extended to two- and
three-dimensional Ising models by Baker, Siegert and Kac and Hel
fand. If one has a short-range attractive potential of fixed form, one
may always introduce a scaling factor K so that as K- 0 the range of
the potential become s infinite but f <jJK ([) dr remains constant. Then,
at least above Tc ' if the limit K- 0 is taken after the thermodynamic
limit, one always gets a Van der Waals or mean field type of equation
of state for which the clas sical critical point predictions are valid.

It is clear that this "Van der Waals limit" is rather pathologi
cal and hence detailed results that follow from it are quite probably
somewhat misleading. Nevertheless the results suggest strongly that



for physical systems with weak, very long-range attractive forces the
equation of state should be rather Van der Waals-like except, per
haps, in the immediate critical region. Brout's arguments, and some
others we will mention later, indicate that for forces of fixed short
range the behaviour should also become more Van der Waals-like as
the dimensionality d of the system is increased! The limit d - ex:> , in
fact, seems to yield essentially the same results as the K- 0 limit.
But, from a practical viewpoint, one must remember that Nature pro
vides us with a space of fixed low dimension and that the physical
systems we are interested in are characterized, in the main, by
short-range forces which we cannot alter.
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Chapter V

18. Two-Dimensional Ising Models
We will now review the exact results that have been obtained

in the study of plane Ising models. This will give us insight into the
deficiencies of classical theory and will thereby serve as a founda
tion for a discussion of the three-dimensional models. We will
mainly use the language appropriate to a ferromagnet.

The Ising model was introduced in a paper by E. Ising in 1925
(Z. Phys. 1L 253) and solved by him for a one-dimensional chain
with nearest neighbour interactions for all fields and temperatures.
As is well known, the solution is obtained readily by a matrix method ~
One considers the partial partition functions ZN(t) and ZN{J,) for a
chain of N s pins with the last s pin fixed up or down res pectively. If
Z'N denotes the column vector

(18.1)

we find easily that the addition of a further spin to the chain leads to
the recurrence

Z'N+I

where the elements of the 2X 2 transition matrix

*A useful introductory review of the theory of the Ising model is G. F.
Newell and E. W. Montroll, Rev. Mod. Phys. 1§.., 352 (1953). A
more recent and comprehensive review is C. Domb, Adv. in Phys. ~,

Nos. 34, 35 (1960).
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(;orrespond to the extra Boltzmann factors introduced by the new spin
(see Eq. (10. 8)). The total partition function

(18.2)

(18.3)

(18.4)

can now be expressed exactly in terms of the eigenvectors and eigen
values of M. For the calculation of the thermodynamic limit only,
t.he larges{'~igenvalue >-'0 = >-'O(K,L) is required and the free energy
per spin is

It is found that the linear chain has no phase transition; the
specific heat in zero field C(T) rises smoothly from zero to a rounded
maximum and decays as l/T2 as T - 00. Of course the mean field ap
proximation would predict a transition! However, the Bethe approxi
mation which treats the interaction of one spin with its immediate
neighbours exactly and only uses the mean field for the shell of
neighbouring s pins turns out to be exact in this case.

Historically the next really sign~ficant step was taken by
Kramers and Wannier in 1941 (Phys. Rev . ..QQ, 252, 263) who devel
oped the matrix method for the nearest neighbour plane square lattice.
One must consider a lattice of m layers and specify the configuration
of the m spins in the last or !lth column (N=mn). There are in all
2m configurations so that the transition matrix M is now of order
2m X2 m. The largest eigenvalue >-'o(m) yields th;;' partition function
per column of an infinitely long lattice of width m but a further limit
is required to calculate the free energy per s pin of the infinite plane
lattice, namely,

(18.5)

For zero field Kramers and Wannier discovered a symmetry
property of the transition matrix which implied that the partition func
tion transformed into itself (up to a harmless multiplicative factor)
under the transformation

* 1 - x
x ---l+x (18. 6)



(18. 8)

(18.9)

(18.7)

(18.11)

(18.10)(A)

(H = 0).

tanh (J/2kTc )

..J2 - 1 = 1/(1 + >J2),
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Z(high T) - Z(low T),
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which takes high temperatures into low temperatures. Thus

and

where we have introduced the variable

1 - x
v = tanh K =--

I + x

which proves very convenient in later theoretical developments. (Of
course v should not be confused with the specific volume of the lat
tice gas).

Shortly afterwards Onsager showed that (18. 6) was a special
case of a duality transformation which carried the Ising problem on a
planar lattice t into the Ising problem on the dual lattice. The trans
formation (18.7) was seen to be a consequence of the self-duality of
the infinite square lattice. For the triangular and honeycomb lattices
which are a dual pair of coordination numbers q = 6 and q = 3, respec
tively, Onsager introduced an additional star-triangle transformation.
In combination with the duality transformation, this located the criti
cal points of the triangular and honeycomb lattices at

The transformation (18.6) has a unique fixed point (for real positive T)
given by x*=x and it is natural to identify this with the critical tem
perature. In this way Kramers and Wannier located the exact critical
point of the square lattice at

t A planar lattice may be drawn in the plane with no crossing bonds.

respectively.
The results (18.8), (18.10) and (18.11) can be written as a

single formula with parameter q. However, the conjecture that the
critical point depends only on q for all plane lattices is dis proved by
the kagome lattice (derived from Japanese woven bamboo patterns!).
This lattice has a fourfold coordination like the square lattice (see
Figure 18.1), but

---------------_._----------_.-- ..
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Figure 18.1. Kagome lattice: note q=4.

vc(kagome)/vc(square) = 1. 0512 .... (18.12)

Ons ager went on from the topological considerations to pro
vide in a famous, but not always fully appreciated, paper (Phys. Rev.
§§.., 117 (1944)) a complete rigorous solution for the square net Ising
model in zero field.

19. Exact Solution of the Plane Ising Model
Onsager based his calculations on the matrix method. With

no added difficulty he obtained the sol ution for the asymmetric square
lattice with interaction energies J and J' in the horizontal and verti
cal directions. His result for the limiting free energy per spin is

d'P 1 57r
d'P2en [ch 2Kch2K' - sh2Kcos'P1-sh2K'cos'P2]

27r 27r
-7r

(19.1)

(where we have used the useful abbreviations ch == cosh and sh == sinh).
Notice first the occurrence of the two cosines; these are a di

rect reflection of the twofold translational invariance of the square
net, Of course, this invariance is common to all the regular two-di
mensional lattices and, indeed, the known answers for other lattices



(19.2)
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(1) TIm TIn {1+V2 l+v'2 2v 21Tr 2"'; 21TS} (19 3)Z = -- -;-;;z - -- cos - - --2 cos -- .
N 1 -1 I-v2 1- I-v2 m I-v' nr= s-

Figure 19.1. Loci of zeros of the Ising partition function in
the complex v= tanh(J/2kT) plane.

that is a summation over zeros in the complex f3 plane, as was an
ticipated in Section 13. This result is more obvious from Kaufman's
(Phys. Rev.2..§., 1232(1949)) exact expression for the partition func
tion of a finite lattice which is expressed in terms of the product*

all have a similar form but with different coefficients.
Notice secondly that, since K, K' - f3 = l/kT, the formula

(19.1) has the form

using the variable v = tanh K. For the symmrtpc case K=K', v=v' ,
it is not difficult to calculate the zeros of ZN 1. Of course, these
will be indexed by the pair of integers (r, s) but one finds, nonethe
less, that they lie on two circles in the complex v plane given by
(see Figure 19. 1)

*Actually, to get the particular periodic or toroidal boundary condi
tions used, the sum of four similar products is required, with rand
s replaced by r - ~ and s - ~ respectively, but this will not make a
significant difference.
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(02622iT). (19.4)

'rhe situation is just the same in the complex plane of x=e- 2K since
the bilinear transformation x = (1 - v)/(l + v) carries circles into cir
cles. The loci of zeros cut the real v axis at the points v= ±(1 +'12)
ilnd v=±(.J2 -ll. The former correspond to nonphysical (complex)
temperatures but the latter locate the ferromagnetic and antiferromag
netic transition points in agreement with (18.8). (Note that the sign
of v changes with the sign of J and that in zero field the square net
1:3 symmetric in ± J). The dens ity of zeros is found to be

g(6) = I sin 6 I F(6) (19.5)

where F(6) is analytic and periodic in 6. Consequently, near the
real v axis, g(6) ~ 161.

As we mentioned in Section 13 this form for g(6) already im
plies Onsager's most famous result, namely, a symmetric logarithmi
(:ally infinite specific heat singularity,

C (T) = D P/n I 1 - T: I, (19.6)

(19.7)

Alternatively we may perform one integration in (19.1) to obtain (in
the symmetric case)

f 1 SiT-- =.J?t ch2K+ - P/n [~(1 +fl - k 2 sin2 ljJ)JdljJ
kT 2iT 0 1

where the modulus kl is given by

k 2 = 2 sh 2K
1 ch22K

(19.8)

(19.9)

fmd attains the value unity only at T = Tc . This integral cannot be
rXHformed explicitly but by differentiating under the integral sign the
mlergy per spin may be expressed in terms of the complete elliptic
tntegral.E(k 1),

U 1 [1/ 2 (- J = 2" c oth 2K 1 + k 1 -; Kk 1)] ,

where

1/ 2
k 1 = 2 tanh 2K - 1

I'lom this it follows that

(19.10)



close to Tc ' so that the energy is continuous at the critical point but
has an infinite slope there corresponding to the logarithmic diver
gence of the specific heat.

The specific heat is plotted in Figure 19.2 (solid curve).
Notice the symmetry of the singularity above and below Tc which is
quite different from the characteristic asymmetry of the experimental
results (see Figures 2.5 and 5.2). The dotted line in Figure 19.2
represents the results of Bethe's approximation while the dashed line

Figure 19.2. Exact specific heat of the plane square Ising
lattice (solid curve), Bethe's approximation (dotted curve) and
the Kramers-Wannier and Kikuchi approximation (dashed
curve). (From C. Domb, Adv. in Phys. 2", Nos. 34, 35 (1960),)

(19.11)
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comes from the Kramers ·-Wannier and Kikuchi approximation. This
latter approximation evidently gives the critical point more accurately
but still yields a simple discontinuity. (Thus the accuracy of Tc is
not a sure guide to the accuracy of qualitative behaviour.) Ironically
enough, the asymmetric approximate curves compare more closely
with experiment that does the exact result!

The specific he at curves for the nons ymmetric (J ~ y') model
still dis playa symmetric logarithmic singularity, but its amplitude is
smaller and the critical point is lower. (A plot for the case y'= (J/IOO)
is given in Onsager's paper.)

By integrating U(T) we see that the free energy varies at the
critical point as
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(19.12)

From this it is clear why the phenomenological trE?atment failed. The
function enx cannot be expanded as a Taylor series in x and so F(T)
cannot be expanded in powers of (T - Td! There is no escape from
this conclusion, and it would surely be over-optimistic to expect
something simpler to happen for the three-dimensional Ising model or
for more realistic models.

20. Further Results
In 1948, at Cornell University, Onsager announced a formula

for the spontaneous magnetization of the square lattice. He has not,
as yet, published his derivation but in 1952 one was presented by
Yang (Phys. Rev. ~,808). Yang's paper is a mathematical tour-de
force and abounds in complicated elliptic integrals. The final an
swer, however, is surprizingly simple, namely,

1/8
MO(T) = [1 - (sh2Ksh2I()-2] (20.1)

from which follows

(20. 2)

This {3 = 1/8 law differs vastly from the classical prediction
(3 = i. It also bears little resemblance to the experimental one third
law, since it implies an exceedingly sharp drop of MO (T) at Tc and a
very broad flat top on the coexistence curve.

In principle the result {3=1/8 could be tested on real "two
dimensional" systems, notably adsorbed monolayers. Thus for potas
aium on sodium bromide and n-heptane on ferric oxide, for example.
()xperiments reveal the existence of first order phase transitions with
critical points. However, an accurate check on the validity of (20.2)
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seems not to have been made.
In 1949 Kaufman and Onsager (Phys. Rev. 76, 1244) went on

to calculate the spin-spin correlation functions (SiSj). The nearest
neighbour pair correlation function is clearly proportional to the
energy and thus has the same (T - Td f/n IT - Tc I singularity at the
critical point. It turns out that the further correlation functions are
rather similar in their variation with T and, in particular, they all
have the same type of singularity at Tc . (We will need to discuss
the properties of the pair correlation functions in more detail in later
sections. )

Onsager's original derivation of the free energy (19.1) is
anything but easy. It depends on the generation of a Lie algebra as
sociated with the spin operators entering the transition matrix, and
the subsequent reduction of this algebra. Kaufman (Phys. Rev. l§.,
1232 (1949)) gave a shorter derivation using theorems in abstract
spinor analysis, which is simpler than Onsager's proof if one is fa
miliar with the relevant spinor analysis! Later Kac and Ward (Phys.
Rev. J!§., 1332(1952)) gave a rather direct combinatorial derivation

based on the construction of a determinant which counted an appro
priate set of lattice configurations (see below). However, a rigorous
proof that the determinant counts no more and no less than it should
turns out to be rather difficult and has only recently been given by
Sherman (J. Math. Phys. 1, 202(1960)) who used some ideas of
Feynman. Potts and Ward used the combinatorial approach to rede-
rive the correl ation functions.

Hurst and Green (y. Chem. Phys . .ll, 1059(1960)) reexpressed
the configurational problem in terms of fermion operators and thereby
reduced the partition function to a Pfaffian (which is a classical alge
braic form equal to the square root of an antisymmetric determinant).
Their analysis was later simplified and made fully rigorous by
Kasteleyn (J. Math. Phys. i, 287(1963)) who reduced the evaluation
of the partition function to a dimer problem.* (See also A. M. Dykhne
and Yu. B. Rumer, Soviet Phys. Uspekhii, 698(1962).) Montroll,
Potts and Ward (J. Math. Phys. i, 308(1963)) have used this method
to rederive the correlation functions and thence the long-range order
(sOsoo) which is equal to [MO(T)] 2.

More recently Lieb, Schultz and Mattis (Rev. Mod. Phys. ,
1964) have given a further rederivation of Onsager' s results based on

*A dimer is a rigid II molecule II which occupies two sites of a lattice
to the exclusion of other molecules. Partition functions for planar
lattices full of dimers have been recently calculated in terms of
Pfaffians by P. W. Kasteleyn, loco cit. and Physica 27, 1209(1961);
H. N. V. Temperley and M. E. Fisher, PhiL Mag • .2.:1061(1961);
M. E. Fisher, Phys. Rev. 124, 1664(1961).
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a direct reduction of the spin operators to fermion operators. They
can then use techniques developed in superconductivity theory.

Although personally I find the dimer approach the easiest and
most direct, none of the methods is entirely trivial! The choice of
the "simplest" really remains a matter of taste and one I s particular
mathematical background. What matters for our present purposes is
that exact solutions can be found for a wide variety of planar lattices
(although, for reasons that are not really understood in a fundamental
way, plane lattices with cros sing bonds have proved insoluble).

All the exact solutions* are characterized by a symmetric
logarithmic specific heat singularity and in every case the free
energy thus has the nonanalytic behaviour shown in Equation (19.12).
Furthermore, evaluation of the spontaneous magnetization for other
lattices always yields f3= 1/8 (and the correlations for other lattices
are also similar). These results allow us to draw the important con
clusion that the analytic behaviour at the critical point of two-dimen
.l:lional lattices is independent of the detailed lattice structure. (There
is evidence that the inclusion of next nearest neighbour interactions
makes no difference to this conclusion but presumably very long
range interactions could change the behaviour.)

.? I • Three Dimensions and Magnetic Fields
What rigorous results have been obtained for the Ising models

(a) in three dimensions? (b) in a non-zero magnetic field?
The answer to (a) is that essentially nothing is known! But it

should be mentioned that, using some old arguments due to Peierls
and to Van der Waerden, one can give a rigorous proof that some sort
of phase transition does take place. (The rigour has recently been
supplied by R. B. Griffiths.)

The situation with respect to (b) is just a little better in two
dimensions (although not, of course, in three). Thus in Section 44
we will describe a rather special (decorated) antiferromagnetic Ising
lilttice that can be solved completely in an arbitrary magnetic field.
Af3 mentioned before, one can also calculate the initial perpendicular
I:lusceptibilities of the usual lattices.

The parallel ferromagnetic and antiferromagnetic initial sus-
C'O ptibilities have never been calculated in closed form but it proves
possible, as we shall explain, to say something analytically about
thE) behaviour near Tc , at least in the case of the square lattice. One
Inlqht also mention that if Xo (T) were known exactly for the honeycomb

'~'----.,-------------------------

AAfter Onsager's paper the results for the triangular honeycomb,
and more general checkerboard lattices were found by

Wcmnier, Temperley, Houtappel, Syozi, Naya, Utiyama and others in
tile, period 1950-55.



Chapter VI

22. Series Expansions
If the Hamiltonian }I is a bounded operator (as it is for spin

systems), we may always expand the partition function as a "high
temperature series" in powers of {3 = 1/kT. Thus

(22. 1)
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lattice, it could be found for the triangular and kagome lattices!
The paucity of exact information, especially for the three-di

mensional models which are of prime physical interest, forces us to
look for other (necessarily less rigorous) approaches.

If }I is a sum of pair interactions invariant under translations, the
successive traces in (22.1) reduce to traces over a relatively few
operators and each term can be associated with a "diagram" or
"graph" made up of bonds connected together in various way s. Where
there is an underlying lattice the graphs can be considered drawn on
this lattice. In general, such an expansion rapidly becomes very
complicated. Diagrams with all combinations of multiple (or re
peated) bonds must be included, the correct combinatorial factors
must be found and the "weight" of each graph must be computed by
taking the trace of the product in all possible orders of the operators
as sociated with the graph.

For the Heisenberg model Rushbrooke and Wood (Proc. Phys.
Soc. (London) A68, 1161(1955); Mo1ec. Phys. 1, 257(1958)) have
pushed the calculations through for general spin to obtain the parti
tion function and initial susceptibility to terms of order {37. More
recently, using a new approach, Domb and Wood (Phys. Letters.§.,
20(1964)) have obtained two further terms for the case S=~ on a
general lattice. (It might be practicable to obtain a further one as
two terms but the labour goes up exponentially, or faster, with the
number of terms computed!)

For the Ising model the commutation of the operators allows
us to simplify the calculations appreciably and at the same time to
obtain some insight into the underlying configurational and combina
torial problems that ultimately determine the critical behaviour. If
we introduce a normalizing factor, the partition function of an Ising
lattice of N spins in zero field may be written



llence we can write quite generally,
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(22.4)

(22.3)
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f.. eKSiSj K
if 1= = e s.s.

1J 1 J

-K
if -1.e s.s.

1 J

Z(K, N) = 2-N Tr{eKL:SiSj}

tr {IT e Ks i s j} (22 • 2)
(ij)

where tr denotes 2- N L:(S;i =±l). Now the bond factor can take only
the two val ues

f .. == a+bs.s ..
1J 1 J

'rhe coefficients in this "linearization" can be determined by imposing
the identity (22.3) for the two cases. This yields

K
a+b=e, -K

a-b=e , (22.5)

flO that

a = ch K, b shK, (22.6)

nlld thus

fij = (ch K)(l + vsis j) (22.7)

where v = tanhK is the variable introduced previously. (Note v- 0
{:1E; T ..... 00.)

We have given this simple argument in detail since it is
the prototype of a large number of useful transformations of the Ising

*lnodel. Quite generally any function tj;(s 1 , ... ,s p) of the P spin
vnriables sl '" sp can be expressed as a linear combination of the

£ distinct products of none, one, two, three ... spin variables. If
,HI;i) is even, that is, invariant under si - -si (all i), we only need
tho 2£-1 products of an even number of factors. An example of this
technique is the solution in a magnetic field of the special antiferro
Inn9netic model discussed in Section 44.

Now substitute (22.7) into (22.2), which yields

A[joeM. E. Fisher, Phys. Rev. 113,969(1959).
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Z(K,N) = (ch K)N* tr{ n(1 + vsis),)}
(ij)

(22.8)

where N* is the number of bonds (= 1qN on a lattice of constant
coordination number q). Consider the expansion of the product; the
coefficient of v n consists of all possible products of n "bond-pairs"
SiSj' For example, in fourth order the terms (SlS2)(SlS3)(s2s4)(S5S6)
and (SlS2)(S2S3)(S3S4)(S4S1) will appear. But notice that

(22.9)

Figure 22. 1. An allowed configuration of bonds on the
plane square lattice.

(22.10)

·······~:·:D··.....
1------... ...

:.. .;. FF8.. ~ .. ., . "
• • I • ••

: :; : "
.. • • • .. •• .. ... • ... I ..... ~. .' .

• • I •...D ... ~ ... ~ ... ~.... ... ~ ...
. .. _---"'" ..

from which it follows that any product which contains some particular
spin variable an odd number of times (such as the first example
above) will vanish on taking the trace while any even product (like
the second example) has a trace of unity. Consequently I we have
proved the basic graphical expansion

where Pn(N) is the total number of graphs of n lines (or bonds)
which can be drawn on the lattice of N sites subject to the following
rules: (a) each bond of the lattice may be used only once; (b) at
each site of the lattice an~ number of bonds must meet. An al
lowable configuration of bonds on the square net is shown in Figure
22.1. It will be seen that any configuration can be decomposed into
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a set of noncrossing polygons. (In three dimensions the polygons
can intertwine and be knotted.)

The configurational expansion thus reduces the calculation
of the partition function to the combinatorial problem of counting the
allowed number of ways of placing polygons on the lattice. The ex
pansion provides the starting point for the Kac-Ward and dimer treat
ments of the square net.

23. The Counting Problem
To understand the character of the expansion (22.10) and to

show what is entailed in using it to obtain a high temperature expan
sion for the limiting free energy of an infinite lattice I let us derive
the expansion for the square lattice. For simplicity we always sup
pose the lattice is wrapped on a large torus (that is I we impose
periodic boundary conditions). All sites are then equivalent and we
avoid "edge effects. "

For the square net it is clear that

(23.1)

since the first closed configuration consists of a square of four bonds
which may be anywhere on the lattice. If we label one comer of the
square and place this comer on each of the N lattice sites I in tum
we see that the total number of distinct configurations is

(23. 2)

For brevity we thus say there is "one square per site" and write

P4 = (0) = 1. (23. 3)

At the next stage we see Ps (N) = 0 and I of course, on
"loose packed" lattices such as the square, honeycomb, simple
cubic and body centered cubic lattices all the odd coefficients will
vanish. With six bonds we can form a hexagon which, on the square
lattice, appears in the two orientations

and B
:;0 that

We say there are two hexagons per site, and write

(23.4)

(23. 5)



(23.6)

(23.7)

(23, 8)

o

PS = 7.

7N + t N(N - 5)

1 2 1
Z"N +4Z"N,
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PS(N)

6S

With eight bonds we can form either an octagon or two sepa
rated squares, The octagons may be classified into the different
11 s pace types ":

m

Let us now formally take the logarithm of the partition function
in Equation (22. 10) ,

011. Z(K,N) - N*tnchK=tn {I + P
4

(N)v
4 + P6(N)v

6 +, .. }

4 612 l)S= Nv + 2Nv + (2 N + 42 N v +.

- t(Nv4)2

N [v4 + 2v 6 + 4tvS +, , . ],

which can be placed in N, 4N and 2N ways respectively, In total,
therefore, on the square lattice there are seven octagons per site,

The reader is urged to try this method for the simple cubic
lattice 1 It turns out that there are eleven space types with a total
weight of 207 N so that PS = 207 in this case, Clearly, this method
rapidly becomes cumbersome as n increases and, more importantly,
is very subject to error! Thus there are 73 space types of decagon
and 756 types of dodecagon on the simple cubic lattice, and
PIO = 2412, P12 = 31754. To calculate these numbers reliably, more
sophisticated technique s have to be developed.

Returning to the eighth order term on the square lattice, we
may compute the number of configurations of two separated squares
by placing the first square in N ways, The second square must not
have a bond in common with the first square so that it may then be
placed in only N - 5 ways, Finally, since the two squares are iden
tical, we have a contribution ~N(N-5). In total, therefore,

r------- , _
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We notice that the coefficient of N2 has cancelled identically so that
the answer is exactl y proportional to N. We may thus divide by N
and formally proceed to the limit which yields

f 1 4 6 1 S
-kT -zqenchK = v +2v +4z v +. (23. 9)

For the square net q = 4, and we may verify from Onsager's solution
that this is the correct high-temperature expansion which converges
up to the critical point. The energy and specific heat expansions may
be found by term-by-term differentiation.

We see more generally that if n is less than the "circum
ference" of the torus (Le., n < Nl/d ind dimensions), Pn(N) is just
a polynomial in N of degree m;2 n/4 (or;2 n/3 if triangles can occur).
Thus

(23.10)

On taking the logarithm of Z formally, the coefficients of
N2, N3, N4, ... etc. vanish as above (this corresponds to the exten
sive property of the free energy) and one finds that

....L - lim N- 1en Z(K,N)kT -
N-oo

1 - \' (I\. nz q en ch K + LJ P 'V
n

n
(23.11)

where, in general, the mean coordination number is q= 2 lim (N*/N)
(N-oo). Thus only the coefficient of N in Pn (N) enters the limiting
expansion. Indeed, notice that the coefficient of v S in Equation
(23.9) can be written

4i=7-5/2 = PS+P4,4 (23.12)

if we identify the "number of two separated squares per site" as

P4,4, = (0,0) = -5/2; (23.10)

In other words if we take just the coefficient of N in the expression
liN(N - 5) for the total contribution of two squares. It is evident from
this example that separated configurations make a negative contribu
Han to the limiting expansion. (Furthermore the separated contribu
tions can only be "eliminated" at the cost of introducing into the ex
pilnsion more complicated graphs than polygons.)



25. Correlation Functions and Susceptibility
The pair correlation functions in zero field are defined by

24. Lattice Constants
The numbers P4, P6, PS, ... P4, 4 and so on, which enter into

the calculation of the partition function have been called "lattice
constants" by Domb and Sykes (Phil. Mag. ~, 733(1957)) since they
characterize the lattice in question and, indeed, will enter into any
statistical (or combinatorial) problem specified on a lattice. Gen
erally, given a lattice L, which need only be specified topologically,
that is as a connected set of N* bonds and N lertices, we may de
fine the lattice constant of the finite graph Gv ' of v vertices and .e
lines, as the number of ways of embedding GJ in L subject to the
rules: (a) each vertex of GJ must lie on a distinct site of L, and
(b) each line of GJ must lie on a distinct bond of L. If the total
number of embedding s is P, the lattice constant per site of a con
nected graph is defined as

(24. 1)
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In practice the superscript L is dropped when it is clear what lattice
is being considered. For disconnected graphs the lattice constant
per site is defined in terms of the coefficient of N as explained pre
viously.

For Ising model expansions at low-temperatures and high
fields (which proceed by overturning s pins in a fully magnetized lat
tice and are the direct analogue of the familiar Mayer z-expansion for
a gas at low density), it proves convenient to define lattice constants
with a stronger embedding condition, namely, in addition to (a) and
(b) we require: (c) if two vertices of GJ lie on two sites of L which
are connected by a bond of L then a line of GJ must lie on this bond.
It turns out that the set of "low-temperature" or "strong embedding"
lattice constants" [GJ] L can be expressed generally in terms of the
"high-temperature" or "weak embedding" constants (GJ)L. For other
problems (for example, the "percolation problem ") other still more re
stricted types of lattice constants enter, but again they can be ex
pressed in terms of the (GJ)L.

As we have already seen, the calculation of lattice constants
for graphs of more than a few lines and vertices is in general rather
difficult, especially for three-dimensional lattices. A variety of sys
tematic methods has been developed however (see in particular
M. F. Sykes, J. Math. Phys. 1, 52 (1961) and the review by Domb) ,
and by now most lattice constants of up to nine or ten lines have been
tabulated for the usual lattices. Once the work has been done, of
course, we may use these tables like lists of standard integrals!
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(sosr> = Z-l tr {sosr eK:6SiSj}

so that, introd ucing (22. 7)
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(25.1)

(25.2)

Multiplying out the product and arguing as before we see that the
configurations entering the v-expansion of (sosr> are given by the
previous rule except that the vertices at the sites a and r must be
odd rather than even (i. e. , an odd number of lines must meet at these
two sites). This means that in addition to all possible arrangements
of (closed) polygons we must have an (open) chain of bonds running
from the site a to the site r. In fact, the dominant contribution to the
n-th order expansion coefficient will come from the number of non
crossing (or self-avoiding) "walks" of n steps from a to r.

The problem of determining the number and properties of self
avoiding walks on a lattice has been much studied in its own right as
a model of a polymer molecule with "excluded volume. "t Clearly it
is a special case of the lattice constant problem corresponding to the
embedding of a chain of n lines and n + 1 vertices.

When the spins So and sr are in the same row (or column),
we see that the leading term in the expansion of (sosr> is just vr .
Consequently, above Tc the correlations decay exponentially (to
leading order) with a decay parameter, or "inverse range"

Ka = I Envl [1 +O(v)], (25.3)

where ~ is the lattice spacing. This exponential decay can be seen
more generally from the expressions for the correlation functions in
terms of the transition matrix 1>1 (see B. Kaufman and L. Onsager,
Phys. Rev. l.§., 1232(1949) and Onsager's original paper).

To obtain a series for the initial susceptibility we use the
(Jeneral "fluctuation" theorem which relates the susceptibility of a
tlystem with Hamiltonian,

(25.4)

to the corresponding spin-pair correlation functions (S~SjZ>. We

t See, for example, M. F. Sykes and M. E. Fisher, Phys. Rev, 114,
45(1959) and M. E. Fisher and B. J. Hiley, J. Chern. Phys. 34,
253(1961).



suppose the system is translationally invariant so that the magneti
zation per spin is

As expected, the prefactor is equal to the compres sibility of an ideal
gas while G ([') is the net pair correlation function,

(25. 6)

(25.5)

(25.7)

(25.8)

(25.6a)
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- - - 2 2G(r) = g(r) - 1 = (n2(r) - p )/p

M(T,H) = gf3 \SOZ)

_ f3Z- 1 T {~Z -(J1o-g~BHL;SiZ)/kT}- g r 00 e

Now differentiate under the trace with respect to H remembering that
Z == Z(T,H). This yields the desired result, namely,

2f3 2 N
X(T,H) = g kT

B ~ (\S~S~) - \S:)2).
1=1

72

In zero field above the Curie point the mean magnetization,
and hence \S5), vanishes identically. For an infinite Ising system
of spin ~ we may thus rewrite the theorem as

Xo(T) = ~; [1 + }O \Sosr) J, (T > TcL

where the summation now extends over all lattice sites (excluding
the origin). Notice that the prefactor in this equation is just the
susceptibility of a free spin (Curie's law) so that Equation (25.6)
shows how any deviations from free spin behaviour are directly at
tributable to the correlations.

There is an analogous fluctuation formula for the compressi
bility of a gas, namely,

in which n2(f) is the usual pair distribution function. We might re
mark that the rigorous proofs of these fluctuation theorems in the
thermodynamic limit have not been givent although there is no reason

t The point at issue is the interchange of the infinite summation or
integration over the correlation functions, with the operation of taking
the thermodynamic limit for the correlation functions themselves.
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(26.1)

to doubt their validity for systems with proper thermodynamic be
haviour.

Accepting Equation (25.6), we see that to calculate the high
temperature expansion of the initial susceptibility of the Ising model
we need configurations made up of polygons plus a chain of bonds
with one end at the origin. The dominant contribution to an, the gth
coefficient of the susceptibility series, will be the total number of
n-step self-avoiding walks cn' However, the contributions from the
polygons will be negative in total so that an ;2 cn' Even so, the be
haviour of the two sets of coefficients is rather similar as we shall
indicate.

Chapter VII

26. The Mis use of Power Serie s
By the methods sketched in the previous sections, power se

ries expansions have been obtained for the specific heats and sus
ceptibilities of the standard plane lattices, the three three-dimen
sional cubic lattices and, recently, for the tetrahedral (diamond) lat
tice. In most cases between nine and fifteen coefficients are availa
ble (although for the plane honeycomb lattice twenty-four terms of the
expansion for xo (T) are known!). By way of example, the expansion
of the square net susceptibility is

kTxO/m2
= 1 + 4v + 12} + 36} + lOOv

4

+ 276v5
+ 740v6 + 1972v7

+ •

• • • + 1486308v
14

+ 3763460v
15

+

*while for the simple cubic lattice,

2 2 3 4 5
kTxO/m = 1 + 6v + 30v + 150v + 726v + 3510v

+ 16710v
6

+ 79494v
7

+ 375174v
8

+ 1769686v
9

+ 8306862v
lO

+ 38975286v
ll

+ •

(26.2)

These series are fine to behold and clearly represent a lot of
configurational information! The question is, however, "What good

*The last two coefficients here differ by small corrections from the
values published by Domb and Sykes, J. Math. Phys., 1, 63(1961).



are they?-how can they be used?"
One answer to this question, of course, is simply to evaluate

the truncated series as it stands for a range of v (i. e. , of tempera
ture). We know that this procedure should yield more and more ac
curate approximations to the true value XO(T) when v is small as we
include more terms (see Figure 26.1). However, we are not really
interested in small v (which is equivalent to T/Tc » 1). On the
contrary, we wish to study XO(T) for values of v near the critical
val ue Vc where we "know" that Xo (T) will diverge to infinity. But
by truncating the series we are always left with a polynomial and a
polynomial can never take on an infinite val ue! Consequently, this
direct approach will not yield significant information on the critical
behaviour even if we do have fifteen or more terms.

A somewhat better approach is to observe that if XO(T)- 00,

then l/XO(T)-O as T-Tc ' By a little algebra we can invert the se
ries for XO(T) to get one for l/XO(T) and then we can try evaluating
this series truncated after n = 1,2,3,. .. terms (see Figure 26.2).
Now our polynomial approximations to l/X O might cut the l/XO = 0
axis at some point and, if so, we obtain a "Curie point" which
should be an approximation to the true Curie point. This could be
"improved" by adding a further term to the series although if we are
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Figure 26. 1. Successive approximations based on truncating
the series for Xo (T) compared with the expected behaviour.
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1-
kTX
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J1,= 1 \ 2\, '4
Figure 26.2. Successive approximations based on truncating
the series for l/XO (T) compared with the expected behaviour.

unlucky this may cause our truncated function to miss the axis alto
gether!* (See curve for n = 3 in Figure 26.2.) It is, however, rea
sonable to expect this method to give a sequence of approximations
for Vc which will ultimately approach the correct value as n in
creases.

This does, in fact, seem to work out in practice except that
the rate of convergence is often painfully slow and frequently rather
erratic. More important, however, is the concl usion we will draw

*In this case one feels morally bound to compute still one further
term before one publishes the result!



with, perhaps, 'Y :/: 1. It is clear that the methods discussed for
handling the series cannot yield an estimate for 'Y.

(26.4)

(26.3)

(27.2)

(27.1)F(x) = L: anx
n

,
n=O

co

MICHAEL E. FISHER

fJ. = llxc = lim Ian ,lin,
n-oo
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about the nature of the divergence of Xo(T) at Tc . Since our approxi
mation polynomial will always cut the axis (if it does not miss or just
graze it) at a definite slope (and since it is necessarily analytic), we
must always conclude,

i.e" the classical Curie-Weiss law! However, what we already
know about the experimental results and about the rigorous behaviour
of the two-dimensional Ising model should warn us to be prepared for
a more general type of singularity of the form, say, *

27, The Ratio Method
A more purely mathematical approach to the problem may be

formulated as follows: We have a function known only through its
power series expansion,

*In writing this asymptotic formula we do not, of course, rule out the
possibility of further but weaker singularities coincident with the
critical point.

and attempt to estimate fJ. by studying the sequence Iani lin, How
ever, this expression for fJ. is really too powerful! It will give the
correct answer even for a very erratic sequence an but normally

We believe, on physical grounds, that for some real positive x = xc'
F(x) diverges to infinity. We may assume the coefficients are posi
tive (compare with (26.1) and (26.2)). It then follows that F(x) has
its nearest singularity on the real positive axis and that the position
of this singularity determines the radius of convergence of the series.
Identifying this singularity with the critical point Xc shows that our
task is to estimate the radius of convergence of the series given its
coefficients.

For this purpose we might use the general formula
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converges only rather slowly. For a smoothly varying sequence (com
pare Equations (26.1) and (26.2) again) we may also expect the
ratios

jJ.n (27. 3)

to approach jJ. as n - 00.

Some simple examples will illustrate the sort of behaviour to
expect. Given the series

22 33 44
F(x) = 1 + jJ.X + jJ. x + jJ. x + jJ. x +

we would 1 making the natural conjecture 1 have

F(x) = 1/(1 - jJ.x)

(27. 4)

(27.5)

which has a simple pole at x = Xc = I/jJ.. The !!.th ratio jJ.n is in
this case just jJ.. Consider the series

(27.6)

With a double pole at x= I/jJ. in this case

(27.7)

so that jJ.n approaches jJ. linearly with lin.
Let us try this procedure on the Ising model susceptibility

series. Figure 27.1 shows a plot of the ratios jJ.n versus lin for
the triangular and face centered cubic lattice susceptibilities. (This
figure is taken from Domb and Sykes (T. Math. Phys. £, 63(1961))
who are responsible for developing this approach.) For both lattices
the ratios rapidly seem to settle down to linear behaviour. If this
linear behaviour continues ,one should be able to estimate the limit
tJ. by calculating the linear intercept from alternate ratios I * i. e. I

jJ. =! [ njJ. - (n - 2) jJ. ]est n n • (27.8)

For the triangular lattice twelve coefficients are known and the last
eight linear intercepts are found to be

~.w~ _
'kAltemate ratios are used rather than successive ratios to reduce the
t'lffects of small irregularities. See also the behaviour of loose
packed lattice s (Figure 27. 2) .
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n = 2 4 6 10 00

1·0

~.c.c.

0·9
l~.

aX ,

~al1_'

08

0·7

for the critical point of the triangular lattice. Thanks to Onsager,
however, we know the exact result, namely,

These are falling slightly so we would probably be inclined to make
the estimate,

(27.9)

(27. 10)

0·0

3.753

3.7395,

EX ACT LIMIT--->
,I,;

Vno·s

3.767,

3.7401,

3.7368,

live = 2 + >J3 = 3.73205 .•.•

I.J. = live = 3.733 ± 0.003,

3.768,

3.7414,

3.7381,

1-0
Figure 27.1. Ratios of coefficients of the susceptibility
series of the triangular (q=6) and Lc.c. (q=12) lattices
(from C. Domb and M. F. Sykes, J. Math. Phys • .£
63(1961)).
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We see that our estimate is accurate to within three parts in 104 !
It is natural to assume that the foc.c. series will behave

similarly-the same sort of configurational information has gone into
the series and by the time lattice constants of nine or ten lines are
included, one should have "sampled" the lattice quite fully. One
may check the procedure for consistency by reexpanding in terms of
K=J/2kTc (rather than v) and taking ratios in this series. One finds
from the last six intercepts the estimates

kTc/qJ = 0.826,

0.8158,

0.817,

0.81616,

0.8159

0.81632.

These seem to be converging more rapidly than in two dimensions and
one might estimate finally

kTc/qJ"=' 0.8162

which agrees closely with the v-series estimate.
Figure 27.2 curve (b) illustrates the typical alternating be

haviour observed with loose packed lattices (in this case the square
net). However, the ratios here are formed from the numbers c n of
n-step self-avoiding walks rather than the susceptibility coeffi
cients! Evidently the linear behaviour of the ratios is not confined
to Ising model series.

Our example s (2 7 . 5) and (27. 6) show that the~ of the
(lin) plot is related to the strength of the critical singularity. More
generally suppose that

F (x) ,,; A { 1 + ... } ,
(l-fJ.x) I"

Then one has (by the Binomial Theorem)

A 1"-1 n
an ,,; r('Y) n fJ.,

so that

(n- oo )

(n- 00).

(27.11)

(27. 12)

(27.13)

Thus the limiting slope g equals I" - 1. (Note that a logarithmic sin
gularity ,,;w(l-fJ.x) corresponds to 1"=0.)

Given an estimate fJ.' of fJ. we may estimate the slope from

g = n (fJ.n _ 1\
n fJ.')

(27.14)



3'0

(27.15)

0.728

0.7359.

(a)

7

(c)

0.726,

0.7344,

L 749 ± 0.003.

0.717,

0.7326,
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n

0.707,

0.729,

lIn

Figure 27.2. Ratios Cn/Cn-l for walks on the square lattice
(a) with only reversals and squares disallowed, (b) with no
self-intersections, (c) with no self-intersections or nearest
neighbour contacts. (From M. E. Fisher and B. J. Hiley,
J. Chern. Phys. 11, 1253(1961).)

2-6
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These are increasing quite linearly with lin and extrapolation yields
the estimate

and this should approach goo:: 'Y - 1 linearly with lin if j-L' is suf
ficiently accurate. In this way one can actually attempt to estimate
the nature of the critical singularity!

Let us try the method on the triangular lattice (using the exact
critical point). We find from the last eight ratios the estimates for g:
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Estimates for the square and honeycomb lattices converge more
rapidly and also come out close to 1. 75 (C. Domb and M. F. Sykes,
Proc. Roy. Soc. A240, 214(1957)). * In view of the exact result
f3 = 1/8 for all lattices, it is natural to conjecture that

1"=1 3/4 (27.16)

for all plane Ising lattices. Once again we have found a large devia
tion from the classical prediction I" = 1.

It is hardly necessary to point out that the method leading to
this conclusion is not rigorous! We have assumed that the apparent
asymptotic behaviour of the first dozen or so coefficients will con
tinue to infinity. Mathematically there is no necessity for this.
However, the fact that one obtains good agreement with the exact
critical points and that one understands the combinatorial origin of
the coefficients gives one confidence in the reasonableness of the
procedure. It would, however, be very valuable to have some gen
eral theorems assuring us, say, that the asymptotic form (27.12) was
generally correct and giving an indication of the rate of convergence
to it. Although no such theorems have been proved, one can, at
least for the square net, obtain a check on the result 1"= 1 3/4 by
analytic arguments. (These are sketched in the next section.) It is
also interesting to note that before Yang's result f3 = 1/8 was pub
lished, Domb (Proc. Roy. Soc. A199, 199(1949)) had suggested
f3 ~ O. 12 to 0.13 from a study of the first nine nonzero terms of the
magnetization series!

Estimates of I" for the three-dimensional lattices (s.c.,
b. c. c. , f. c. c. and tetrahedral) yield

I" = 1.250 ± 0.004 (27.17)

where the indicated limits represent the uncertainties of the indi
vidual extrapolations and the differences between the different lat
tices. The latter are, in fact, found to be insignificant. It is hard
to avoid making the conjecture that

I" = d: (27.18)

ts exact for all three-dimensional Ising lattices!
Actually, Domb and Sykes (Phys. Rev. 128, 168(1962)) have

rshown that, to within somewhat lower accuracy, this res ult also
holds for Ising models of arbitrary spin (up to S=oo, in fact). They

6",", _

'kThe reader with access to a desk calculator might like to try the
procedure for himself on the series (26.1)!



28. Extensions
As a refinement of the ratio method let us note that if one has

an estimate g' for the slope, a more rapidly convergent sequence of
estimates for the critical point will be obtained from

also examined the high-temperature series for the Heisenberg model
by the same method. As explained, fewer terms are available for the
Heisenberg model and their behaviour, especially for low spin, is not
as regular. From the serie s for S = 00, however, one can concl ude
that

(28. 1)

(28. 2)

(27. 19)
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1.33;2 ')';2 1.34

V c = tanh(J/2kTc ) = 0.21815 = 1/4.5840.
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t One might remark that for self-avoiding walks in two and three di
mensions the corres ponding exponents are found to be ')' = 4/3 and
7/6 respectively to within about ±0.005.
:j: The best estimates of the critical points and other critical parame
ters have been tabulated by M. E. Fisher, J. Math. Phys. 4, 278
(1963). Note, however, that the entropy estimates for the ;imple
cubic lattice should be altered to Sc 2: O. 560, Soo - Sc 2: O. 133.

which actually represents a larger departure from the classical pre
diction ')'= 1 than in the case of the Ising model.t Domb and Sykes
showed that this result again seemed to be independent of lattice
structure and of spin, and they suggested that the exact value might
be ')' = 4/3. We will describe an experimental test of this four
thirds law in the following sections.

If g' differs slightly from g the only effect will be to retard the con
vergence somewhat by adding a term (g-g')/n.

Figure 28.1 shows the behaviour of these estimates versus
lin for (A) the square lattice, where the exact limit is indicated, and
(B) and (C) for the simple and body-centered cubic lattices. (The re
duced ratios f3 n = fl.;/q are plotted.) The horizontal lines labelled
[3+ and 13- represent i per cent deviations above and below the esti
mated limits. It is interesting that the convergence is more regular
in three dimensions than in two.

In this way a set of best estimates of the critical points is
obtained.:j: For the simple cubic lattice the res ult is
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Figure 28.1. Plot of the refined critical point estimates
f3n = fJ.; / q for (A) the square lattice, (B) the simple cubic
lattice, and (C) the body-centered cubic-lattice (from Domb
and Sykes lac. cit.).

'['here seems little doubt that this is accurate to better than one part
In 103 and probably to about one part in 104 . (As we will see, esti
rnates based on quite a different procedure agree to this extent.)

If we have accurate estimates for the critical point fJ. and the
lZiXponent 'Y we may estimate the amplitude of the singularity (see
Equations (27.11) and (27.12)) from the sequences
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or
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A * = /( n+'Y- 1) nn an n fJ-.

(28.3)

(28.4)

This latter expression, in terms of the binomial coefficient, is usually
more convenient to calculate and often converge s more rapidly.
Slight errors in the estimates for fJ- and 'Y will become amplified in
estimating A so that only lower accuracy is attainable. (This pro
vides one j'ustification for obtaining the estimate of fJ- to as high an
accuracy as possible.)

Having obtained estimates for fJ-, l' and A, one is in a posi
tion to write an extrapolation formula for the numerical eval uation of
the function F(x) when only the first N coefficients are known
exactly. Thus

N
F(x);= ~ anxn + RN(x)

n=O

where for the remainder we may most conveniently take

(28.5)

(28.6)

More ela.borate forms of remainder may be justified if the behaviour
of the coefficients an is sufficiently regular and is analyzed in more
detail. The extrapolation formula (28.5) may, of course, be evalu
ated for any real or complex x. However, one can expect it to be
accurate only close to the positive real axis from x=O to x=Xc=l/fJ-,
the dominant singularity of the true function.

Figure 28.2 is a plot of the reciprocal initial susceptibilities
of two- and three-dimensional Ising lattices calculated by the above
procedures. The Vveiss mean field prediction is shown for compari
son. Note that since 'Y > 1 in two and three dimensions, the curves
for these lattices actually come into the origin with zero slope al
though this is not very apparent from the figure,

Let us stress again that all the evidence indicates that the
critical point behaviour is independent of the lattice structure and
also independent of spin (although strongly dependent on dimension
ality) .
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Figure 28.2. Reciprocal susceptibilities of two- and three
dimensional Ising models compared with the Weiss mean field
prediction (from C. Domb and M. F. Sykes, Proc. Roy. Soc.
A240, 214(1957)).

~;l.,. Ferromagnetic Susceptibility of the Square Lattice
Before confronting the nonclassical laws for the susceptibility

wIth experiment let us briefly sketch the analytical arguments leading
to the result ')'= 7/4 for the square net. *

kilee M. E. Fisher, Physica £, 521(1959);~, 172(1962): J. Math.
Phys . .!i, 944(1964).



(K is proportional to the logarithm of the ratio of the largest eigen
value of M. to the second largest eigenvalue but these eigenvalues
become degenerate at Tc .)

At the critical point we thus have

(29.2)

(29. 3)

(29.4)

(29. 1)

(r - (0) ,
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K(T) == c(T - Tc).
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We now appeal to Onsager and Kaufman's evaluation of the correla
tion functions. Their general result expresses wr(T) as a complicated
determinant (of order proportional to r) and is quite intractable. At
the critical point, however, Onsager was able to evaluate the deter
minant explicitly as a product of gamma functions. Asymptotic analy
sis of this formula yields the striking resultt

where Wr(T) does not vary exponentially fast with r as r _00. The
inverse range of correlation 1< will depend on temperaturet and will
approach zero as T-Tc corresponding to the correlations becoming
"long-ranged." In fact Onsager, in his original paper, showed that
as T- Tc

From the fluctuation theorem (25.6) we see that the divergence
of XO (T) as T - Tc must come from the increasingly slow decay of the
correlation functions (sOsr> for large r, and the consequent slow con
vergence of the s urn over r. Now, as we pointed out in Section 26,
the correlation functions decay, to leading order, exponentially with
distance. We may thus write

t Actually there is also a slight dependence on direction which be
comes negligible near Tc and which does not in any case affect the
general argument.
tWe again neglect a slight and unimportant dependence on angle.

A
wr{Tc) ==~. {l + 0{1/r2)} I

r 4

where the correction term is already quite small at the nearest neigh
bour distance. Comparing with (29. 3) gives an expression for Wr(Tc)'
We might now ignore the dependence of Wr{T) on T near Tc but a
more careful analysis of the expression for the correlation functions
in terms of the transition matrix and its spectrum shows that this is
not quite correct. For large rand T near Tc we may, however, write
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where Q (t) - 0 as t - 0 and, as before, Q (Kr) cannot vary exponen
tially fast as t- 00. Substituting in (29.1) and in the fluctuation
theorem (25.6) yields,

1

Wr(T) = (A/r 4) [1 + Q(Kr)]

kTXo(T)/m2 "" 1 + ~ (Ae -Kr /r i )[ 1 + Q(Kr)] .
r

(29.5)

(29.6)

Near Tc where the sum is diverging, we may safely replace it by an
integral,

co

~ - 21T S rdr.
r 0

Making the change of variable Kr= t we then obtain

The integral here is a pure number, say I, so that, substituting with
(29.2) we finally obtain, as T - Tc '

We will now turn again to experiment and discuss the com
pressibilities, susceptibilities, critical isotherms and specific heats
in the light of our theory.

(29.8)

(29. 7)

Chapter VIII

XO(T) "" (m2/kT)(21TAI/c 7/ 4)/(T - Tc )7/4.

This confirms the re s ult 'Y = 7/4.

30. Compressibilities and Susceptibilities
Our prediction 'Y> 1 shows that a plot of reciprocal compres

sibility or susceptibility near Tc should be significantly curved (see
Figure 28.2). Consequently if a straight line is fitted to the data
above Tc (as has often been done by experimentalists in virtue of the
classical result l/XO ~ a(T - Tel) it should cut the axis at an appar
ent Curie point greater than the true transition point.

Figure 30.1 shows a plot of the reciprocal compressibility of
Xenon, suitably normalized, above Tc at densities close to critical
(prepared from the data of H. W. Habgood and W. G. Schneider, Can.
y. Chern. l~..t 98(1954)). The data (open circles) lie on a curve so
that 'Y > 1 is definitely indicated. The solid line, following the law



A[ (T/Td - 1] 5/4, is based on the lattice gas prediction (with A
chosen to fit the data near Tc )' In the conventional phrase, "the
theoretical curve gives a very good fit to the data" (some deviations
away from Tc must be expected since the 'Y = 5/4 law is only asymp
totic as T- Tc ) .

Des pite the "good fit" one should not be too impressed! If
one looks more closely at the data (especially near Tc ' where the ex
periments are most difficult and the errors introduced by the numerical
differentiation involved in deriving KT from the data), one finds they
are somewhat irregular. One may, preferably, attempt to calculate a
value of 'Y directly from the data. Although one can conclude with
reasonable confidence that 'Yxenon > 1. I, the results prove rather in
determinate and one must conclude that more experimental data are
needed. One may hope that these will be forthcoming.

Some of the best experiments on a ferromagnet near its Curie
point are those made by Weiss and Forrer on nickel in 1926 (Ann.
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Figure 30. 1. Reciprocal compressibility of Xenon above Tc
(from M. E. Fisher, J. Math. Phys. ~ (July 1964).
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physique.§., 153). Recently Dr. J. S. Kouvel and It have re-analyzed
these data in the light of the general prediction

B
Xo(T) = I' {l + ... } ,

(T-Tc )
(30.1)

To determine the true initial (zero field) susceptibility from the finite
field measurements one may plot M2 versus HIM at fixed tempera
ture. t According to classical theory this should yield a set of
straight lines near Tc (see Equation (16.4)). One finds, however, a
set of nearly parallel curves. Extrapolation to zero magnetization is
easily performed and this yields accurate values for

Xo(T) = lim (HIM) •
M2_0

(30.2)

Rather than attempt some sort of least-squares fit, a more
sensitive method of finding I' is to form (by numerical differentiation)

_1'__ + .
T - Tc

(30.3)

where the expected behaviour follows from (30. 1). Consequently I

(30.4)

so that a plot of X(T) versus T near Tc should be substantially linear,
whatever the value of 1'. This is found to be so and an accurate esti
mate of Tc can hence be found by extrapolation to X= O.

Now to estimate the ideal value of I' consider the temperature
dependent "effective exponent"

(30.4a)

As T- co I I'*(T) approaches the Curie-Weiss value unity but as T-Tc

I'*(T) = 'Y - a(T-Tc ) +. ", (30.5)

(Although it is conceivable that the true correction term is somewhat
sharper than (T - Tc ).) A plot of 1'* (T) versus T for nickel in the
range 6.T/Tc = ~ per cent to 12 per cent is shown in Figure 30.2.
(The indicated uncertainties arise largely from the numerical

tPhys. Rev. 136, A1626 (1964).
lThis method is due to Belov and Goryaga and to Kouvel.



Figure 30.2. Plot of the effective exponent 'Y* (T) for nickel
(from J. S. Kouvel and M. E. Fisher, Phys. Rev. 136, Al626
(1964).
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is clearly indicated!

This value of 'Y lies well above, not only its classical pre
diction, but also above the value 'Y = 1.25 for the three-dimensional
Ising model. All the more surprizingly, it agrees closely (to within its
theoretical and experimental uncertainties) with the prediction
'Y ~ 4/3 for the nearest neighbour Heisenberg model! As we explained,
it is difficult to believe that the localized spin Heisenberg picture is
a realistic model for nickel. We thus seem forced to conclude that
the behaviour close to Tc is insensitive to the details of the true
Hamiltonian. Only the general statistical features notably the dimen
sionality and the, presumably I finite ranged and isotropic

differentiation.) The result,
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interactions seem to determine the nature of the singularity.
We should mention that in experiments on iron very close to

Tc Noakes and Arrott G. App1. Phys. ~, 931 (1964)) found from a
least squares fit 1'= 1.37 ± 0.04. Miedema, Van Kempen and
IIuiskamp (Physica l2., 1266(1963)) observed that XO(T) for the ferro
magnetic salts CuK2 C14' 2H20 and Cu (NH4)2 C14' 2H20 could be
fitted quite well, from about 4 per cent above Tc to about 50 per cent
above Tc ' by 1'= 1. 36 and 1. 37, respectively.

The dashed lines in Figure 30.2 are the theoretical predictions
of 'Y*(T) for the nearest neighbour f. c. c. Heisenberg lattice for vari
ous spins. The deviations from the experiments might re pre sent the
effects of nonlocalization of the spins. They can also be interpreted,
however, as due to the effects of longer range interactions or a slowly
changing effective magnetic moment of the spins in nickel.

31. Critical Isotherms
Widom and Rice G. Chern. Phys. bL 1250(1955)) analyzed

the critical isotherms of xenon, hydrogen and carbon dioxide and con
cl uded that they were significantly flatter than the Van der Waals pre
diction (15.4). They found the data were best represented by the
power law

(31. 1)

with 0= 4. 2 rather than 0 = 3.
Figure 31.1 shows a plot of M3 versus H at the Curie point

of nickel, derived again from the measurements of Weiss and Forrer.
.(In the figure, IT denotes the magnetization density M.) At these
relatively very small fields) classical theory would lead one to ex
pect an accurate straight line. If the data are analyzed, in analogy
with the susceptibility, in terms of a relation

H = a MO + ... , (31. 2)

one finds 0 = 4.22 ± 0.05. The dashed line in Figure 31. 1 corre
sponds to 0 = 4.22 and agrees closely with the experimental data.

We notice once again the close similarity between the critical
behaviour of a fluid and a ferromagnet. As yet no theoretical esti
mate s have been made for the exponent 0, although for the Ising
model the necessary series are available and estimates should be
forthcoming soon. t

tNote added in proof. The results are 0 = 15.00 ± 0.08 and
5.20 ± 0.15 in two and three dimensions respectively. See D. S.
Gaunt, M. E. Fisher, M. F. Sykes and J. W. Essam; Phys. Rev.
Letters lit 713 (1964).



for all the three-dimensional models. The series are not inconsistent

(32. 1)asC(T) - 00

H(Oe)

Figure 31. 1. Critical isotherm for nickel (from J. S. Kouvel
and M. E. Fisher, loco cit.).
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32. Specific Heats
The high-temperature specific heat series for the Ising model

are relatively short (since on loose packed lattices alternate terms
are missing), the coefficients do not increase very rapidly and they
vary less smoothly than the susceptibility coefficients. (These latter
facts essentially reflect the much weaker nature of the specific heat
singularities.) However, the series appear to converge up to the
critical point and they may be analyzed by the ratio method.

One can conclude with confidence that

92
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with a logarithmic divergence (as in two-dimensions); but, if we
write, as T- Tc ±,

a careful analysis indicates a 3"0.2, that is, a sharper singularity.
(Note Equation (32.2) yields a logarithmic singularity in the limit
a - 0.) The amplitudes D+ for the various lattices are, however,
about one half of the two-dimens ional val ues.

Below Tc the series cannot be handled directly by the ratio
method (except in the case of the tetrahedral lattice-for the methods
used, see later sections) but again the specific heat appears to di
verge at Tc ' The present, somewhat uncertain, numerical evidence
suggests that this divergence is not sharper than logarithmic, so that
we may take a' = 0 in Equation (32.2) (using the prime to denote
values of the exponent below Tc )'

One may, however, calculate quite accurate numerical val ues
for C (T) except very close to Tc . Figure 32. 1 shows the estimated
variation t of the specific heat of the f. c. c. Ising lattice and ap
proximations to it. Notice that the approximate theories, although
still misleading, are more accurate than in two dimensions (compare
with Figure 19.2). It is gratifying that the theoretical curve now re
produces the characteristic asymmetry about Tc noticed in the experi
mental results (compare with Figures 2.5 and 5.2). If, for the sake
of the comparison, one fits the series to 0'= a' = 0, one finds the
ratio D+/D - lies between 2.3 and 2.6 in contrast to the two-dimen
[,ional result D+=D-.

In the case of argon a more detailed comparison with experi
ment is justified. t To compare the experimental CV(T) data with the
specific heat per site of the Ising model, we first calculate the con
figurational specific heat per atom from

Cconfig =
k

[Cv -(3/2) Nk]

Nk
(32. 3)

ilnd then the reduced specific heat density

C *(T) =~ Cconfig(T).
Pmax

(32.4)

r;;;; within graphical accuracy this estimated curve (solid line) should
be essentially exact.
IThe following discussion is based on a forthcoming paper: M. E.
l'Isher, Phys. Rev. 136, A1599 (1964).



(For argon pc/Pmax ~1/3.3.) Figure 32.2 shows a plot of C*(T)
for argon versus R;n 11 - (T/Tcll. The experimental data are shown by
the open and shaded circles (corresponding to the experimental un
certainty in Tel, except that below O. 99 Tc the points crowd so
closely to the line .9. that they are not shown. The upper curve (cor
responding to T < Tel is a good straight line so that we may conclude
that a'argon ~ 0 and probably a' does not exceed O. 1. A similar
behaviour is found for some magnetic specific heats (notably for
NiC12.6M20; see Figure 5.2).
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Figure 32.2. Logarithmic plot of the reduced configurational
specific heat of argon (circles and line £) compared with
Ising model predictions (curves 12., £., £i and ~ . (From
M. E. Fisher, Phys. Rev. 136, A1599 (1964).

Above Tc (lower curves) the data seem not to lie on a straight
line, although they might do so close to Tc ' * The solid curve £. is
calculated for the f. c. c. Ising lattice with the preferred exponent
a = 0.2 (and fitted only to the critical point). The agreement is s ur
prizingly good. (Curves 12. show the consequences of assuming Q= 0
forLc.c. and s.c. lattices.)

* The famous measurements of Fairbanks on the lambda anomaly in
liquid helium revealed an accurately logarithmic singularity over four
decades in IT-Tel both above and below Tc . (See M. J. Buckingham
and W. M. Fairbanks, in Progress in Low Temperature Physics III
(North Holland Publishing Company, 1961).) The behaviour of helium,
however, is presumably determined essentially by quantum mechanics
and it is not clear how far one should expect an analogy with the
"classical" critical points.



Chapter IX

A quick glance at this series shows that the ratio method is
quite inapplicable; the magnitudes of the coefficients go up and down
in an erratic fashion and the signs also seem quite random! What
does this mean? The answer is more immediately obvious if we look

The curve s 9- and §. are calculated for the f. c. c. and s _c.
lattices below Tc - (The spread of the curves indicates the theoreti
cal uncertainties.) The strength of the singularity, as represented by
the slope of the lines, agrees quite well with the experimental re
sults but the actual magnitude of C*(T) is too small by an almost
constant amount (equivalent to 6.9 cal/mole 0 K for argon). This
seems to be the main deficiency of the lattice gas description of the
critical specific heat. Quite probably it is associated rather di
rectly with the over-simple representation of the hard core by a sin
gle lattice site but further calculations are needed to confirm this.

(33. 1)
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33. Low-Temperature Behaviour
In the previous sections we have seen how the nature of the

critical singularities of the Ising model, as T approaches Tc from
above, can be elucidated by a numerical study of the high-tempera
ture series expansions. Can the same be done at low-temperatures
and, in particular, can we estimate the spontaneous magnetization
coexistence exponent ~ for the three-dimensional models?

Low-temperature power series expansions of the free energy
in the two variables x and y (see Equation (l0. 8)) can be derived by
overturning spins in a fully magnetized lattice (y = 0, H = 00). By
differentiation a series for the magnetization is obtained, and on
setting y = 0 (i. e. , taking the limit H - 0) one obtains an expansion
for the spontaneous magnetization in powers of x. (The procedure
can, of course, be checked in two dimens ions. ) For the f. c. c. lat-
tice many terms have been calculated and, writing u = x2 , we find
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at the series for the simple cubic lattice. This is found to have
smoothly increasing coefficients but the signs alternate regularly.
Clearly I this means that the nearest singularity of the function MO(u)
lies on the negative u axis (corresponding to a complex temperature)
rather than on the real positive u axis where we expect to find the
singularity corres ponding to the critical point! Since the "nonphysi
cal" singularity lies nearer the origin than the physical singularity I

it dominates the behaviour of the coefficients and determines the
radius of convergence. The more complicated behaviour of the f.c.c.
coefficients evidently means that the dominant singularities lie in the
complex u-plane away from the axes (see Figure 33.1). In fact I it
transpires that two or more pairs of complex nonphysical singularities
intervene between the origin and the critical singularity uc ' The
radius of convergence is determined by the nearest pair of singulari
ties (see Figure 33.1) and is appreciably less than lie. *

x-
I

I
I

x
...........

"\
\

x

Figure 33.1. Complex u plane illustrating the physical region
on the real positive axis I and interfering singularities which
limit the radius of convergence.

To overcome the difficulty I various methods of grouping terms
corresponding to a fixed number of overturned spins were tried (the
"metastable method "). Although reasonably accurate numerical
values could be calculated below TCI little significant information

*It might be mentioned that low-temperature series for the two-dimen
sional lattice converge up to the physical critical point.



We may clearly choose

(34.1)

(34.2)
L
2:: p,x

j

j=O J
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34. Pade Approximants
Our mathematical task, as before, is given a function F(x) in

terms of its Taylor series expansion coefficients to study its be
haviour near one of its singularities. In this case, however, the
singularity of interest lies beyond the radius of convergence of the
power series so that the function must be analytically continued.. In
principal, if one has a complete convergent power series expansion,
a function can be analytically continued up to and around all its sin
gularities, the process stopping only at a natural barrier of the func
tion (beyond which it remains undefined). What we require, therefore,
is a practical method of approximate analytical continuation.

We pointed out the deficiencies of approximating F(x) by a
polynomial (straight truncation) or by a reciprocal polynomial (trunca
tion of the series for I/F(x)) but let us consider, more generally, ap
proximation by a ratio of polynomials

PL(x) PO + PIX + ••• + PLxL
F(x) 8; -(-) = M

OM x qo + qlx + .•. +qMx

was gained regarding the critical singularities. Real progress was
made only with the application of the Pade approximant method, in
troduced into physics by Baker and Gammel G. Math. Anal. and Appl.
I, 21(1961) and G. A. Baker, Jr., J. L. Gammel and J. G. Wills,
ibid., p. 405) and first applied to the Ising model by Baker (Phys.
Rev. 124, 768(1961)).

with no los s of generality. To choose the remaining L + M + 1 coef
ficients PO' PI' ... PL' qJ.' q2' ... qM' let us demand that the power
series expansion of PL(x)/OM(X) agree with the first N + 1 exactly
known coefficients aO, al" .. aN of the expansion of F(x). Clearly
we must, in general, choose L + M = N in order to have sufficient re
lations to determine the Pi and qj'

To see what is involved in calculating the coefficients of
such an [L, M] Pade approximant, cross-multiply in (33.1) to obtain

and require that this relation be an identity in the first N powers of
x. Equating coefficients of x O to xL (and recalling qo = 1) yields
aO = Po and
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al aO ql PI

aZ a l a O qz Pz

a3 aZ al a O q3 P3
(34.3)+

where, if M < L, we set qm l ' qM+Z"" qL equal to zero.
coefficients of x L+1 to xL we get

+

From the

o (36.4)

where, if L < M, we set a_I' a_Z ... equal to zero. This latter
equation is a set of M linear equations for the denominator coeffi
cients. The solution, in an obvious matrix notation, is

(34.5)

(34.6)

and substitution in (34.3) then yields the numerator coefficients,

-1
1:. = ~ + ~l~ = :1 + b ~Z ~.

Calculation of the coefficients is therefore a routine matter
readily performed with the aid of an electronic digital computer. In
practice, the Equations (34.4) are often rather "ill-conditioned"
(Le., the determinant off}:}. is small) so that precautions must be
taken to prevent the build::"up of round-off errors. If det.~Z vanishes
identically, a Pade approximant of the form sought does not exist. We
might remark that Pade approximants are equivalent to a certain class
of continued fractions and an alternative sequential method for the
calculation of approximants of the form [M + £, M] M = I, Z,3 ...
can be based on this approach.
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35. Analytical Character
The advantage of using an [L, M] Pade approximant is that it

has both zeros and poles (Le., the zeros of PL(x) and the zeros of
QM(X)). Thus if F(x) is meromorphic inside some circle (L e., has
only poles), we might hope for rapid convergence of the approximants
throughout the circle, and in particular beyond the nearest pole to
the origin. * In fact, it is clear that if F(x) consists of a sum of m
poles of different amplitudes, we will obtain the exact answer from'
the sequence of "diagonal approximants" [M,M] once M:::;n. Practi
cal numerical experiments show that in such a case convergence in
the vicinity of, the nearer poles is extraordinarily rapid even when
M« m. This rapid convergence may be understood by noting that
diagonal approximants are invariant under the Euler transformation

which is often used to hasten the convergence of power series. We
thus see that in a certain sense the diagonal approximants are at
least as effective as the best Euler transformation. In practice, the
near-diagonal sequences [M ±.£, M] are observed to converge equally
rapidly.

Suppose now that our function F(x) has branch points rather
than merely poles, for example,

or

cw
x = 1 + A.W '

1 1

F(x) = (l + 2x)Z (l + x)-Z,

F(x) = -(l/x) 0n (l - x).

(35. 1)

(35.2)

(35.3)

What will the Pade approximants do? First, let us note that a Pade
approximant is a single-valued function throughout the complex
x-plane whereas functions with branch points are many-valued. Con
sequently, we could at best hope for the approximants to converge to
F(x) in a suitably cut plane. In practice this is just what seems to
happen!

The Pade approximants "select" a particular set of branch
cuts and "place" a series of alternating zeros and poles along the

*There are relatively few rigorous theorems on the convergence of
Pade approximants but it has, for example, been proved that if F(x)
is analytic for Ix I ;2 R except for m poles within this circle, then the'
sequence [M,m] converges uniformly to F(x) as M-oo throughout the
circle except for points within small circles surrounding the m poles.
(See Baker, Gammel and Wills, loc. cit.)
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cut. * For example, the [1,1] approximant to (35.2) is

1 +(7/4)x
1 +(5/4)X

101

so that the zero and pole lie at x= -4/7 and -4/5 on the "obvious"
choice of cut from x = -1 to x = 1! (See Figure 35. 1.) For (35.3) the
[1,1] approximant is (l - x/6)/(l- 2x/3) and the zero and pole lie
at x = 6 and x = 11 on the cut from x = +1 to +00. As we increase the
order of the approximants the zeros and poles on the cuts close up to
form, in an electrostatic analogy, a "dipolar layer" of strength just
sufficient to give the discontinuity in F(x) that must occur when one
crosses a cut. Except in the vicinity of the cuts, the approximants
still converge rapidly and may be used to compute F(x) far outside the
circle of convergence of the original power series.

-1 -1.
2

o o i

Figure 35. 1. Illustrating the distribution of zeros and poles
of the Pade approximants to the functions of Equations (35.2)
and (35.3).

However, if we know or sus pect that our function has an alge
braic branch point at a "critical point" xc' so that

{)
F(x) = A(x - xcl {I + O(x - xc)} , (35.4)

*Although in simple examples it is easy to guess which cuts will be
selected, no criteria are known for deciding this point in general.



we will do better by studying the series for D (x), the logarithmic
derivative of F(x) (compare with Section 30). Since

this function will have only a simple pole at x=xc' Consequently,
we can expect the approximants to D(x) to converge rapidly in the
vicinity of the original branch point. Furthermore, the position of the
pole in the approximant which will appear in the neighbourhood of Xc
will give an estimate of the true critical point Xc and, more impor
tantly, the residue at this pole will represent an approximation to the
critical exponent 6.

Notice that if our function F(x) were simply a product of alge
graic factors like (35.2), for which

(35.5)

MICHAEL E. FISHER

a 6-;- en F(x) = ( ) + 0 (1) ;
uX X -xc
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our technique would eventually yield the exact result! (This would
happen with the spontaneous magnetization series of the two
dimensional Is ing lattices.)

If we have an exact value or a good estimate for Xc a more
accurate method of estimating the exponent 6 will be to form the
series for

(~) l:lL
D (x) =~ + 1 + x '2+ X

(35.6)

(as in Section 30) and to eval uate the approximants to this series at·
x = xc' which will be an analytic point of 6*(x) •

Conversely if we know, or have a good estimate for, 6 a re
fined estimate of Xc will be obtained by locating the appropriate pole
in the approximants to the series for

(35.7)

(35. 8)

* a6 (x) = (x - xc) ax en F(x) = 6 + O(x - xcl

[F(x)]-l/6 = B + O(l),
(x - xc)

since this function has a simple pole and convergence should be
rapid. Given accurate values of 6 and Xc we can evaluate F(x) it
self accurately in the neighbourhood of Xc by writing,

6
F(x) = A(x) (x - xcl I (35. 9)

forming the series for A(x) and eval uating the approximants to A(x) at
the points of interest.
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(35.10)

The above procedures are based on the supposition that F(x)
has a pure algebraic branch point at xc' We might hope, however,
that they would still work moderately well if any other coincident
singularities were sufficiently weak. Logarithmic singularities like
(35.3) present more difficulty since the logarithmic derivative will
still contain a logarithmic branch point. Similarly the derivative
F' (x) will in general contain both a pole and a logarthmic singularity.
For example, from (35.3),

F' (x) = (1 =x) + x -1 [1 + x -1 Rm (1 - x)] .

A1 though in particular case s the pole will now dominate, it is clear
that we must be prepared for slower convergence near the critical
point and branch cut.

36. Applications to the Is ing Model
Let us, following Baker, first try these techniques on the

Ising model high-temperature susceptibility series. Estimating the
critical point and the exponent I' from the poles and residues of the
[M,M] approximants to the logarithmic derivative (Equation (35.5))
yields, for the plane square lattice,

M= 2 Vc ~0.411l I' - 1. 654
3 0.4093 1. 626
4 0.4164 1. 797
5 0.4121 1.682
6 0.41412 1. 746
7 0.4142106 1.7496.

The last estimate of Vc agrees with the exact result, 0.4142135 ... ,
to the first five decimal places! The corresponding estimate for I'
deviates from 7/4 by only 0.0004. Results for the honeycomb and
triangular lattices are equally encouraging. For the simple cubic lat
tice one similarly finds

M = 2
3
4
5

Vc ~0.2151

0.2189
0.21815
0.21818

I' - 1.205
1. 281
1.2505
1. 2518.

The agreement with the estimates Vc = O. 21815 and 1'= d- based on
the ratio method is astonishingly close and increases one's confi
dence in the reliability and accuracy of both methods. (The results
for the f. c. c. and b. c. c. lattices are quite comparable.)



while for the honeycomb lattices, where twenty-four terms are availa
ble, one finds for the last five estimates

which differ by only one or two parts in 104 from the ratio method
estimates, one computes from 'Y*(vc ) the estimates

Using the exact critical points in two dimensions, let us
estimate l' by forming the approximants to 'Y*(vc ) as in Equation
(35.7). For the square net the last four estimates are

(f. c. c.)

1.75009.

1. 7498

1.75019,

(s. c.)

(f. c. c. )

1.2507, 1.2505 (s.c.).

1.7499,

1. 2498

1.75019,

1.2502,

1.2498

1.7516,
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1. 7503,

1. 30,

::=< 0.218156,

v ::=< 0.101767,
c

::=< 1. 22,

l' ::=<1.728,

l' ::=< 1.259,

1'=1.754,

In three dimensions, adopting Baker's estimates

and

tThis analysis was first performed by Baker who concl uded fJ ::=< 0.30,
but Fisher and Essam (J. Chern. Phys. ~, 802(1963)) restudied the
problem using longer series with the results presented here.
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There thus seems little doubt that the result 1'= d: , based on the
ratio method, is exact! (It should be noticed that changes in the last
two places of the estimates for v c only produce changes in the fourth
place of the l' estimates.)

So far we have merely reconfirmed the conclusions of the ratio
method. Let us now examine the magnetization seriest (e.g., Equa
tion (33.1)). Using the estimates of the critical points obtained from
the high temperature susceptibility series, we find from the evalua
tion of the approximants to 13* the estimates

"':.
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M s. c. Lc. c.

4 0.303 0.304 0.282 0.238
5 0.312 0.304 0.305 0.296
6 0.322 0.278 0.297 0.293
7 0.3133 0.3141 0.303 0.314
8 0.3144 0.316 0.307
9 0.309 0.308

10 0.307 0.307
11 0.312 0.306
12 0.306

where the two columns for each lattice represent two different diago
nal sequences [M+m,M]. These figures (and those for the b.c.c.
lattice) certainly suggest that {3 is the same for all the lattices and
yield the estimate

0.303 2 {3 2 0.318.

This is consistent with the conjecture

5
{3 = 16 = 0.312500

(36.1)

(36.2)

which is rather natural in view of the inverse powers of 2 occurring
in the already established values of 'Y and {3.

It will be noticed that the sequence of estimates is somewhat
"noisy" and shows no very steady trends. Considering the compli
cated series from which the estimates came, this is perhaps not very
surprising. This characteristic does, however, seem to be fairly
typical of the behaviour of Pade approximants to functions with a
number of singularities. Whereas the ratio method, when it is ap
plicable, focuses more and more attention on the closest singularity
as one studies higher and higher terms, the Pade approximants at
tempt also to improve the representation of the other singularities,
even if at a slight cost to the accuracy near the singularity of inter- """
est.

This point is borne out by the magnetization series for the
tetrahedral lattices derived by Essam and Sykes (Physica ~, 378
(1963)). For a three-dimensional lattice the coordination number,
q =4, is anomalously low and apparently for this reason the low tem
perature series are found to have coefficients of one sign and hence to
converge up to the critical point. The ratio method may thus be used
and leads to a steadily increasing sequence of estimates fin which
yield the estimate {3 = 0.312 ± 0.002 thereby confirming the conjec
ture (36.2) more closely.



*This figure is based on earlier numerical work by D. M. Burley (Phil.
Mag . .§.., 909(1960)) which lead only to the rough estimate
O. 25 ~ {3 ~ 0.50. To graphical accuracy, however, Burley's actual
numerical results are confirmed by the Pade approximant studies.

A further check on the consistency of {3 = 5/16 is obtained by
estimating the critical points from [MO(T)] -1/{3 as in Equation (35.8).
This yields values in good agreement with the high temperature esti
mates whereas less satisfactory agreement is obtained if one assumes
{3 = 3/10.

37. Physical Conclusions
The reader will, of course, have noticed, without at this

stage much surprize, that the result f3 ~ 5/16 is seriously at variance
with the classical approximate result {3 =~. Much more surprizing,
however, is the fact that such a simplified model of a magnet or a
gas could read to a result for the exponent {3 so close to the experi
mentally observed one third laws described in the first chapter. Again
the conclusion is forced on us that the detailed properties of the
Hamiltonian become relatively unimportant in the critical region,
whereas the dimensionality becomes a prime factor. Figure 37.1,
which shows the exact and estimated spontaneous magnetization
curves for various two- and three-dimensional lattices, * illustrates
this point as far as the effects of lattice structure go.

One might indeed ask whether the difference between the
theoretical result {3 ~ 0.312 and the experimental results f3 ~0.33

is significant in view of the uncertainties involved in both cases.
Although for some physical systems (e.g., binary fluid solutions)
this point may still be open to doubt, the high accuracy of the meas
urements on xenon (Section 2), on europium sulphide (Section 3) and
on manganese fluoride (Section 3) seem to place the experimental
values at least 0.015 above the theoretical value. The artificial na
ture of the Ising model does therefore make itself felt, but, as in the
case of the specific heats and the susceptibilities, to a much smaller
extent than might have been guessed. An outstanding theoretical
task is to characterize just which relevant features of real systems
are oversimplified by the model.

Unfortunately, there seems no way at present in which one
might seek to estimate (3 for the Heisenberg model. The low-tem
perature behaviour in that case is given by the spin wave expansion
and its correction terms which have proved exceedingly difficult to
calculate. There are, however, good reasons for believing that the
spi!) wave approach yields only an asymptotic series (terms like
e-J/kT are neglected) so that even the complete series might not de
scribe the critical point behaviour.

MICHAEL E. FISHER106
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Figure 37.1. Spontaneous magnetization of two- and three
dimensional Ising lattices (from D. M. Burley, PhiL Mag. ~,

909(1960)).

38. Further Applications
The Pade approximant technique may also be used to study

the low-temperature zero field susceptibilities. * If 1" is the expo
nent for the divergence of XO(T) as T- Tc -' one finds in two-dimen
sions 1" =1. 75, that is, the same value as above Tc . The amplitude
of the singularity below Tc is, however, much smaller being given by

(38.1)

'*J. W. Essam and M. E. Fisher, J. Chem. Phys. l!i, 802(1963).



*G. A. Baker, Jr., Phys. Rev. 129, 99(l963).

These and the results for other spin values support the conclusion
1.32 ~ I' ~ 1.36.

It is worth mentioning that the Pade approximant and ratio
technique have been used "Successfully on a number of other physical
problems. In later sections we will outline the application to anti
ferromagnetic susceptibilities. However, the approach has also been

for all the plane lattices.
For the three -dimensional lattices the extrapolations are

somewhat less certain but it appears again that 1" =Y = 1.25. At
present, however, the uncertainties might allow 'y' to be somewhat
higher although it seems unlikely that 1" exceeds 1. 30. The symme
try 1" = I' is rather appealing theoretically and, if one accepts it
provisionally (and more recent work seems to confirm it), one finds
for the amplitudes above and below Tc ,

(38.2)

f. C.c.

1. 27
1.31, 1.35

1.334, 1.364, 1.364
1.351, 1.355.

_1_
5.2
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b.c.c.

1. 01
1.71 1.23

1.01, 1.31, 1.33
1.336, 1.345
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for the three cubic lattices. Recall that the mean-field prediction
for the ratio is ~. (Detailed estimates of the amplitudes B+, B- and
other critical parameters have been tabulated in M. E. Fisher, J.
Math. Phys. 1, 278(1963).)

The specific heat series may also be studied with Pade ap
proximants. * Below Tc the series are found to be quite consistent
with a logarithmic singularity so that, as mentioned, 0" 3; O. Above
Tc the approximants prove appreciably les s informative than the ratio
method, as might have been anticipated in view of the weak (near
logarithmic) nature of the singularity and our remarks at the end of
Sections 35 and 36.

Subsequent to Domb and Sykes I work on the Heisenberg model
susceptibility above Tc leading to the conclusion I' 3;4/3 (Section 27),
Gammel, Marshall and Morgan (Proc. Roy. Soc. A2 75, 257(l963))
made an extensive Pade approximant study of the three cubic Heisen
berg lattices for spins 1/2, 1,3/2,2,5/2,3,10 and 00. By way of
example estimates of 1', using successively more terms, for S = 00

were
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used in percolation problems, for hard "sphere" lattice gases, binary
mixtures of "Gaussian molecules," in lattice dynamics, in many-body
perturbation theory and the calculation of Regge poles in scattering
theory.

Chapter X

I will now take up a few topics concerning the general be
haviour and interrelations of the various critical exponents: 0' and 0"

for the specific heats above and below Tc ' {3 for the spontaneous
rnagnetization, I' and 1" for the susceptibility above and below Tc
and 6 for the critical isotherm (Section 31).

:19. Dependence on Dimensionality
Table I summarizes the information gained from theory and ex

periment on the val ues of the critical exponents. (The queries ? and
(7) indicate greater and lesser degrees of uncertainty! The experi
mental entries for 1" will be explained in Section 41.)

Inspection of Table I shows that the trend towards classical
behaviour with increase in dimensionality is quite rapid; the discre
pancies between the three-dimensional and classical values being a
half to a third of the corre s ponding discre pancie s in two dimensions.

Table I. Critical Exponents.

Temperatures T ~ Tc T=Tc T?; Tc

Exponent
,

{3
,

0' I' {j 0' I'

C:;lassical I
Theory °discont. 1 3 °discont. 1

2

Ising 1 Ii 3
d "" 2 °log. "8 15 °log 1-4

Ising ?; a ~.L 1 205.2 ~0.2 11
d 3 = 16 2014(?) 4

Heisenberg
? ?; a?

1
cl .- 3 ? ? ? ~13

Experiment
g;<°log ? 0.33 ?; L 22 ~4.22 ?; 0.1 ? ~L 35

Magnets

Experiment
~Ologl'luids 0.33-0.36 > L 18 ~4.2 ?;0.1? >1.1(?
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(39.3)

it proves possible to obtain a series expansion for the critical point
vc ! By formally taking the logarithm of the expression for an{d) we
find the dependence on n drops out for large enough n and in terms
of the coordination number q, which for these lattices is just 2d, we
find

(39.1)

(39.2)
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Rmvc{d) =-lim O/n)Rman{d),
n-«>

'Y - 1 = -43 , 132' _3_ __3_ 3
32±l' 80±2' 188±12'
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To see if this trend continued to higher dimensions, Dr. D. S.
Gaunt and I (Phys. Rev. 133, A224(1964)) calculated the high-tem
perature susceptibility expansion of a d-dimensional "simple" cubic
lattice. Eleven coefficients, an{d), for general d were obtained and
analyzed by the ratio and Pade techniques. Up to six dimensions ac
curate values of the critical points were obtained and thence esti
mates for the exponents 'Y. Our results may be written

As we might have anticipated the leading term, corresponding
to (l/q) - 0 or d- 00, represents just the classical or mean field pre
diction for the critical point! The first two terms constitute essen
tially the Bethe approximation. Examination of the origin of the
series and the behaviour of its coefficients {which go approximately
as (n-l)!) indicates that the series is only asymptotic. However,
truncation of the series at the smallest numerical term yields a value
for kTc / tqJ accurate to 1 per cent even in three dimensions!

Extrapolation of the corresponding specific heat series sug
gests that for d S 4 the specific heat remains finite as T- Tc +. In
four, five and six dimensions, however, its slope probably becomes

as d = 2, 3, 4, 5, 6,. . . . Evidently the rapid approach to classi
cal behaviour continues at an exponential rate. It is possible that
for some d = dO S 6, the classical value 'Y= 1 is actually attained
(although weaker singularities might remain at Tc)' but our series
are not long enough to decide this rather academic question!

If we use the definition of the critical point as the radius of
convergence of the susceptibility series, i. e. ,
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infinite at Tc so that the critical point remains an analytic singularity
of the free energy.

40. Droplet Model of Condensation
A model of condens ation in many ways complementary to the

Van der Waals picture is the "droplet" model originally introduced by
Bijl, Frenkel and Band and since discussed by Fierz and De Boer. t
By extending the theory slightly we can, in a heuristic way, derive
from the model a relation between the low-temperature critical expo
nents a' , {3 and ')I'.:j:

The basic idea of the approach is that in a gas of molecules
with short-range attractive forces and repulsive cores, the typical
configuration at low temperatures and densities will consist of well
separated coherent clusters of molecules. Each cluster will be, in
effect, a small droplet of the liquid at the same temperature. Of
course these droplets will be in dynamic equilibrium and will grow by
coalescence or shrink by evaporation if the conditions of pressure or
temperature change. Condensation on this picture corres ponds to the
growth of a macroscopic droplet of liquid.

To make a more formal theory let us, in first approximation,
neglect the volume excluded by the droplets. At low temperatures
this should be an excellent approximation since condensation occurs
at very low densities. (The important results of the theory are not
altered by taking account of the excluded volume to first order but
taking the effect into account more rigorously seems difficult.)

The grand partition function for a domain of volume V is then
given by

r1::L_
kT - (40.1)

where qg = qp(V, T) is the configurational partition function for all
possible clusters of P molecules (see, for example, De Boer).

The centre of each cluster is free to move through the volume
/30 that qp is simply proportional to V. Now the energy of a cl uster

lA. Bijl, "Discontinuities in the Energy and Specific Heat, "
Doctoral Dissertation, Leiden 29 April 1938.
). Frenkel, J. Chern. Phys. 1, 200; 538(1939); "Kinetic Theory of
L.lquids, " Chap. VII (Oxford, 1946).
W. Band, J. Chern. Phys. 1, 324; 927(1939).
M. Fierz, Helv. Phys. Acta. £1, 357(1951).
J, De Boer in "Changement de Phases," Comptes Rendus 2e Reunion
do Chimie Physique, p. 8 (Paris, June, 1952).
:I'1'he argument was first presented in J. W. Essam and M. E. Fisher,
r. Chern. Phys. l§., 802(1963).



(40.2)

(40.4)

(40.3)

(40.5)

(40.7)

(40.6)
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s(£)

(V T) "" V r;:;\ £(3E -(3ws(£)
q£ ' - v,s, e e
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so that, by Equation (l0. 22),

e{3E z = y,

and

e -(3w = x (40.8)

Traditionally one expects 1'1 = 2/3 in three dimensions and 1'1 = 1/2 in
two dimensions. Let us not, however, make this ass umption but
rather just assume that there is some "effective mean surface area"
with 1'1 < 1 such that we may write

where v (S) is proportional to the number of distinct cl usters of per
imeter s(£) (and size £). The definition of v (8) may be made more
concrete by considering a lattice gas; in two dimensions v (8) is then
the number of polygons of perimeter s(£) (and area £). On general
grounds we thus expect*

* The introduction of the factor s-<jJ seems to be new.

will be made up of (£l a "bulk term"-£ E, where E is the binding
energy per molecule in the fluid; and (ill a "surface term" + ws
where s is the surface area (or perimeter in two dimensions) and
w is the "surface tension, " arising, of course, from a loss of part
of the bulk binding energy E, by molecules in the surface of the
cluster. One expects that the mean surface of a cluster of £ mole
cules will, for large £, vary as a power of £, that is,

For a simple lattice gas one sees directly that

e-{3E = xq

where B is constant 0 Recall for example that the ~mber of closed
.§..-step random walks on a lattice varies as Bqs/sd 2 for large s.

Combining these results leads to the approximation
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if the perimeter and surface area are measured in terms of the number
of "wrong bonds." We can, with no loss of generality, thus rewrite
(40.5) as

00

1T(X,y) = ~ = C L: £-'lc? ()\x)M
1

\£,
£=1

(40.9)

where C is constant.
Let us consider briefly some of the consequences of this ap

proximation, which should be good at low temperatures. (One may in
fact derive (40.9) by keeping only the dominant low temperature be
haviour of each of the Mayer b£ (T) coefficient s.) The radius of con
vergence of the series in y is

lim 1£'lc? ("-x) -M'lll / £
£... 00

1 (40.10)

since '1 < 1. One easily sees that for y> 1 infinitely large clusters
can appear. Consequently, y = Yo = 1 is the condensation point.
(For the lattice gases we know, of course, that this result is exact
since y=l corresponds to H = 0.)

Since the coefficients of y£ are all positive the condensation
point is evidently a singularity of 1T(Y) and hence of the pressure,
density and higher derivatives. The nature of this singularity does
not seem to have been generally recognized. To determine it, con
sider the kth derivatives of 1T(X, y) at the condensation point y = 1.
We have

(k) (, a _\k I ; k-'lc? A£ '1
1T (x) =\!ay) 1T(X,y) y=l = C l::'l£ ("-x). (40. ll)

This serie0converge s for all x< "- whatever the val ue of k. In other
words, ~o or the pressure, 1T(l) or the density, J2) or the compressi
bility and all higher derivatives have definite finite values at the con
densation point. This means that the condensation point is an essen
tial singularity of p(z), p(z), etc. Although all the derivatives exist at
condensation, they cannot be used to construct a convergent Taylor
series since the nth derivative is essentially of order (nJ)l+s with s>O.

We will not discuss this point and its implications for the
theory of metastability further in these lectures; rather let us notice
that we may regard the divergence of the condensation-point or zero
field serie s (40. 11), at x = Xc = 1/"-, as locating the critical point of
the system. Of course, this is pushing the model well beyond the
low temperature region in which it may be expected to be valid. Op
timistically, however, we might hope that deviations from the low



The coexistence curve and variation of the compres sibility correspond
directly to k = 1 and k = 2 so that

which is independent of Yj or <p.
Of course, our arguments for this relation are purely heuristic.

Let us accept it as a conjecture and test it against the known results

41. Relation for the Critical Exponents
We notice that the sequence of critical exponents O(k) depends

on only the two basic parameters <p and Yj. Thus given, say, 0(0)
and 0(1), all other O(k) are determined. In terms of a' and {3 we
find

(40.14)

(40.15)

(40.12)

(41. 2)

(41.1)

(41.3)2

a' = -0(2).

2 - d - {3,

MICHAEL E. FISHER

1
Yj

<p = 4 - 2a' - t3,

a' + 21' + Y

a'=2-0(0).

f3 = 0(1),
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temperature behaviour could be absorbed into "effective val ues" for
the basic exponents Yj and <p.

Acce pting this interpretation, the behaviour of p, p, KT' etc. ,
at the critical point is then determined by the asymptotic behaviour
of the terms in Equation (40. 11). In this way one finds that as x -xc
(Le., T- Tc) the dominant singularities are

(k) o(k)
'ff (x) "" D

k
[ 1 - (x/xc)] + ..

"" D{J 1 - (T/Tc)]O (k) + ..

where the critical point exponents are given in terms of Yj and <p by

O(k) = <p - k+l . (40.13)
Yj

To identify these exponents with those previously introduced,
recall that to calculate the specific heat the free energy (or the pres
sure) must be differentiated twice with respect to T. Thus

from which follows the relation

An extension of the argument yields the exponents above Tc '
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listed in Table 1. For the two-dimensional Ising model the left hand
side is

0+ 2(1/8) + 7/4 := 2

so the identity is verified! For the classical theories (interpreting a
discontinuity as cl := 0, as one should-see also below), we have

o + 2 (~) + 1 := 2

and the relation is again correct. The expression (40.13) for o(k)
may also be checked against the higher derivatives in the classical
case and, by extrapolation, the prediction 0(3) := -3.750 for the two
dimensional Ising model is found to be correct within uncertainties of
1:0.05.

Before considering the implications of the relation (41. 3) for the
three-dimensional models and for experiments I we will show by an
argument of Rushbrooke's (J. Chem. Phys. lJL 842(1963)) that it can
be derived by purely thermodynamic arguments as an inequality with
the ":=" re placed by "i::;".

"42. A Thermodynamic Inequality
Let us first give a more precise mathematical definition of a

critical exponent which agrees with the usage we have made of the
concept. Thus we will write

if the limit

{
en F(T) }

lim en IT
c

- T I
T-Tc-

(42.1)

(42.2)

c3xists. Note that").. := 0 if F(T) has a logarithmic singularity or if
I'(Tc-) is finite.

Now a specific heat is defined thermodynamically by

(42.3)

where the subscript zero denotes the conditions under which it is
measured. Let us, in particular, consider a ferromagnet. Then quite
oenerally one has
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(
8S\ = (8S) (8S) (8 H)
8TAJ 8T H + 8H T 8T 0

(42.4)

and since

(42.5)

one can prove the "Maxwell relation"

(
8S,,, 82F (8M)
8H) T = - 8T8 H = aT H· (42.6)

Furthermore,

(42.7)

To use the definition (42.2) for Of' and the other exponents, take

Now let the zero subscript denote constant magnetization, multiply
(42.4) by T and substitute in the last term with (42.6) and (42.7).
We then obtain

(42.8)

(42.10)
> (8MO/8T)~\

CH=O(T) = T( XO(T) )

Now the specific heat CM(T) is essentially a mean square
energy fluctuation and hence is never negative. (This result follows
equivalently from the convexity of the free energy as a function of
temperature at fixed magnetization.) Consequently we have the in
equality

which is simply the magnetic analogue of the well known relation be
tween C v and Cpo

If we let H approach zero at temperatures below the critical
point, M becomes the spontaneous magnetization, and (8M/8H)T_ the
zero field susceptibility, and so

(
.(8Mo/8 T)2 )

CH(T) = CM(T) + T xo(T) ,(H= 0). (42.9)



logarithms and divide by Ien (Tc - T) I. On taking the limit T-Tc -, we
obtain
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a' ~ 2 (1 - f3) - "I'

which may be written

at +2{3+ "I' ~ 2,
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(42.11)

(42.12)

(Note that if we could prove that
as T - Tc ' we would have the equality

for comparison with (41.3).
CH(T)/CM(T) > 1 + E (E > 0)
in (42.11).)

This inequality can also be proved for the specific heat at con
stant volume in the two-phase region of a fluid by a similar but more
complicated argument. *

We have already seen that the case of equality occurs for the
classical theories and for the two-dimensional Ising model. Indeed,
in the latter case we could have rigorously concluded "I' ~ 7/4 from
the exact results a' = 0, {3 = 1/8. In the case of the three-dimen
sional Ising model, if we use (3 = 5/16 and accept "I' = "I = 1 ~ we
conclude from (42.11) that a' ~ 1/8. This implies a significantly
sharper singularity than the logarithmic form (a' = 0) which was
found by the numerical studies to be consistent with the series.
Conversely, as we observed, the series for XO(T) might be consistent
with a value of "I' as large as 1.30 or 1. 32 in which case a' = O. 06
or 0.07 would be possible. At present we are unable to decide un
equivocally between these alternatives. My own guess is that the
specific heat singularity, being the weakest and hence the most dif
ficult singularity to study numerically, will prove sharper as T ap
proaches closely to Tc and that the symmetry "I' = "I will be con
firmed.

For the Heisenberg model only pure speculation is pos sible 1 If
we assume "I' ="1 and accept the estimate "1= 4/3, we obtain
f3 ~ ~-1a'. If a' = 0 this would be consistent with the one-third
law {3 = t! So far, however, nobody has suggested how either one of
these assumptions could be substantiated!

In the experimental situation we learn something new. Thus for
the ferromagnet EuS we have {3 ~ 0.33 ± 0.01 and to judge from other
magnetic specific heats a' < 0.1. This enables us to conclude that
the initial susceptibility below Tc , which is not easily measured, is
characterized by an exponent "I' ~ 1.22. This suggoests that in the
experimental case "I' might equal "I.

For gases we have {3=0.33 to 0.36 and, judging by argon, a'

*See M. E. Fisher, J. Math. Phys. 01, 944 (1964).
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tNote added in proof. Atten'tion should be drawn to recent work by
R. B. Griffiths (Phys. Rev. Letters 14, 623 (1965) and a forthcoming
paper) who proves Q" + (l+o)b:::; 2.-

(43.1)
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approximately zero and almost certainly less than 0.1. Consequently,
we can conclude "(':::; 1.18 and possibly "(':::; 1. 3. This is a valuable
result since, as yet, there are no good measurements on fluid com
pressibilities that clearly yield a nonclassical exponent.

Finally let us raise the problem of whether one could also find
thermodynamic inequalities for the behaviour of higher derivatives of
the pressure and the free energy which might match the more general
exponent relation (40.13) (which was found to be valid classically
and in two dimensions) . t

43. The Theory of Antiferromagnets
So far in our detailed discussion of critical point behaviour we

have considered only systems in which the dominant interactions are
of the "like-attracts -like" class. Let us turn now to systems where
the repulsive interactions dominate and, in particular, to antiferro
magnets where the coupling between spins tends to align neighbouring
spins in opposite senses. (As we explained, binary alloys which
undergo order.-disorder transitions also belong to this class but,
since their properties are less accessible experimentally, we will not
discuss them explicitly.)

Antiferromagnetic crystals generally display significant mag
netic anisotropy. In the simplest, uniaxial case the crystal has a
single preferred axis of easy s pin alignment (the "parallel" axis) and
two unfavourable ("perpendicular") axes. For a single crystal speci
men we must therefore distinguish between the parallel susceptibility
XII and the perpendicular susceptibility Xl' The parallel suscepti
bility may be considered the more fundamental quantity and we will
sometimes denote if just by X. If experiments are made on a polycrys
talline powder the observed susceptibility is

At high temperatures XII and Xl are normally indistinguishable and
vary approximately as 1/(T + 8), the positive sign of the parameter
8 being an indication of the antiferromagnetic coupling between
neighbouring spins. (Compare with the Curie-Weiss law 1/(T -Tc )
for ferromagnets.) As the temperature is lowered X II and Xl go
through a maximum (see Figure 43.1) in the vicinity of which one ob
serves a typical lambda anomaly in the specific heat. Usually the



THE NATURE OF CRITICAL POINTS 119

difference between XII and Xl can be detected at the maximum. As
T falls below the transition temperature Tc (often called the Neel
point) X II drops rapidly but Xl remains more or less constant (see
Figure 43.1).

x

Xpowder

Figure 43.1. Temperature variation of the SUSCIUbilitieS
of a typical antiferromagnetic material.

Below Tc the spins are predominantly aligned on two interpene
trating sublattices of "up spins" and "down spins." (We will not
consider the intricate spiral and related spin structures which have
been found in certain materials.) The simplest theoretical account of
this situation is given by mean field theory (see I for example I Kittel
"Introduction to Solid State Physics I" John Wiley). The two sublat
tices are treated effectively as two macroscopic spins coupled to
gether. This yields equations of the form

M = f{H-~Mb}
a kT

(43.2)

where f(H/kT) is the magnetization of an isolated spin in a field H



and Ma and Mb are the magnetizations of the two sublattices.
The predicted variation of specific heat and susceptibilities is

shown in Figure 43.2. The specific heat rises to a finite peak and

Figure 43.2. Behaviour of the specific heat and susceptibilities of
an antiferromagnet according to the mean field and related approxima
tions. Note that the peaks in C(T) and in X(T) occur at the same tem

perature.

T
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drops discontinuously at Tc (as in all mean field theories). The par
allel susceptibility rises to a sharp peak at Tc where the gradient
abruptly changes sign. Above Tc one gets Xl = XII but below Tc the
perpendicular susce ptibility remains cons tant at its critical value.
The Bethe and related approximations make similar predictions-in
particular these approximate theories all predict that the maximum in
the susceptibility should occur at the same temperature as the s pe
cific heat peak. The earlier measurements I taken at somewhat
coarse temperature intervals, were generally held to be in agreement
with the theory. Nevertheless, a closer examination shows that the
"Tc " as determined from thermal experiments often appeared to be
from 2 to 6 per cent lower than the "Tc 11 found from magnetic experi-,
ments! We will discuss the validity of the simple theories in the
transition region* and show how this apparent discrepancy can be
understood.

One remark we may make immediately. Consider a system of
spins with nearest neighbour coupling on a "loose-packed" lattice
which admits antiferromagnetic ordering. By changing the sign of the
exchange constant J we go from ferromagnet to antiferromagnet. In
general this transformation will change the partition function of the
system. However I for (a) Ising coupling and any val ue of the spin S
or (b) Heisenberg coupling and S = 00, the partition function in zero
magnetic field is left invariant. This follows since the effect of the
change J- -J can be precisely compensated by reversing the signs of
the spin variables on one sublattice (which is allowed as these vari
ables are equivalent to dummy summation indice s). Consequently I

the thermodynamic behaviour of such ferromagnets and antiferromag
nets in zero field will be identical. In particular the specific heat
singularities will be the same. We may therefore take over our pre
vious discussions which showed that logarithmic or near logarithmic
specific heat singularities should be expected both above and below
Tc . (Although the Heisenberg model of finite spin is not exactly sym
metric in ±J, it seems quite likely that the specific heat singularities
will not depend very strongly on the sign of J.)

The prediction that antiferromagnets should display very sharp
singularities is well borne out by experiment (see I for example I

Figures 52.1 and 52.3 below). In particular, in a recent experiment
by Friedberg and Skalyo (Phys. Rev. Letters 11., 133(1964)) the spe
cific heat of CoCL2. 6H20 was observed to be quite accurately loga
rithmic from about 10 per cent above and below Tc to within 0.3 per
cent of Tc = 2.289 OK. (Closer to Tc the specific heat was rounded

'kAt low temperatures quantum mechanical effects become important
and more sophisticated theories allowing antiferromagnetic spin
waves must be used.



Figure 44.1. Bond transformation.

for the bond between spins s 1 and s 2, where

(44.1)

K
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off, this probably being due to imperfections and strains in the multi
crystalline specimens.)

These considerations show that the standard approximate
treatments of antiferromagnets cannot be relied on in the transition
region so that we must find a better approach to calculating the sus
ceptibilities near Tc .

In the expression for the partition function, Z(T, H), of the
basic, or undecorated, lattice there will be a factor

44. Exactly Soluble Antiferromagnetic Model
As a first step in elucidating the transition point behaviour we

will show that there are certain two-dimensional Ising lattices of
antiferromagnetic character which can be solved rigorously even in
the presence of a magnetic field. We will then go on to discuss how
far the properties of these rather special models are typical of more
realistic systems.

Consider a simple S= ~ Ising lattice with nearest neighbour
interactions in a magnetic field H. We can "decorate" such a lattice
by replacing some or all of the direct interaction bonds by a "deco
rated bond" consisting of an arbitrary physical system which interacts
with the two spins sl and s2 at the ends of the bond (see Figure 44.l)~

*The decoration of bonds by single spins seems to have been first
used by S. Naya, Progr. Theoret. Phys. (Japan) l.l, 53(1954). The
general transformation theory was given by M. E. Fisher, Phys. Rev.
113, 969(1959).



where the prefactor g does not depend on the spin variables. In
other words I we try to impose the identity

and where ml and m2 are the, possibly different, magnetic moments
of these spins. Now suppose J:!= J:!(sl,s2) is the hamiltonian of the
decorating system. In general this will depend not only on the varia
bles s 1 and s2 but also on a set of internal variables and on external
variables like the magnetic field. The partition function, Z*(T, H) I of
the decorated system will then contain the factor

123

(44.3)

(44.2)

(44.5)

(i "" 1,2),

THE NATURE OF CRITICAL POINTS

K - -.L
- 2kT

{ [
-J:!(SI,S2)]L \' I.-En(Sl/S2)]

tJ;(sl / s2) = Tr exp kT JJ= ~exPL kT

= g expG/sls2 + OL l s l + OL2S2J

for the corresponding bond I where the trace is taken over the internal
variables of the decorating hamiltonian.

Now let us try to represent the decorated bond in terms of an
equivalent undecorated bond by writing

f*=gexpG/sls2+Lisl +L2S 2]. (44.4)

where

(i = 1 / 2), (44.6)

in which the omi are increments to the magnetic moments of the spins
sl and s2 arising from the removal of the decorating system. (The En
are the eigenvalues of J:!.)

Recall now, as in Section 22, that the spin variables only
take the values ±l so that the identity (44.5) need only hold for the
four cases sl, s2 = ±l. There are four disposable parameters, g I K' I

OLI and OL2 and we may thus solve to find the transformation equa
tions

(44.7)



(44.8)

(44.9b)

(44.9a)

(44.10)

(44.11)

(44.12)

(44.13)

(44.14)

tjJ±± = tjJ(±l, ±l).
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Z*(T,H) = gM Z(T' ,R').

kT' = kT' (T, H) = -2K-,I'-(T-,-H)'

mH' = mR' (T,H) = (m+Am)H,

and
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where

One of the simplest decorating systems we can choose is a
singl e extra s pin coupled to s 1 and s 2 and. so having the hamiltonian

and then the partition function for a lattice with M decorated bonds
is just

Considering the form of (44.4) we see that the problem of the
decorated lattice has been reduced to that of an equivalent undeco
rated lattice with modified magnetic moments and a transformed tem
perature

For this case the increment to the magnetic moments are then given

In the special case of S::: t and if parallel to the z-axis I

this yields

The total increment to ith magnetic moment is Ami = L; ami
where the sum runs over all the decorated bonds meeting at spin i.
If mi = m and Ami = Am (constant), we may introduce a transformed
magnetic field through



by
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oL == 6L(K L) == P/n I.cosh(L+2K) 1
, Lcosh(L - 2K) J
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(44.15)

Now notice that changing the sign of J, and hence of K, merely
changes the sign of OL. The same conclusion follows for the general
hamiltonian (44. 13) as a consequence of its invariance under the
transformation (8, Sl, S2, H)- (-8, -Sl' -s2' -H). This simple ob
servation allows us to introduce a class of antiferromagnetic deco
rated lattices in which the total increment to the magnetic moments is
zero.

Consider the decorated square lattice shown in Figure 44.2.
The N s pins on the vertical bonds are coupled ferromagnetic ally to
the N vertex spins of the basic lattice, while the N spins on the
horizontal bonds are coupled antiferromagnetically (but with the same
value IJI). At absolute zero the 2N bond spins will order in an anti
ferromagnetic array as indicated by the arrows in the figure. Conse
quently, if we suppose that the vertex spins have zero (or negligible)
magnetic moments, the whole system will behave magnetically as an
antiferromagnet, the "magnetic" spins lying on a square lattice ro
tated by 71/4 with respect to the original square lattice and of rela
tive lattice spacing l/.vz. If, indeed, we forget about the nonmag
netic vertex s pins altogether, we may regard the magnetic s pins as

Figure 44.2. Decorated square lattice.



K' (T ,H) = i fl/n ch(2K+L) + i fl/n ch(2K-L) - ~ fl/n chL, (44.16)

and (b) the total increments to the magnetic moments which, by our
previous remarks, is

45. Properties of the Superexchange Model
Let us examine the thermal and magnetic behaviour of the

plane square s uperexchange lattice. t The critical temperature in
zero field is given by

(44.18)

(44.17)
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= 26L(K,L) + 26L(-K,L) == O.

.6.L 26Lvertical + 26Lhorizontal
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interacting antiferromagnetically with one another by a type of
II s uperexchange II coupling transmitted through the vertice s. *

To compute the properties of this superchange lattice we need
(a) the transformed temperature which, for S =.~ and a parallel field,
is given by

Since the vertex s pins are nonmagnetic the total magnetic moments on
the equivalent 4nodifie~ square lattice will thus also be zero and the
transformed field H' in (44.11) will vanish. Consequently, the
properties of the superexchange model in an arbitrary field follow di
rectly from Onsager's zero field solution for the square lattice! Ex
plicitly we have

*This mechanism is similar to the usual s uperchange coupling in
spirit only! The effective coupling can be reexpressed as a sum of
pair terms between the four bond spins around each vertex plus a
smaller but temperature dependent, four-spin coupling term.
t Detailed formulas and derivations are given in M. E. Fisher, Proc.
Roy. Soc. A254, 66(1960), A256, 502(1960).

Zsuperex. (T,H) = g2N(T,H) Zsquare(T' ,0),

where T' follows from (44.16) and g(T,H) is given by (44.8) with
(44.14).

A variety of other such superexchange lattices can easily be
constructed in two and three dimensions. In the latter case, how
ever, the required zero field undecorated partition functions would
have to be calculated from the series expansions.
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(4S. l)

As the field increases from zero I however I the transition temperature
drops I [Tc - Tt(H)] varying quadratically with H (see Figure 45.1).
As the field increases further the transition temperature becomes
linear with H and finally vanishes at the critical field

Hc = -k I (4S. 2)

as indicated in Figure 45. 1. At H/Hc = ~ the transition temperature
has dropped by 19.5 per cent.

H

Tc T
Figure 45. 1. Sketch of the transition curve for the plane
superexchange model.

On the "inside" of the transition curve (low fields and low
temperatures) the magnetic spins display long-range antiferromagnetic
order. At fixed field and at fixed temperature I the sublattice magne
tization (or "long-range order") vanishes as

respectively I where Ht(T) is the transition field.
As might be anticipated I the specific heat in zero field dis

plays a symmetric logarithmic singularity. More generally in a

(45.3)



2·0.------,---,----,----,----:::I"....--:;:::::F""l

Figure 45.2. Constant temperature magnetization curves for the
superexchange model. Note.,9, = 2M/Mmax and Q' = H/H. (From
M. E. Fisher, Proc. Roy. Soc. A254, 66 (1960).)

(45.4)
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1·5

fixed field one finds

as T- Tt(H). Thus the singularity remains even in a field (in con
trast to a ferromagnet) although it moves to lower temperatures. Fur
thermore, its amplitude A(H) drops as H increases, and goes to zero
as H - Hc and Tt - O. These general features of the specific heat
are observed in real antiferromagnetic systems, at least for relatively
small fields. The experimental singularities, however, are typically
asymmetric about Tt which I as we have seen I should be expected for
three-dimensional systems.

As shown in Figure 45.2, the magnetization curves at fixed
temperature are found to be continuous (except at zero temperature
where a discontinuity occurs at H = Hc )' As the transition field is
approached, however, the magnetiz ation varies as

1·0

o



so that the differential susceptibility, X(H) = 3M/3H, becomes infi
nite on the transition curve below Tc ' (The simple approximate theo
ries predict a change in gradient of the magnetization curve with X(H)
remaining finite.)

Finally, the zero field parallel susceptibility is found to vary
as shown in Figure 45.3 (solid curve). The curve rises as the tem
perature drops, displays a rather rounded maximum and then falls
quite sharply to zero. The important feature to notice, however, is
that the maximum in XII (T) occurs well above the critical temperature
Tc ! In fact, Tmax/Tc "" 1. 40. In the immediate critical region the
susceptibility varies as
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M(H) <;;; M + c(H - H ) 011 IH - H I + ..t t t
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(45.5)

Consequently, the true transition point is marked by an infinite slope
in the X(T) curve rather than by the maximum (see Figure 45.3 where
the true critical point is marked on the T - K- l axis).

1'Or------,1T--,-------,----,---------,

K~

0·75

0·5j----~-+-+--+------"'__=_-+----_4

0·25

Figure 45.3. Parallel susceptibility of the superexchange model
versus temperature in zero field (solid line) and in a field H = iH c
(dashed curve). (From M. E. Fisher, Proc. Roy. Soc. A254, 66(1960).)



Here U(T) is the configurational energy per spin which goes to zero
as T-oo and to U(O) < 0, as T- O. Since tanhZK is a slowly
varying function of T and since, by virtue of the specific heat singu
larity, U(T) must vary as Uc + A(T - Td en IT - Tc I near Tc ' the rela
tion shows why the susceptibility has a singularity of the form (45.6).
Since X(T) rises as T increases from zero and has a positively infinite
slope at Tc but nevertheless has to decay as liT when T- 00 it nec-'
essarily follows that its maximum lies above Tc • If we ignored the
variation of tanh ZK in (45.7) we would conclude that !; (T), or TX(T) ,
should be rather similar to 1 - [U(T)/U(O)]. A comparison of these
two functions in Figure 45.4 shows indeed that they are strikingly
alike I Within the context of this special superexchange model, it is
by no means clear that this relationship should have any special sig
nificance. However, we will show that such a relation between the
energy and the susceptibility of an antiferromagnet should hold under
rather general circumstances.

Although the difference found between Tmax and Tc is rather
large, the rigorous result that the maximum in X(T) lies above Tc
does throw light on the apparent "anomaly" noted in Section 43:
namely, that the critical points deduced experimentally from the
peaks in X(T) and in C(T) differ by some Z to 6 per cent. Related to
the large difference between Tmax and Tc is the fact that the maxi
mum in X(T) for the model is much broader and less sharp than ob
served experimentally. We may anticipate, however, and will show
below, that this feature is largely a reflection of the two-dimension
ality of the model.

In a' nonzero magnetic field the critical temperature Tc in the
formula (45.6) for the susceptibility must be replaced by Tt(H) and an
additional term proportional for small fields, to HZ Ien IT - Tt I I, ap
pears. As illustrated by the dashed curve in Figure 4E. 3, this term
leads to a weak but infinite logarithmic singularity in X(T, H) at Tt .
Although at first sight unexpected, the presence of this singularity is
merely a consequence of the finite slope of the transition curve in a
nonzero field and the behaviour of M(H) near Tt (see Equation (45.5)).
Since the strength of the singularity is proportional to HZ, it will
probably prove difficult to detect experimentally, but there are some
indications of its existence. The overall increase in X, even above
Tc , as H increases from zero is observed in real materials.

As a final observation on the susceptibility of the model, we
will record the following relation which is found to hold, namely, be
tween the susceptibility and the energy in zero field,
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!;(T) = kT x/mZ = l-(tanh ZK) [~gn . (45.7)
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Figure 45.4. Comparison of the reduced susceptibility
s(T) =kT X/m 2 and the function 1 - [U(T)/U(O)]. Note that the
scale of ordinates has been doubled and that K-l is propor
tional to T. (From M. E. Fisher, Proc. Roy. Soc. A254,
66(1960). )

46. Perpendicular Susceptibility of the Ising Model
The behaviour of the superexchange models in a perpendicular

(or in a skew field) can be found by calculating the full expression
for the transformation function ljJ(sl ,s2) using Equations (44.5) and
(44.13). In place of (44.14) one finds

(46.1)

where Lz and Lx refer to the parallel and perpendicular components of
the field. The (zero field) perpendicular susceptibility derived from
(46.1) is shown in Figure 46.1 (curve b) together with the parallel
susceptibility (curve c). The behaviour of Xl(T) in the critical re
gion is strikingly different from the mean field predictions. In par
ticular a maximum occurs just above Tc (at Tmax/Tc = 1. 043) and the
critical point (marked by an open circle) is again characterized by an
infinite slope. In fact, the behaviour close to Tc is of the same form,

+ B(T - Tcl& IT - Tc I, found for XII(T).
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a

b

c
0·5 f.---------+---f.--------'=::J

e
Figure 46.1. Perpendicular susceptibility of (a) the plane
square Ising lattice, (b) the square superexchange lattice
compared with (c) the parallel susceptibility of the superex
change model. (From M. E. Fisher, J. Math. Phys . .1, 124
(1963).)

The difference between Xl and X II above Tc is vastly greater
than observed in most real antiferromagnetic crystals. It is clear,
however, that this is merely a consequence of the extreme anisotropy
of the Ising exchange interaction. With Ising coupling, a spin
pointing perpendicular to the z-axis becomes, essentially, uncoupled
from its neighbours whereas in a real material such a spin would still
feel an appreciable antiferromagnetic interaction. Thus in an Ising
antiferromagnet Xl is closer to the free spin susceptibility than to XII
while in real antiferromagnets the reverse is the case.

It turns out that the perpendicular susceptibility (in zero field)
can also be calculated exactly for the standard Ising lattices with
hamil tonian

}I = -J \' S,ZS,Z {3 H \' SX6 -g 161"
" 1 J
1J

(46.2)
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This is achieved by extending the transformation theory, along the
lines expounded for the general bond decoration process, to calculate
the partition function of a lattice in which one or more spins have
been replaced by an arbitrary interacting system. If the inserted sys
tem is chosen to be just a spin in a perpendicular field, one can ob
tain an expression for the total perpendicular susceptibility of the
original lattice as a linear combination of the pair, quadruplet (and
possibly higher order) spin correlation functions between the spins
neighbouring the single spin in the unperturbed lattice. t For the
plane honeycomb lattice one finds

where (sOsl) is the nearest neighbour pair correlation function.
Since the interactions are between nearest neighbours this correlation
function is simply proportional to configurational energy; explicitly,

(46.4)

The formula (46.3) is thus very similar to the relation (45.7) between
the parallel susceptibility and energy of the superexchange model!
As before, it follows from the existence of the logarithmic specific
heat singularity that the gradient of the susceptibility becomes loga
rithmically infinite at Tc '

The expressions corresponding to (46.3) for the square and
triangular lattice involve quadruplet and further pair correlation func
tions,but thesE: can be evaluated explicitly in terms of elliptic inte
grals and they all have the same type of singularity at Tc . The per
pendicular susceptibility of the standard square lattice Ising model is
shown in Figure 46.1 (curve a). The results for the honeycomb and
triangular lattices are very similar.

Experimental measurements of Xl (notably for MnC12.4H20
by M. A. Lasheen, J. Van den Broek and C. J. Gorter, Physica £if
1061 (195 8)) do indicate a small but distinct maximum in the critical
region in qualitative agreement with the exact theoretical results.

Chapter XII

47. Counting Theorem for the Susceptibility
To examine the critical behaviour of the susceptibility for

three-dimensional Ising models (and for the orthodox two-dimensional
models) we must have recourse to the series expansions. In

t For the details of the theory see M. E. Fisher, J. Math. Phys. i,
124(1963) and Physica £Q., 816, 1028(1960).



In this expression w1 =U(T)/U(O) is again the nearest neighbour cor
relation function or the reduced energy, and the "residual function"
is given by

Sections 22 to 25 we sketched the derivation and calculation of the
high temperature expansions in powers of the variable v = tanh(J/2 kT).
The practical calculation of the coefficients is appreciably simplified
by a configurational "counting theorem" discovered by Syke s t which,
for a lattice of coordination number q, may be written

(47.2)

(47. 1)
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G(v) = 8(1 +v)2 L gnVn
n=3
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where the coefficients gn are weighted sums of certain, relatively
few, closed lattice constants of n lines. (On most lattices
g3=···=96=0.)

For a ferromagnet J is positive and thus so is v. In this
case the denominator in (47.1) gives rise to a spurious singularity at
the Bethe approximation critical point vB = 1/ (q-l). This singularity
must in reality be exactly cancelled by a coincident double zero of
the complete numerator. t Clearly, however, if the numerator is
known only as a truncated series the formula will not be useful as an
approximation (although, of course, the correct expansion coefficients
for X may be derived from it). For an antiferromagnet, on the other
hand, J and v are negative and the spurious singularity does not arise.
In this case we may introduce an "energetic approximation II to the
susceptibility by ignoring the residual function G(v) in (47.1). Nu
merically this approximation is rather good since, as one may esti
mate from the series expansion, G(v) amounts only to between 2 and
5 per cent of the numerator for two-dimensional lattices, and to less
than 0.5 per cent for three -dimensional lattices even at the critical
point.

This energetic approximation is very similar to the exact rela
tion (45.7) noted for the superexchange model. It leads again to the

tSee M. F. Sykes and M. E. Fisher, Phys. Rev. Letters 1, 321
(1958) and M. F. Sykes, J. Math. Phys. ~, 52(1961).
tNotice that for a Bethe lattice, with no closed circuits, G (v) = 0 and
w1 = v for Ti::;Tc ' The numerator then has a simple zero at v=vB and
the expression (47.1) reduces to the correct expression for the Bethe
lattice susceptibility (Firgau formula) which diverges at vB'
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conclusion that the critical behaviour of the susceptibility matches
that of the energy and / hence / in two dimensions is of the form
~c + B(T - Td en IT - Tc I. In three-dimensions our study of the speci
fic heat singularity (Section 32) indicates a similar or slightly sharper
singularity with / however, a smaller amplitude above Tc than below.
Actually, as the considerations of the next section show, it appears
that G(v) does make some contribution to the singularity in X(T) but
its inclusion does not change the general behaviour.

48. Extrapolation to the Antiferromagnetic Singularity
It will be recalled that the high-temperature susceptibility

series for X (or s) has positive coefficients and that the dominant
singularity lies on the positive v-axis at the ferromagnetic critical
point vferro = +vc where X diverges as [1 - (v/vc)]-'Y. The antiferro
magnet corres ponds to negative v, the critical point being at
vanti = -vc where X is expected to have only a mild singularity
(neither a zero nor an infinity). The series to be summed for the anti
ferromagnetic susceptibility thus consists of numerically large coef
ficients with alternating signs. At first sight, there thus seems little
chance of detecting the singularity at vanti.

This difficulty may be overcome, however, by factoring off the
dominant ferromagnetic singularity by writing

en s(v) = -'Yen [1 - (v/vc )] + en cp(v) (48.1)

and calculating the coefficients c n of the expansion of encp(v). t In
two dimensions, of course, 'Y= 7/4 and the exact values of Vc are
known. In three dimensions one may set 'Y = 5/4 and the most accu
rate estimates for Vc must be used. For the honeycomb lattice it
even proves necessary to factor off two further d9minant singularities
on the circle of convergence of the form (1 ±iv)1/8. After these ma
nipulations, it is found that the coefficients c n alternate regularly in
sign indicating that the dominant singularity of cp(v) is at the antifer
romagnetic critical point. The nature of the singularity and the
numerical values of the susceptibility may now be estimated by the
ratio method (and the Pade approximant procedure may also be used),t

The coefficients for both two- and three -dimensional lattices
appear to vary as A(-vd-n/n(n+l) as would, in fact, be expected for
a [1 - (v/vd] en [1- (v/vd] singularity. To test this we may calcu-
late the sequences n

An = cn(-vc) n(n+I). (48.2)

tSee M. E. Fisher and M. F. Sykes, Physica~, 919, 939(1962).
tAlthough various special techniques must be adopted because of the
weak near-logarithmic nature of the expected singularity.



For the square lattice one finds, for n = 8 to 16,

where B+ 3! O. 11 and B_ 3! O. 29. The parameters for the body centred
lattice are ~c 3!0.369, B+ 3!0.1l and B_ 3!0.31.

dX11(T) = 4kT {a. 340 + B±[ 1 - (T Irc )] en 11 - (T/Tc ) 1+ ... } (48.5)

(48.3)

(48.4)

2.015,2.016,2.022,

0.341,0.332,0.346, ...

MICHAEL E. FISHER

An = O. 2 71, O. 344 , O. 33 0, O. 334, O. 33 5 ,

An = 2.02, 1.98, 1.97, 1.96, 1.98, 1.99,
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and for the simple cubic lattice, for n = 4 to 11,

The constancy of these values (to within 3 per cent for the square
lattice) confirms the logarithmic or near logarithmic nature of the sin
gularity. (The slight tendency for the An for the simple cubic lattice
to increase may indicate a slightly sharper singularity.) The magni
tudes of the An yield estimates of the strength of the singularity. By
comparison with the energetic approximation one finds that the resid
ual function G(v) contributes about 30 per cent of the amplitude in two
dimensions but only 10 per cent in three dimensions.

The low-temperature series for the two-dimensional antiferro
magnets converge up to the critical point but are not very regular.
Extrapolation leaves no doubt, however, that X(T) is continuous and
indicates a symmetric (or almost symmetrict) logarithmic singularity
as expected on the basis of the exact results for the superexchange
model. The three -dimensional low-temperature series for the cubic
lattices do not converge up to the critical point so that metastable or
Pade approximant techniques must be used. The series are consistent
with the same type of singularity but with an amplitude of from two
and a half to three times larger than above Tc (as observed also in
the specific heats).

The best estimate for the critical behaviour of the simple
cubic lattice may be written

tThe original, tentative, estimates from the low temperature series
yielded amplitudes some 40 per cent lower than above Tc . However,
more recent Pade approximant studies by Marshall et ~ indicate a
symmetric singularity.
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49. Comparison with Experiment
The variation of X II (T) for the s. c. and b. c. c. Ising lattice s

in the critical region is shown in Figure 49.1. The maximum above
Tc is much les s broad than in two dimensions and it lies closer to Tc •
In fact the shapes of the curves compare quite surprizingly well with
those observed in sufficiently detailed and accurate experiments. The
theory taken together with modern experiments leaves no doubt that
the critical point corres ponds to the steepest point of the X II (T) curve
while the maximum lies somewhat above Tc •

0·8 1·0

kT/qJ
0·8

0·4 f-------+--+--t-------t----1

0·5

qJ X a
Nm 2

b
0·45

Figure 49. 1. Parallel susceptibilities of (a) the body centred
cubic (q= 8) and (b) the simple cubic (q= 6) Ising lattices near
the antiferromagnetic critical point which is marked by a
circle. (From M. F. Sykes and M. E. Fisher, Physica~,

930 (1962).)

A more stringent test of the fit in the critical reqion may be
made by comparison with the measurements of Gorter and coworkers on
MnC12. H20 (Physica 1.,1, 1061 (1958)). Thus we find
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Ising s. c. Ising b.c.c. MnC12·4H20

Spin 1/2 1/2 5/2

(Tmax-Tc)/rc 0.098 0.065 0.050

Xmax/Xc 1. 28 1. 17 1. 19

X(2Tc )/Xmax 1. 24 1. 27 1. 30

(T1 - Tcl/Tc 0.285 0.197 0.180

where Tl is the temperature at which X/I(T) falls again to its critical
value, Le., X11 (T1) = Xc so that (T1-Tc)/Tc measures the width of
the susceptibility peak. It is evident that the differences between
"theory" and "experiment" are no greater than the differences between
the two models of different lattice structure. Bearing in mind also
that the real material has a spin of 5/2 and is not so extremely
anisotropic as the Ising model, it seems probable that the critical be
haviour is not very sensitive to lattice structure, magnitude of spin
or form of interaction. Once again dimensionality and the finite range
of the interaction seem to be the dominant factors. As yet, however,
calculations for higher spin values and for the Heisenberg model have
not been undertaken to test this surmise numerically.

50. Relat1.9n to Correlation functions
The detailed numerical calculations for the Ising models in

two and three dimensions have confirmed the expectations based on
the soluble but special, superexchange model. How far I however I

can one understand the critical behaviour in more general terms?
What can be said for the Heisenberg and other models and for real
antiferromagnetic systems? To answer this question we recall the
general theorem enunciated in Section 25 which relates the suscepti
bility to the s pin pair correlation functions.

For a spin system in a field H parallel to an axis Cl' the
hamiltonian may be written generally as

:N = :N 0 - g f3 H ~ S~' , (50.1)

where :NO is the interaction hamiltonian. If the system is transla
tionally invariant, so that the spins are all equivalent, the magneti
zation per spin is

(50.2)

The susceptibility per spin can thence be expressed as
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(5 0.3)

where the subscripts a and r denote the lattice sites at the origin
and at r. With our previous convention we have X

Z = XII and
XX = Xl'

In zero field the magnetization of an antiferromagnet always
vanishes so that (SOel') = a and we may write

(50.4)

where

(50.5)

in which the reduced correlation functions are

(50.6)

This agrees with our previous definition

(50.7)

for an Ising S =i system.
These formulae show that we can understand the behaviour of

the susceptibility in terms of the temperature variation of the spin
pair correlation functions if we can perform the summation (50. 5).t

We must, therefore, consider the behaviour of the correlation
functions in more detail. Notice first that as T - 00 the individual
spins become independent so that

wr(T) - a I (r ~ 0)

whereas

Wo(T) - I,

and so

S(T) - I,

(50.8)

(5 a. 9)

(50.10)

t The analysis that follows is based on M. E. Fisher, Phil. Mag. I,
1731(1962).



which means that XII approaches the susceptibility for a free spin.
Using (50.10) we may rewrite (50.4) as

(50.11)

(50.12)

(50.13)~ (8'E» = ~ S(S+1).

~(T) = J1Xl
(TX)""

MICHAEL E. FISHER

(TX)"" = lim (TX).
T-""
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where

For as pin ~ system the self-correlation function Wo (T) must
be identically unity and so is certainly temperature independent. The
same conclusion follows for general S in a fully isotropic system
since, in that case,

tExcept, perhaps, at temperatures well below Tc ' Notice that in any
case wo cannot exceed 3S/ (S+1). The possibility that Wo might vary
with temperature was overlooked in the reference cited in the previous
footnote.
tWe assume each spin has q nearest neighbours on the opposite
sublattice. It is possible, however, to allow for four or more sub
lattices.

If S i:':; 1 and the system is anisotropic, the self-correlation function
may vary with temperature but we expect it to vary only slowly and to
differ relatively little from unity. t

51. Correlations in a Simple Antiferromagnet
To make further progress let us specify the nature of our sys

tem more closely. We will assume that the interaction hamiltonian
:Ma is "essentially antiferromagnetic," in the sense that the spins al
ways tend to orient themselves in opposite senses on two similar in
terpenetrating sublattices J We will suppose that the "dominant"
spin interactions are bilinear and of short range. In such a simple
antiferromagnet any terms opposing the regular ordering will be rela
tively small and should play only a minor role in the critical be
haviour, although they may provide a "background. "

With these rather general assumptions we can immediately
say quite a lot about the correlation functions. First, in view of the
dominant antiferromagnetic coupling, wr(T) will alternate in sign as
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r varies, being positive on the sublattice containing the origin and
negative on the other sublattice. Below Tc long-range order is pres
ent so that, as r- 00,

(51. 1)

The long-range correlation function, woo(T), is proportional to
the square of the sublattice magnetization and hence may be expected
to vary as (Tc - T)2{3 as T-Tc (with {3 ~ 0.3 to 0.35, say I in three di
mensions). Except close to Tc ' th.e decay of the correlations to their
limiting value will be quite rapid (probably exponential) so that the
functions Iwr(T) I will, for all r, be very similar to woo(T).

Above Tc there is no long-range order so the correlations must
decay to zero as r- 00. In fact the decay will be dominated by an ex
ponential,

(r - 00), (51. 2)

as can be seen by making a high temperature expansion. (If J is the
dominant nearest neighbour exchange integral, the inverse range of
correlation along an axis is given roughly by K = O/a) /!/n (kT/n, when
T» Tc ' where .9. is the lattice spacing.) As the critical temperature
is approached, however, the decay of the correlations becomes less
rapid in anticipation of the onset of long-range order at Tc . Thus as
T-Tc we will have K(T)-O; at Tc we may expect a relatively slow de
cay such as an inverse power law. Increasing the temperature will
weaken the effects of the interactions so that the correlations will be
monotonic functions of T at fixed r.

From these considerations it follows that the general be
haviour of the correlations must be as sketched in Figure 51.1. (As
previously, wl denotes the nearest neighbour correlation; the dashed
curves denote successively more distant correlation functions.) The
qualitative correctness of this picture is borne out by the rigorous
calculations of Kaufman and Onsager (Phys. Rev. 79, 350(1949)) for
the plane square S = t Ising lattice with lnearest neighbour interac
tions. In that case Wo = 1, Woo ~ (Tc - T)"4, and WI (T) and all further
correlation functions have singularities at the critical point of the
form wr(Tcl + Br(T - Tc)/!/n IT - Tc I. Above Tc the correlations decay,
to leading order, exponentially with r with a range parameter K(T)
which varie s as IT - Tc I near Tc . Below Tc the "net correlation func
tions," [I wr(T) I - woo(T)] , decay in the same way. At Tc , however,
an inverse power law takes over and one has t

tSee M. E. Fisher, Physica.£§.., 521 (1959;~, 172 (1962); J. Math.
Phys . .§., 944 (1964).



Figure 51.1. Qualitative behaviour of the correlation
functions of a simple antiferromagnet.

(51. 5)

(51. 4)

(51. 3)

TTe

_ bU(T)
w1(T)- qlrIS(S+I)

MICHAEL E. FISHER
1

Iwr(Tc ) I = Air 4. [ 1 + 0(r-2)] .

I~CT)I
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The temperature variation of the correlation functions in the
critical region can be understood by recalling that for an Ising model
with nearest neighbour interactions wI (T) is directly proportional to
U(T), the magnetic energy per spin measured relative to U(~ = O. The
same conel usion is true for a fully isotropic Heisenberg model with
nearest neighbour interactions since then

Combining both cases we may write, for all S,

where b = 1 for the Heisenberg model and b = 3 for Ising interac
tions.

For real antiferromagnets with relatively small anisotropy the
Heisenberg limit should be the more appropriate in the critical region.
In reality, however, we must also recognize the existence of further
neighbour interactions, dipolar forces, biquadratic exchange and
other forms of interaction. To the extent that the system corresponds

Throughout the critical region the correlation function for the site at
r is very similar to those at r + "5 where "5 is a nearest neighbour
lattice vector.
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to our ideal of a simple antiferromagnet, the contributions of these
further interaction terms to the mean total energy U(T) (i. e. , their
thermodynamic expectation values) may be expected to mirror the
nearest neighbour contributions plus, possibly, a slowly varying
background. Thus, for example, a second neighbour bilinear term
would contribute an energy proportional to J2w2 (T), but, as we have
seen, to a reasonable approximation this in turn is proportional to
WI (T)! We may, therefore, hope to allow for the extra terms in J{O
by taking J to be an effective or equivalent nearest neighbour ex
change constant, and by recognizing that b in (51.5) will be a slowly
varying function of T (although it should remain of order unity in the
critical region).

Accepting (51.5) generally, we thus see that the nearest
neighbour correlation function will always reflect the behaviour of the
magnetic specific heat which is, of course, just the derivative of
U(T). In particular, if Cmag(T) approaches infinity at Tc then WI (T)
should have a vertical tangent (infinite gradient) at Tc )' By analogy
with the plane Ising model it seems likely that the further correlation
functions will be similarly "infected."

52. Energy-SusceptibilitY Relation
Having discovered the general nature of the correlation func

tions our task is to perform the sum (50.5) to find ~(T). We have
seen that the terms in the sum alternate regularly in sign but their
magnitudes vary slowly in the critical region. Consequently, the
sum itself will converge only slowly.t This difficulty may be over
come by the device of grouping terms. Thus we rewrite (50.5) as

(52. 1)

where the zero on the leading sum denotes that r runs only over the
sublattice containing the origin. All the wr on this sublattice are
positive. In the second summation 2. runs"'over the q nearest
neighbour lattice vectors. Each negative correlation function thus
appears q times with coefficient l/q and so is included correctly.

Now, since the origin has q similar neighbours, the leading
term in (52.1) is simply

(52.2)

tFor an Ising model or Heisenberg model with S == 00 the convergence
must be only conditional at Tc since the ferromagnetic susceptibility,
for which all the signs in the sum are positive, diverges at Tc .



where the function p(T) is of order unity and varies only slowly in the
critical region. (From the high temperature expansions one can see
that p(T) rises to a value of order q as T- 00.)

Combining this result with (50.11) and (51. 5) finally yields a
fundamental, although approximate relation between the susceptibility
and energy of a simple antiferromagnet, which may be written

All the higher order terms have the form of a finite difference approxi
mation to the Laplacian of a smoothly varying function"t Q( r) ~ wr and
hence their sum is, to a good approximation, proportional to the gra
dient of Q(r) at the second neighbour shell. This, in turn, is essen-
tially proportional to 1 WI 1 - w2 which by the last section is small and
approximately proportional to IWll. (These conclusions can be veri
fied explicitly from the exact results for the plane square Ising lat
tice.) In total, therefore, we may sum (52.1) approximately as

(52.3)

MICHAEL E. FISHER144

TX(T) ~ -.lUll
(TX)oo = 1 - f(T)U

O
(52.4)

where

f(T) = b/p (52.5)

is a slowly varying function of magnitude near unity in the critical
region, and

DO = q J S(S + 1) , (52.6)

which is approximately equal to the zero point energy, U(O).t
Notice the similarity of this result to the special relation

(45.7) for the superexchange model, to the expressions for Xl for
the Ising model, such as (46.3) I and to the energetic approximation:

"tFor a Bravais lattice of s pacing ~ and dimensionality Q one has,
correct to second order in ~,

\72. Q = (d/q) ~ [Q(3: + 9) - 2Q(~) +Q(E. - .0]/a
2

-2 (d/a2) [ QC~) - (1/q) ~ QC!: + Q)]
tNote that J, UO, U(O) and U(T) are all negative.
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Equation (47. 1) with G{v) =0 O. As in those cases a lambda anomaly
in the specific heat implies an infinite slope in u{T) and hence in
TX{T). This in turn means that X{T) has a vertical tangent at Tc and a
maximum above Tc . The distance of the maximum from Tc depends on
the rate at which Cmag{T) drops as T increases from Tc . The more
rapidly the short-range order disappears above the transition, the
closer is Tmax to Tc .

If we neglect the variation of f{T) near Tc we may differentiate
(52.4) to obtain

where we have used the approximation

kTc ~ ~q IJIS{S + 1) = ~ IUOI,

(52.7)

(52.8)

which is moderately accurate for the nearest neighbour Heisenberg
model. This formula shows explicitly that it is the gradient 8 (TX)/8T
which should match the specific heat. Indeed it is interesting that
the relation is followed even by the approximate theories. Thus the
break in the slope of X{T) at Tc predicted by the mean field or Bethe
approximations corresponds to the discontinuity in C{T) predicted on
the same basis! (See Figure 43.2.)

An experimental test of (52. 7) for the long-known antiferro
magnetic crystals MnF2 and MnO is shown in Figure 52.1. (The
former material has a b. c. c. structure; the face centred structure of
MnO may be regarded magnetically as four interpenetrating, but ef
fectively independent, simple cubic lattices which order antiferro
magnetically.) The specific heats and differentiated susceptibilities
are very similar (notice the vertical displacement of the two scales)
and differences between the two materials are reflected in both quan
tities. Both C mag and 8{TX)/8T seem to become "infinite" as T-Tc ±
but the (relatively old) data used to prepare the curves are not suffi
cient to reveal the behaviour very close to Tc as accurately as might
be de sired. Numerical comparison of the two sets of curves confirms
that f{T) is close to unity in the critical region (f ~ 1. 1).

A more accurate test of the theory has been made recently by
Wolf and Wyatt (Phys. Rev. Letters, li, 368 (l964)) who measured C{T)
and X11{T) for dysprosium aluminium garnet (DAG). This material orders
at 2.49 0 K which implies relatively weak spin coupling. Conse
quently, long-range dipole-dipole interactions play an important role.
Wolf and Wyatt show how the observed, shape dependent, suscepti
bility may be simply corrected in order to effect a proper comparison
with (52.4) and (52 .7) (in the derivation of which dominant long-range
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forces were excluded). Their results are shown in Figures 52.2 and
52.3. The similarity of energy and TX and of specific heat and
o(TX)/oT is very close. The numerical agreement of the thermal and
magnetic curves again indicates that f is close to unity. (The de
viation for large T in Figure 52.2 can be understood in terms of the
special structure of DAG.)

53. Other Properties
To discuss the perpendicular susceptibility, we need to con

sider the transverse correlation functions

(53. 1)

The general behaviour of the transverse correlation will, however, be
quite similar to that of the parallel correlations from high tempera
tures down to, say, 0.9 Tc where the anisotropy becomes dominant.
Indeed, in a system with small anisotropy the actual magnitudes of
the parallel and transverse functions will be almost equal in this
range. (At lower temperatures, however, ~1 (T) will vanish only as
fast as T since Xl approaches a positive value as T- 0 where ~II(T)

vanishes more rapidly.) Consequently, the behaviour of TXl (T) should
be similar to that of TX II (T) in the critical region as, in fact, we dis
covered in the plane Ising lattices and as is confirmed by accurate
experimentation.

The behaviour of the susceptibility in a small nonzero field
near Tc can be investigated by noting that the magnetization M will
be roughly proportional to HX(T) except that we must allow for a
change of transition temperature with field. If we ass ume the transi
tion curve varies as

(H- 0) (53.2)

with positive 0 and E, we can thus write

M(T,H) ~ H(TX)oo~(T +OIHIE)/T,

~ H (T X)OO [1 - p IWI (T + 0 IH IE) ] /T ,

(53.3)

(53.4)

where we have used (50.11) and (52.3). Differentiation with respect
to H at constant T now yields an expression for X(T, H) which will
clearly contain a term proportional to -pOE IHI E(O IWI' /oT). But, as
we have seen, the derivative 0 IWI IloT is essentially proportional to
the magnetic specific heat. Consequently, if Cmag(T) has a lambda
anomaly, a similar sharp peak should be observed in X at the transi
tion point when H 1= O. As we commented before, however, the



O~----l.o----,b,----I---""""'L"----I---~,,,,---,:,",to 4.5

Figure 52.2. Comparison between the magnetic energy and the sus
ceptibility for dysprosium aluminium garnet. The critical point is at
2.49 oK. (From W. P. Wolf and A. Po G. Wyatt, Phys. Rev. Letters
13.368(1964).)
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Figure 52.3. Comparison of the specific heat of DAG with the gra
dient 8(TX)/8T normalized by a factor corresponding to F(T) = 1 in
Equation (52.4). (From W. P. Wolf and A. F. G. Wyatt, Phys. Rev.
Letters IL 368(1964).)
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Chapter XIII

and where 10 (iZ) is the form factor for the scattering centres (i. e'l the
scattering intensity that would be observed for an isolated particle).
The pair correlation function is defined as before (Section 25) by

(54.2)

(54.3)

(54. 1)

k = (41T/A)sin ~ e

- [n2 G) JG(r) = -;;z- - I,

t More precisely, quasielastically.

54. Critical Scattering
In our investigation of the nature of critical points we have,

so far, considered only the macroscopic thermodynamic and magnetic
properties. We have seen that insight into the behaviour of these
properties may be gained by considering the microscopic correlation
functions for the system. However, the correlation functions them
selves are accessible to direct experimental study, since any scat
tering experiment on a system measures, in effect, the spatial Fourier
transform of the pair correlation function. Thus if light, X-rays or
neutrons of wavelength A are scattered elasticallyt at angle e from a
fluid, the intensity is given (in the absence of multiple scattering) by

where n2G) is the pair distribution function.

where k is the change in wave vector,

amplitude OE IHIE will normally be rather small so that the anomaly
may be difficult to detect experimentally.

In larger fields and at lower temperatures the mean field ap
proximation and the simple spin wave theory suggest that an interme
diate transition should take place in an anisotropic antiferromagnet
(see Figure 5.4). This is the "s pin flopping" transition from the
ordered antiferromagnetic state with spins aligned parallel to the
easy axis to a new state in which there is still antiferromagnetic
order but where the spins are mainly aligned perpendicular to the
easy axis. The occurrence of some such transition is confirmed by
experiment but its nature has not yet been investigated theoretically
in any detail.



r-

In fact, for elastic scattering from a polycrystal with isotropic spin
hamiltonian the scattered intensity is simply proportional to the
Fourier transform

151

(54.4)

(54.5)
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A relation quite analogous to (54.1) holds for the elastic scat
tering of neutrons from magnetic systems if Gc;) is replaced by the
spin pair correlation function

(See L. Van Hove, Phys. Rev. 95, 1374(1954).)
If we let k approach zero in (54.1) and (54.5) we see, by

comparison with the fluctuation formulae (25.6) and (25.7), that
the expressions become proportional to the static compressibility and
susceptibility, respectively! In other words the small angle elastic
scattering (6 - 0) gives an alternative measure of the KT and X(T).

Now as the critical point of a fluid or ferromagnetic system is
approached KT and X(T), res pectively, diverge to infinity. It fol
lows, conversely, that the low angle scattering intensity must be
come very large near the critical point of a fluid or ferromagnet. This
sharp increase in I(k) as T- Tc is the well-known critical scattering
phenomenon, sometimes referred to in gases as critical opalescence.
The increase in scattering may be understood more physically in terms
of enhanced large scale density or spin alignment fluctuations. One
may imagine the spontaneous formation of relatively large, although
still microscopic, "clusters" or "domains" which will occur with in
creasing frequency near Tc since macroscopic phase separation (or
alignment) is about to set in. The coherence and large size of such
cl usters leads to the strength and low angle of the scattering.

The original theory to explain the temperature and wavenum
ber dependence of critical scattering is due to Ornstein and Zernike'
(Proc. Acad. Sci. Amsterdam l1., 793 (1914)). This theory is in many
ways comparable to the classical or mean field approximations and,
as might thus be anticipated, it proves not to be entirely accurate in'
its detailed predictions in the critical region. An account of the
theory, its many rederivations, of its validity and of improvements
upon it would, however, take us beyond the scope of these lectures.
Instead we refer the interested reader to a recent review (J. Math.
'Phys . .§., 944(1964)).

Finally, let us mention that neutron scattering invariably has
an important inelastic component which may, in turn, be related to
the time de pendent behaviour of the correlation functions. This time



Appendix

where UN is the total potential energy. The free energy per particle
is, of course, defined by

(A. 3)

(A. 4)

(A. 1)

(A.5)

(A. 2)

v = 1/p = V IN,

MICHAEL E. FISHER

[l/V(f:t)) en Z({3, N ,f:t),

-(3v- l F(#, N ,f:t).

p = N/V,

-(3F({3,N,f:t) = -{3FN/N = (l/N) en Z(~,N,f:t)

g({3, P,f:t)

but it is more convenient to consider the free energy density
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and the canonical partition function is

tD. Ruelle, Helv. Phys. Acta. l§., 183, 789(1963); M. E. Fisher,
Arch. Ratl. Mech. Anal. 11., 377 (1964).

variation is also relevant to the calculation of the transport coeffi
cients such as the viscosity and the self-diffusion and thermal con
ductivity coefficients. The study of such inelastic and irreversible
phenomena in the critical region promises to be a fascinating task
both for the experimentalist and the theoretician.

Existence and Properties of the Limiting Free Energy
In this appendix we will present a rigorous proof of the exist

ence of the limiting free energy 01 a classical system and establish
its important properties. For simplicity we will assume the potentials
satisfy a "strong tempering" condition and will consider only a spe
cial sequence of cubic domains. Proofs under weaker conditions on
the potentials for more general shapes of domain and for quantum
mechanical systems obeying Fermi, Bose and Boltzmann statistics
are given in the recent literature. t The connection with the grand
canonical partition function is also discussed in these references.

For convenience, let us first restate the relevant definitions.
We suppose N identical classical point particles with position vec
tors rJ. are restricted to a three-dimensional domain fJ, of volume
V=V(f:t). We allow the domain to have an infinitely repulsive wall of
thickness h which prevents the particles approaching the boundary of
f:t more closely than h. The density and specific volume are then



where D and E are positive constants. As stated in Section 11,
however, hard cores are not necessary for stability: it is sufficient
that tp(r} is bounded below, satisfies (A. 10) and the condition

For a given domain fJ, this defines g(p ,fJ} only for densities which
are integral multiples of b.p = I/V(fJ}. It is natural and convenient to
define g (p , fJ) for arbitrary densitie s by linear interpolation. Thus if
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(A.6)

(A.9)

(A.8)

(A.lO)

(A.l1)

(wA fixed),

(r> a)

as r- 0,

( ) > I 3+Etp r = -D r ,

p = (N+ll}/V(fJ), (0 ~1l ~l)

3+E'
tp(r} ;;; C/r
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for all ~ and all N

lim g({5,p,fJk} = g({5,p} = -f3v- 1 F(f3,v}
k- co

g(p,fJ} = g(N/V,fJ} + ll[g((N+l}/V,fJ} -g(N/V,fJ}]. (A.?)

(A) Stability

This is equivalent to defining F(fJ} for all specific volumes by linear
interpolation in v.

We anticipate that for an infinite sequence of domains fJk
with Vk - co the limit

we set

Potentials
To establish the existence of the thermodynamic limit for the

free energy, two conditions must be imposed on the potentials
roughly speaking, one on the attractive part and one on the repulsive
part. The first condition is

will exist and depend only on f3 and p (or v).

which simply states that the potential energy per particle is bounded
below, however large the system. (This property of the potentials is
familiar in nuclear physics as the II saturation II of nuclear forces.)

For a system of particles with hard cores of diameter .£ which
interact through pure pair forces with potential tp(r), it is quite easy
to see that stability will be insured by



(A. 12)

(A. 13)

(A. 15)

(A. 14)

(A. 16)
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valid for any domain.
In order to state the second condition on the potentials I we

define the mutual potential energy of two groups of Nand N I parti
cles by

we thus have the important upper bound

On using Stirling's formula in the form

(B) Strong Tempering

*where C and E' are positive.
With the stability condition (A) we at once obtain from (A. 2)

the inequality

Suppose now that the two groups of particles are confined in two re
gions which are separated by a distance at least R. Then the condi
tion,

for all N, N' whenever R= min IrJ. -~' J ;;; R
O

(fixed),
ij

merely asserts that the forces between groups of particles are not
'repulsive' at large distances U. e. , the mutual potential is nonposi
tive). This is the case, for example, with Van der Waals forces.

For pure pair forces the condition (B) will be satisfied if, for
some RO'

--------------------------
*See D. Ruelle, Boulder Lectures 1963, Section 2.5 (University of
Colorado Summer School in Theoretical Physics) and Ann. Phys.
(N.Y.) li, 109(1963); M. E. Fisher, Arch. RatI. Mech. Anal. (1964).
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for (A. 17)

The less restrictive "weak tempering" condition

(A. 18)

is sufficient for the existence of the free energy but the proof is then
more involved.

Basic Inequality
We may use the tempering condition (B) to obtain an inequality

between the partition function for a domain [2 containing N = N'+ N"
particles, and the partition functions for two subdomains a and a'
contained in [2 but separated by a distance R~ RO and containing N'
and N' particles, respectively (see Figure A. 1). Since the integrand
in (A.2) is positive we may reduce the domain of integration of each
r;. from [2 to [2' + [2" and then split up the domains of integration in
all possible ways. This yields the inequality

(A. 19)

where the arguments of UN' , UN" and ~' N" are assigned in the
obvious way. Each integral in the sum over' (N' ,N") is positive so
the inequality remains true if we merely retain a typical term! The

D
Figure A. 1. A domain [2 containing two separated subdomains.



Notice that the separation condition will be achieved for nonoverlap
ping (but possibly touching) domains if each st£ has walls of thick
ness h~ ~RO'

(A.22)

(A. 21)

(A.20)

(A.23)

(A.24)

v'p' +V"p",
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VP

Z(N' + N" , st) ~ Z(N' ,st')Z(N" ,st").

'n
g(p,st) ~ ~ w£g(p£,st£)

£=1

p

Vg(p,st) ~ V'g(p' ,st') + V"g(p" ,st"),

p=(N'+N")/V, P'=N'/V' and P"=N"/V".

and where

where

where

By combining (A. 20) with the three corresponding inequalities ob
tained by the replacements (N' ,N") - (N' +l,N"), (N' ,N" + 1) and
(N' + I, N" + 1) and using the definition (A. 7), the relations (A.2 1) and
(A.22) may be proved for arbitrary values of the densities.

If the domain st is divided into a number of subdomains
stl, st2 , •.• so that the particles in any st £ are always kept at least
a distance RO from those in any other st m, we may iterate (A. 21) and
(A.22) to get

On taking logarithms we find

lnlofdc1:lon energy !PN'N" arises only between groups of particles
:,e parated by at least RO so that by condition (B) the factor
('xP[oo-f3!PN'N"] is never less than unity. The inequality can thus
only be strengthened by dropping the mutual potential energy. The
multiple integral then factorizes to yield the basic inequality

Limit for Sequence of Cubes
To take the thermodynamic limit suppose that the domains stk

are a sequence of cubes rk with walls of fixed thickness h ~ ~ RO and
such that the edge of rk+l is double that of r k . (In the limit k - 00

the volume excluded by the walls is negligible.) A cube r k+1 can
thus be subdivided into eight nonoverlapping cubes r k obeying the
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separation condition. Let us, therefore, apply the ba:;lc: Inequality
(A.23). Clearly,

(A.25)

Setting PI = ... = P4 = p' and P5 = .,. = P8 = pIt so thill, by
(A. 24) I p = tp' + tp" , yields

(A.26)

for all p' and P".
To prove the existence of the limit, choose p' = p" = PIC)

get

(A. 2 'I)

Thus for each val ue of p the sequence g(p, rk) is increasing (mono
tonically nondecreasing). However, by (A. 14), g(p, rk) is bounded
above. Consequently, as k- 00 the sequence must tend to a limit!

This establishes the existence of the limiting free energy
(A. 8) -at least for the sequence of cubes rk' To prove that the limit
is the same for more general shapes of domain (with or without walls)
the basic inequality may be used to compare the free energy of a
general domain ~j with the free energies of the standard cubes by
filling ~j with smaller cubes rk and by filling a larger cube I'k with
~j and smaller cubes. t

Properties of the Free Energy
To determine the properties of the limiting function g(p) take

the limit k - 00 in (A. 26). This yields the inequality

(A.28)

which, in graphical terms, states that the curve of the function g(p)
versus p lies above the midpoint of any chord (see Figure A. 2); such
a function is said to be convex (upwards).

At first sight it might seem that nothing of much significance
would follow from the convexity relation (A. 2 8). However, the
properties of a boundedt convex function are highly circumscribed.
In particular such a function is (a) continuous, (b) differentiable

tSee M. E. Fisher, Arch. Ratl. Mech. Anal. lI, 377 (1964).
tThe limit function g(p) is bounded above by (A. 14) and bounded be
low by virtue of (A. 2 7) .



holds where

(A. 29)

MICHAEL E. FISHER

p' ;0# P
Figure A. 2. III ustrating the convexity of the free energy
density g (p).
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~ en = I,
£ N

(iii) from this and (A. 8) it follows that F(v) is a convex
(downwards) function of v;

(iv) g (p) and F(v) are differentiable almost everywhere (the
right and left derivatives exist everywhere) so that the pressure

almost everywhere (that is, except at a countable number of points
where the right and left derivatives exist but do not agree), and
(c) its derivative is a monotonic function. These results are quite
easil y understood by graphical arguments based on drawing chords,
but rigorous analytical proofs are available in the well known book
by Hardy, Littlewood and P61ya ("Inequalities" Chap. 3, Cambridge
(1934)) •

We may thus conclude from (A. 28) that
(i) g (p) is continuous in p, and hence from (A. 8) the limiting

free-energy per particle F(v), is continuous in v;
(ii) by the continuity, the generalized convexity relation
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p({5, v} = - ~~
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(A.30)

is defined uniquely everywhere except, possibly, at a countable
number of jump discontinuities;

(v) the derivatives of g (p) and F(v} are monotonic functions
of p and v so that, in particular the pres sure p(v} is a monotonic
nonincreasing function of the specific volume v.

It is easy to see that F(v} is a nonincreasing function of v so
that p(v} is never negative. Notice, however, that we have not
proved the continuity of p(v}. Although this is probably true under
rather general conditions, it has only been proved for classical SYsr
tems interacting with a pair potential tp(r} which is bounded above.
Since p(v} is monotonic it follows that its derivative, and hence the
compressibility, exists almost everywheret and is nonnegative.
(This expresses the "mechanical stability" of the thermodynamic
limit. )

From the form of the canonical partition function as a Laplace
integral in {3 and Schwarz 1s inequality, it follows that g ({3, p ,rt), and
hence g ({3, p), is convex in {3. Thus the free energy F ({3, v) is also
continuous and differentiable (almost everywhere) in the temperature
variable {3.

"tSee D. Ruelle, Belv. Phys. Acta li, 183 (19 63).
tBy Lebesgue I s theorem; see, for example, F. Riesz and B. Sz. -Nagy,
Functional Analysis, Ungar Publishing Co. , New York (1955).
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