
Chapter 1

The Methodology of Statistical
Mechanics

This chapter provides an overview of statistical mechanics and thermody-
namics. Although the discussion is reasonably self-contained, it is assumed
that this is not the reader’s first exposure to these subjects. More than many
other branches of physics, these topics are treated in a variety of different
ways in the textbooks in common usage. The aim of the chapter is thus to
establish the perspective of the book: the standpoint from which the topics
in the following chapters will be viewed. The books by Guénault [1] and by
Bowley [2] are recommended to the novice as highly accessible and clearly-
argued introductions to the subject; indeed all readers will find many of the
examples of this book treated by those books in complementary fashion.

1.1 Terminology and Methodology

1.1.1 Approaches to the subject

Thermodynamics is the study of the relationship between macroscopic prop-
erties of systems such as temperature, volume, pressure, magnetization, com-
pressibility etc. Statistical Mechanics is concerned with understanding how
the various macroscopic properties arise as a consequence of the microscopic
nature of the system. In essence it makes macroscopic deductions from mi-
croscopic models.

The power of thermodynamics, as formulated in the traditional manner
(Zemansky [3], for example) is that its deductions are quite general; they do
not rely, for their validity, on the microscopic nature of the system. Einstein
expressed this quite impressively when he wrote [4]:
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A theory is the more impressive the greater the simplicity of its
premises is, the more different kinds of things it relates, and the
more extended is its area of applicability. Therefore the deep im-
pression which classical thermodynamics made upon me; it is the
only physical theory of universal content concerning which I am
convinced that, within the framework of the applicability of its
basic concepts, will never be overthrown.

On the other hand statistical mechanics, as conventionally presented (Hill [5],
for example) is system-specific. One starts from particular microscopic mod-
els, say the Debye model for a solid, and derives macroscopic properties such
as the thermal capacity. It is true that statistical mechanics will give relation-
ships between the various macroscopic properties of a system, but they will
only apply to the system/model under consideration. Results obtained from
thermodynamics, on the other hand, are model-independent and general.

Traditionally thermodynamics and statistical mechanics were developed
as independent subjects, with “bridge equations” making the links between
the two. Alternatively the subjects can be developed together, where the
Laws of Thermodynamics are justified by microscopic arguments. This re-
ductionist view was adopted by Landau. In justification he wrote [6]:

Statistical physics and thermodynamics together form a unit. All
the concepts and quantities of thermodynamics follow most natu-
rally, simply and rigorously from the concepts of statistical physics.
Although the general statements of thermodynamics can be formu-
lated non-statistically, their application to specific cases always
requires the use of statistical physics.

The contrast between the views of Einstein and those of Landau is apparent.
The paradox, however, is that so much of Einstein’s work was reductionist
and microscopic in nature whereas Landau was a master of the macroscopic
description of phenomena. This book considers thermodynamics and statis-
tical mechanics in a synthetic manner; in that respect it follows more closely
the Landau approach.

1.1.2 Description of states

The state of a system described at the macroscopic level is called a macrostate.
Macrostates are described by a relatively few variables such as temperature,
pressure, volume etc.

The state of a system described at the microscopic level is called a mi-
crostate. Microstates are described by a very large number of variables.
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Classically you would need to specify the position and momentum of each
particle in the system. Using a quantum-mechanical description you would
have to specify all the quantum numbers of the entire system. So whereas a
macrostate is likely to be described by under ten variables, a microstate will
be described by over 1023 variables.

The fundamental methodology of statistical mechanics involves applying
probabilistic arguments about microstates, regarding macrostates as statisti-
cal averages. It is because of the very large number of particles involved that
the mean behaviour corresponds so well to the observed behaviour – that
fluctuations are negligible. Recall (or see Section 1.4.6) that for N particles
the likely fractional deviation from the mean will be 1/

√
N . So if you cal-

culate the mean pressure of one mole of air at one atmosphere, it is likely to
be correct to within ∼ 10−12 of an atmosphere. It is also because of the large
number of particles involved that the mean, observed behaviour corresponds
to the most probable behaviour – the mean and the mode of the distribution
differ negligibly.

Statistical Mechanics is slightly unusual in that its formalism is easier to
understand using quantum mechanics for descriptions at the microscopic level
rather than classical mechanics. This is because the idea of a quantum state
is familiar, and often the quantum states are discrete. It is more difficult to
enumerate the (micro)states of a classical system; it is best done by analogy
with the quantum case. The classical case will be taken up in Section 1.6.

1.1.3 Extensivity and the Thermodynamic Limit

The thermodynamic variables describing macrostates fall into two classes.
Quantities such as energy E, number of particles N and volume V , which
add when systems are combined, are known as extensive variables. And
quantities such as pressure p and temperature T , which remain independent
when similar systems are combined, are known as intensive variables.

As we have argued, thermodynamics concerns itself with the behaviour
of “large” systems and usually, for these, finite-size effects are not of interest.
Thus, for example, unless one is concerned specifically with surface phenom-
ena, it will be sensible to focus on systems that are sufficiently large that the
surface contribution to the energy will be negligible when compared to the
volume contribution. This is possible because the energy of interaction be-
tween atoms is usually sufficiently short-ranged. In general one will consider
properties in the limit N → ∞, V → ∞ while N/V remains constant. This
is called the thermodynamic limit.

It should be clear that true extensivity of a quantity, such as energy,
emerges only in the thermodynamic limit.
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Gravity is a long-range force. It is apparent that gravitational energy is
not truly extensive; this is examined in Problem 1.2. This non-extensivity
makes for serious difficulties when trying to treat the statistical thermody-
namics of gravitating systems.

1.2 The Fundamental Principles

1.2.1 The Laws of Thermodynamics

Thermodynamics, as a logical structure, is built on its four assumptions or
laws (including the zeroth).

Zeroth Law : If system A is in equilibrium with system B and with
system C then system B is in equilibrium with system C . Equilib-
rium here is understood in the sense that when two systems are brought into
contact then there is no change. This law was formalized after the first three
laws were formulated and numbered. Because it was believed to be more
fundamental it was thus called the Zeroth Law. The Zeroth Law recognizes
the existence of states of equilibrium and it points us to the concept of tem-
perature, a non-mechanical quantity that can label (and order) equilibrium
states.

First Law : The internal energy of a body can change by the flow of
heat or by doing work.

ΔE = ΔQ + ΔW. (1.2.1)

Here ΔQ is the energy increase as a consequence of heat flow and ΔW is
the energy increase resulting from work done. We usually regard this as a
statement about the conservation of energy. But in its historical context the
law asserted that as well as the familiar mechanical form of energy, heat also
was a form of energy. Today we understand this as the kinetic energy of
the constituent particles of a system; in earlier times the nature of heat was
unclear.

Note that some older books adopt the opposite sign for ΔW ; they consider
ΔW to be the work done by the system rather than the work done on the
system.

Second Law (this law has many formulations): Heat flows from hot to
cold, or It is not possible to convert all heat energy to work. These
statements have the great merit of being reflections of common experience.
There are other formulations such as the Carathéodory statement (see the
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books by Adkins [7] or Pippard [8]): In the neighbourhood of any equi-
librium state of a thermally isolated system there are states which
are inaccessible, and the entropy statement (see Callen’s book [9]): There
is an extensive quantity, which we call entropy, which never de-
creases in a physical process. The claimed virtue of the Carathéodory
statement is that it leads more rapidly to the important thermodynamic con-
cepts of temperature and entropy: this at the expense of common experience.
But if that is believed to be a virtue then one may as well go the “whole
hog” and adopt the Callen statement. A major exercise in classical thermo-
dynamics is proving the equivalence of the various statements of the Second
Law. In whatever form, the Second Law leads to the concept of entropy and
the quantification of temperature (the Zeroth Law just gives an ordering : A
is hotter than B). And it tells us there is an absolute zero of temperature.

Third Law : The entropy of a body tends to zero as the temperature
tends to absolute zero. The Third Law will be discussed in Section 1.7.
We shall see that it arises as a consequence of the quantum behaviour of
matter at the microscopic level. However we see immediately that the Third
Law is telling us there is an absolute zero of entropy.

An even more fundamental aspect of the Zeroth Law is the fact of the
existence of equilibrium states. If systems did not exist in states of equi-
librium then there would be no macrostates and no hope of description in
terms of small numbers of variables. Then there would be no discipline of
thermodynamics and phenomena would have to be discussed solely in terms
of their intractable microscopic description. Fortunately this is not the case;
the existence of states of equilibrium allows our simple minds to make some
sense of a complex world.

1.2.2 Probabilistic interpretation of the First Law

The First Law discusses the way the energy of a system can change. From
the statistical standpoint we understand the energy of a macroscopic system
as the mean value since the system can exist in a large number of different
microstates. If the energy of the jth microstate is Ej and the probability of
occurrence of this microstate is Pj then the (mean) energy of the system is
given by

E =
∑

j

PjEj . (1.2.2)

The differential of this expression is
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dE =
∑

j

Pj dEj +
∑

j

Ej dPj ; (1.2.3)

this indicates the energy of the system can change in two different ways: a)
the energy levels Ej may change or b) the probabilities Pj may change.

The first term
∑

j Pj dEj relates to the change in the energy levels dEj .
This term is the mean energy change of the microstates and we shall show
below that this corresponds to the familiar “mechanical” energy: the work
done on the system. The second term

∑
j Ej dPj is a consequence of the

change in probabilities or occupation of the energy states. This is fundamen-
tally probabilistic and we shall see that it corresponds to the heat flow into
the system.

In order to understand that the first term corresponds to the work done,
let us consider a pV system. We shall see (Section 2.1.3) that the energy
levels depend on the size (volume) of the system:

Ej = Ej(V ) (1.2.4)

so that the change in the energy levels when the volume changes is

dEj =
∂Ej

∂V
dV. (1.2.5)

Then ∑

j

PjdEj =
∑

j

Pj
∂Ej

∂V
dV. (1.2.6)

We are assuming that the change in volume occurs at constant Pj , then

∑

j

PjdEj =
∑

j

∂

∂V
PjEj dV

=
∂

∂V
E dV.

(1.2.7)

But we identify ∂E/∂V = −p, so that
∑

j

PjdEj = −p dV. (1.2.8)

And thus we see that the term
∑

j PjdEj corresponds to the work done on
the system. Then the term

∑
j EjdPj corresponds to the energy increase of

the system that occurs when no work is done; this is what we understand as
heat flow.

We have learned, in this section, that the idea of heat arises quite logically
from the probabilistic point of view.
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1.2.3 Microscopic Basis for Entropy

By contrast to macroscopic thermodynamics, statistical mechanics is built
on a single assumption, which we will call the Fundamental Postulate of
statistical mechanics. We shall see how the Laws of Thermodynamics may
be understood in terms of this Fundamental Postulate. These ideas date
back to Boltzmann. The Fundamental Postulate states: All microstates
of an isolated system are equally likely. Note, in particular, that an
isolated system will have fixed energy E, volume V and number of particles
N (fixed extensive quantities). Conventionally we denote by Ω(E, V,N ) the
number of microstates corresponding to a given macrostate (E, V,N ). Then
from the Fundamental Postulate it follows that the probability of a given
macrostate is proportional to the number of microstates corresponding to it:
Ω(E, V,N )

P ∝ Ω(E, V,N ). (1.2.9)

If we understand the observed equilibrium state of a system as the most
probable macrostate, then it follows from the Fundamental Postulate that
the equilibrium state corresponds to the macrostate with the largest number
of microstates. We are saying that Ω is maximum for an equilibrium state.

Since Ω for two isolated systems is multiplicative, it follows that the
logarithm of Ω is additive. In other words ln Ω is an extensive quantity.

Following Boltzmann we define entropy S as

S = k ln Ω. (1.2.10)

At this stage k is simply a constant; later we will identify it as Boltzmann’s
constant. We should note that ln Ω is dimensionless, so S will have the same
dimensions as k.

Since the logarithm is a monotonic function it follows that the equilibrium
state will have maximal entropy. So we immediately obtain the Second Law.
And we now understand the Second Law from the microscopic point of view;
it is hardly more than the tautology “we are most likely to observe the most
probable state”!

1.3 Interactions – The Conditions for Equi-

librium

When systems interact their states will often change, the composite system
evolving to a state of equilibrium. We shall investigate what determines the
final state. We will see that quantities such as temperature emerge in the
characterization of these equilibrium states.
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1.3.1 Thermal Interaction – Temperature

Let us allow two, otherwise isolated, systems to exchange energy without
changing volume or numbers of particles. In other words we allow thermal
interaction only; the systems are separated by a diathermal wall.

Figure 1.1: Thermal interaction

Now

Ω1 = Ω1(E1, V1, N1)

Ω2 = Ω2(E2, V2, N2)
(1.3.1)

and V1, N1, V2, N2 are all fixed.
The energies E1 and E2 can vary subject to the constraint E1 +E2 = E0,

a constant.
Our problem is this: after the two systems are brought together what will

be the equilibrium state? We know that the systems will exchange energy,
and they will do this so as to maximize the total number of microstates for
the composite system.

For different systems the Ωs multiply so that we have

Ω = Ω1(E1)Ω2(E2) (1.3.2)

— we can ignore V1, N1, V2, N2 as they don’t change.
The systems will exchange energy so as to maximize Ω. Writing

Ω = Ω1(E)Ω2(E0 − E) (1.3.3)

we allow the systems to vary E so that Ω is a maximum:

∂Ω

∂E
=

∂Ω1

∂E
Ω2 − Ω1

∂Ω2

∂E
= 0 (1.3.4)

or
1

Ω1

∂Ω1

∂E
=

1

Ω2

∂Ω2

∂E
. (1.3.5)
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In this form the left hand side is all about system 1 and the right hand side is
all about system 2. In other words the equilibrium state is characterized by
a certain property of system 1 being equal to a certain property of system 2.

We note that 1
Ω

∂Ω
∂E

= ∂ ln Ω
∂E

so the equilibrium condition may be written

∂ ln Ω1

∂E
=

∂ ln Ω2

∂E
. (1.3.6)

Observe the natural occurrence of the logarithm of Ω.
And from the definition of entropy, S = k ln Ω, we see this means that

the equilibrium state is specified by

∂S1

∂E
=

∂S2

∂E
. (1.3.7)

That is, when the systems have reached equilibrium the quantity ∂S/∂E of
system 1 is equal to ∂S/∂E of system 2. This is the condition for equilibrium
when systems exchange only thermal energy.

Clearly ∂S/∂E must be related to the temperature of the system. The
Second Law requires that ΔS ≥ 0; that is

ΔS =

(
∂S1

∂E
−

∂S2

∂E

)

ΔE1 ≥ 0. (1.3.8)

This means that

E1 increases (and E2 decreases) if
∂S1

∂E
>

∂S2

∂E

E1 decreases (and E2 increases) if
∂S1

∂E
<

∂S2

∂E

(1.3.9)

so energy flows from systems with small ∂S/∂E to systems with large ∂S/∂E.
Since we know that heat flows from hot systems to cold systems, we

therefore identify

high T ≡ low
∂S

∂E

low T ≡ high
∂S

∂E
.

(1.3.10)

There is thus an inverse relation between ∂S/∂E and temperature.
We are led to define statistical temperature by

1

T
=

∂S

∂E
. (1.3.11)
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When applied to the ideal gas this will give us the result (Section 2.3.3)

pV = NkT, (1.3.12)

and it is from this we conclude that the statistical temperature corresponds
to the intuitive concept of temperature as measured by an ideal gas ther-
mometer. Furthermore the scale of temperatures will agree with the Kelvin
scale (ice point at 273.18 K) when the constant k in the definition of S is
identified with Boltzmann’s constant.

When the derivative ∂S/∂E is evaluated, N and V are constant. So
the only energy flow is heat flow. Thus the equation defining statistical
temperature can also be written as

ΔQ = TΔS. (1.3.13)

We can now write the energy conservation expression for the First Law:

ΔE = ΔQ + ΔW (1.3.14)

as
ΔE = TΔS − pΔV (for pV systems). (1.3.15)

1.3.2 Volume change – Pressure

We now allow the volumes of the interacting systems to vary as well, subject
to the total volume being fixed. Thus we consider two systems separated by
a movable diathermal wall.

Figure 1.2: Mechanical and thermal interaction

The constraints on this system are

E1 + E2 = E0 = const.

V1 + V2 = V0 = const.
(1.3.16)

while N1 and N2 are individually fixed.
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Maximising the entropy with respect to both energy flow and volume
change then gives the two conditions

∂S1

∂E
=

∂S2

∂E
∂S1

∂V
=

∂S2

∂V
.

(1.3.17)

The first of these gives, we know, the equality of temperature at equilibrium:

T1 = T2 (1.3.18)

What does the second relation tell us? What is ∂S/∂V ? This may be found
by rearranging the differential expression for the First Law:

dE = TdS − pdV. (1.3.19)

This may be re-written as

dS =
1

T
dE +

p

T
dV (1.3.20)

so just as we identified
∂S

∂E

∣
∣
∣
∣
V

=
1

T
, (1.3.21)

so we now identify
∂S

∂V

∣
∣
∣
∣
E

=
p

T
. (1.3.22)

Thus the condition that ∂S/∂V be the same for both systems means that
p/T must be the same. But we have already established that T is the same
so the new information is that at equilibrium the pressures are equalized:

p1 = p2. (1.3.23)

A paradox arises if the movable wall is not diathermal: that is, if it is
thermally isolating. Then one would conclude, from an analysis similar to
that above, that while p/T becomes equalized for the two sides, T does
not. On the other hand a purely mechanical argument would say that
the pressures p should become equal. The paradox is resolved when one
appreciates that without a flow of heat, thermodynamic equilibrium is not
possible and so the entropy maximum principle is not applicable. Thus p/T
will not be equalized. This issue is discussed in greater detail by Callen [9].
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Figure 1.3: Heat and particle exchange

1.3.3 Particle interchange – chemical potential

Let us keep the volumes of the two systems fixed, but allow particles to
traverse the immobile diathermal wall.

The constraints on this system are

E1 + E2 = E0 = const.

N1 + N2 = N0 = const.
(1.3.24)

while V1 and V2 are individually fixed.
Maximising the entropy with respect to both energy flow and particle

flow then gives the two conditions

∂S1

∂E
=

∂S2

∂E
∂S1

∂N
=

∂S2

∂N
.

(1.3.25)

The first of these gives, we know, the equality of temperature at equilibrium:

T1 = T2 (1.3.26)

What does the second relation tell us? What is ∂S/∂N? This may be found
from the First Law in its extended form:

dE = TdS − pdV + μdN (1.3.27)

where μ is the chemical potential. This may be re-written as

dS =
1

T
dE +

p

T
dV −

μ

T
dN (1.3.28)

so that we may identify
∂S

∂N

∣
∣
∣
∣
E,V

= −
μ

T
. (1.3.29)
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Thus the condition that ∂S/∂N be the same for both systems means that
μ/T must be the same. But we have already established that T is the same
so the new information is that at equilibrium the chemical potentials are
equalized:

μ1 = μ2. (1.3.30)

We see that just as pressure drives volume changes, chemical potential drives
particle flow. And arguments similar to those of Section 1.3.1 indicate that
particles flow from high values of μ to low values of μ.

1.3.4 Thermal interaction with the rest of the world –
the Boltzmann factor

For an isolated system all microstates are equally likely; this is our Funda-
mental Postulate. It follows that the probability of the occurrence of a given
microstate is given by

Pj =
1

Ω
. (1.3.31)

But what about a non-isolated system? What can we say about the occur-
rence of microstates of such a system? Here the probability of a microstate
will depend on properties of the surroundings.

In effect we are seeking an extension of our Fundamental Postulate. We
shall see how we can use the Fundamental Postulate itself to effect its own
extension!

We consider a system interacting with its surroundings through a fixed
diathermal wall; this non-isolated system can exchange thermal energy with
its surroundings. We ask the question “what is the probability of this non-
isolated system being in a given microstate?”

We shall idealize the surroundings by a “large” system, which we will call
a heat bath. We shall regard the composite system of bath plus our system of
interest as isolated – so to this we can apply the Fundamental Postulate. In
this way we shall be able to find the probability that the system of interest
is in a particular microstate. This is the “wine bottle in the swimming pool”
model of Reif [10].

The Ωs multiply, thus

ΩT = ΩB × Ω
↑ ↑ ↑

Total Bath System of interest
(1.3.32)

or
ΩT = ΩB(ET − E)Ω(E). (1.3.33)
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Figure 1.4: Thermal interaction with the rest of the world

Now the Fundamental Postulate tells us that the probability the system of
interest has energy E is proportional to the number of microstates of the
composite system that correspond to that energy partition

P (E) ∝ ΩB(ET − E)Ω(E). (1.3.34)

But here Ω(E) = 1 since we are looking at a given microstate of energy E;
there is one microstate. So

P (E) ∝ ΩB(ET − E). (1.3.35)

It depends solely on the bath. In terms of entropy, since S = k ln Ω,

P (E) ∝ eS(ET−E)/k (1.3.36)

where S is the entropy of the bath. This type of expression, where probabil-
ity is expressed in terms of entropy is an inversion of the usual usage where
entropy and other thermodynamic properties are found in terms of probabil-
ities. This form was much used by Einstein in his treatment of fluctuations.

Now the system of interest is very small compared with the bath; E �
ET. So we can perform a Taylor expansion of S:

S(ET − E) = S(ET) − E
∂S

∂E
+ . . . (1.3.37)

but
∂S

∂E
=

1

T
, (1.3.38)

the temperature of the bath, so that

S(ET − E) = S(ET) −
E

T
(1.3.39)
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assuming we can ignore the higher terms. Then

P (E) ∝ eS(ET)/ke−E/kT . (1.3.40)

But the first term eS(ET)/k is simply a constant, so we finally obtain the
probability

P (E) ∝ e−E/kT . (1.3.41)

This is the probability that a system in equilibrium (with a bath) at a tem-
perature T will be found in a microstate of energy E. The exponential factor
e−E/kT is known as the Boltzmann factor, the Boltzmann distribution func-
tion or the canonical distribution function.

The Boltzmann factor is a key result. Feynman says [11]:

This fundamental law is the summit of statistical mechanics, and
the entire subject is either a slide-down from the summit, as the
principle is applied to various cases, or the climb-up to where the
fundamental law is derived and the concepts of thermal equilib-
rium and temperature clarified.

1.3.5 Particle and energy exchange with the rest of the
world – the Gibbs factor

We now consider an extension of the Boltzmann factor to account for mi-
crostates where the number of particles may vary. Our system here can
exchange both energy and particles with the rest of the world. The mi-
crostate of our system of interest is now specified by a given energy and a
given number of particles. We are asking: what is the probability the system
of interest will be found in the microstate with energy E and N particles?

Figure 1.5: Particle and energy exchange with the rest of the world
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In this case ΩT is a function of both E and N

ΩT = ΩB(ET − E,NT − N)Ω(E,N). (1.3.42)

Now the Fundamental Postulate tells us that the probability the system
of interest has energy E and N particles is proportional to the number of
microstates of the composite system that correspond to that energy and
particle number partition

P (E,N) ∝ ΩB(ET − E,NT − N)Ω(E,N). (1.3.43)

But as before, Ω(E,N) = 1 since we are looking at a single microstate. So

P (E,N) ∝ ΩB(ET − E,NT − N). (1.3.44)

It depends solely on the bath. In terms of entropy, since S = k ln Ω,

P (E,N) ∝ eS(ET−E,NT−N)/k (1.3.45)

where S is the entropy of the bath.
Now the system of interest is very small compared with the bath; E � ET

and N � NT. So, as before, we can perform a Taylor expansion of S:

S(ET − E,NT − N) = S(ET, NT) − E
∂S

∂E
− N

∂S

∂N
+ . . . (1.3.46)

but

∂S

∂E
=

1

T
∂S

∂N
= −

μ

T

(1.3.47)

so that

S(ET − E,NT − N) = S(ET, NT) −
E

T
+

μN

T
(1.3.48)

assuming we can ignore the higher terms. Then

P (E,N) ∝ eS(ET,NT)/ke−(E−μN)/kT . (1.3.49)

But the first term eS(ET,NT)/k is simply a constant, so we finally obtain the
probability

P (E,N) ∝ e−(E−μN)/kT . (1.3.50)

This is the probability that a system in equilibrium (with a bath) at a tem-
perature T and chemical potential μ will be found in a microstate of energy
E, with N particles. The exponential factor e−(E−μN)/kT is sometimes known
as the Gibbs factor, the Gibbs distribution function or the grand canonical
distribution function.
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1.4 Thermodynamic Averages

The importance of the previously derived probability distribution functions
is that they may be used in calculating average (observed) values of vari-
ous macroscopic properties of systems. In this way the aims of Statistical
Mechanics, as outlined in Section 1.1.1 are achieved.

1.4.1 The Partition Function

The probability that a system is in the jth microstate, of energy Ej(N, V ),
is given by the Boltzmann factor, which we write as:

Pj(N, V, T ) =
e−Ej(N,V )/kT

Z(N, V, T )
(1.4.1)

where the normalization quotient Z is given by

Z(N, V, T ) =
∑

i

e−Ei(N,V )/kT . (1.4.2)

Here we have been particular to indicate the functional dependencies. Energy
eigenstates depend on the size of the system (standing waves) and the number
of particles. And we are considering our system to be in thermal contact with
a heat bath; thus the temperature dependence. We do not, however, allow
particle interchange.

The quantity Z is called the (canonical) partition function. The letter
Z stands for the German word Zustandssumme, meaning “sum over states”.
Although Z it has been introduced simply as a normalization factor, we shall
see that it is a very useful quantity indeed.

1.4.2 Gibbs Expression for Entropy

For an isolated system the micro–macro connection is given by the Boltzmann
formula S = k ln Ω, where Ω is a function of the extensive variables of the
system

Ω = Ω(E, V,N ). (1.4.3)

But now, at a specified temperature, the energy E is not fixed; rather it
fluctuates about a mean value 〈E〉.

To make the micro–macro connection when E is not fixed we must gener-
alize the Boltzmann expression for entropy. We shall consider a collection of
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(macroscopically) identical systems in thermal contact, Fig. 1.61. The com-
posite system may be regarded as being isolated, so to that we may apply the
rule S = k ln Ω, and from that the mean entropy of a representative single
system may be found.

Figure 1.6: Gibbs ensemble for evaluating generalized entropy

Let us consider M identical systems, and let there be nj of these sys-
tems in the jth microstate. We assume that this is a collection of a very
large number of systems. Then the systems other than our one of particular
interest may be regarded as a heat bath.

The number of possible microstates of the composite system corresponds
to the number of ways of rearranging the subsystems:

Ω =
M !

n1! n2! n3! . . .
(1.4.4)

and the total entropy of the composite system is then

Stot = k ln

(
M !

n1! n2! n3! . . .

)

. (1.4.5)

Since all the numbers here are large, we may make use of Stirling’s approxi-
mation for the logarithm of a factorial, ln n! ≈ n ln n − n, so that

Stot = k

(

M ln M −��M −
∑

j

nj ln nj +

�
�
��

∑

j

nj

)

(1.4.6)

1Such a collection is called a Gibbs ensemble; the designation will become clear when
you have studied Section 1.6.2.
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the cancellation occurring because M =
∑

j nj . Then if we express the first
M as

∑
j nj we have

Stot = k

(
∑

j

nj ln M −
∑

j

nj ln nj

)

= −k
∑

j

nj ln
(nj

M

)
.

(1.4.7)

We are interested in the mean entropy of our particular system. We have
been considering a composite of M (macroscopically) similar systems, so the
mean entropy of our system is simply the total entropy divided by M . Thus

S = −k
∑

j

nj

M
ln
(nj

M

)
. (1.4.8)

But nj/M is the fraction of systems in the jth state, or the probability of
finding our representative system in the jth state:

Pj =
nj

M
. (1.4.9)

So we can now express the mean entropy of a non-isolated system in terms
of the state probabilities as

S = −k
∑

j

Pj ln Pj , (1.4.10)

or
S = −k 〈ln P 〉 , (1.4.11)

the average value of the logarithm of the microstate probabilities. Eq. (1.4.10)
is known as the Gibbs expression for the entropy. For an isolated system this
reduces to the original Boltzmann expression.

1.4.3 Free Energy

In the Gibbs expression for entropy we actually know the values for the
probabilities – they are given by the Boltzmann factor:

Pj(N, V, T ) =
e−Ej(N,V )/kT

Z(N, V, T )
(1.4.12)

where we recall that the normalisation factor is given by the sum over states,
the partition function Z

Z(N, V, T ) =
∑

i

e−Ei(N,V )/kT (1.4.13)
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We then have

ln Pj = −

(
Ej

kT
+ ln Z

)

. (1.4.14)

Thus

S = k

〈
Ej

kT
+ ln Z

〉

(1.4.15)

and since Z is independent of j we have

S =
〈E〉
T

+ k ln Z. (1.4.16)

Now in the spirit of thermodynamics we don’t distinguish between mean and
actual values – since fluctuations will be of order 1/

√
N . Thus we write

E − TS = −kT ln Z. (1.4.17)

The quantity E − TS is rather important and it is given a special name:
Helmholtz free energy, or simply free energy. The symbol F is used2:

F = E − TS (1.4.18)

so that we can write
F = −kT ln Z. (1.4.19)

It might be helpful to recall that Z(N, V, T ) is a dimensionless quantity.

1.4.4 Thermodynamic Variables

A host of thermodynamic variables can be obtained from the partition func-
tion. This is seen from the differential of the free energy. Since

dE = TdS − pdV + μdN (1.4.20)

it follows that
dF = −SdT − pdV + μdN. (1.4.21)

We can then immediately identify the various partial derivatives:

S = −
∂F

∂T

∣
∣
∣
∣
V,N

= kT
∂ ln Z

∂T

∣
∣
∣
∣
V,N

+ k ln Z

p = −
∂F

∂V

∣
∣
∣
∣
T,N

= kT
∂ ln Z

∂V

∣
∣
∣
∣
T,N

μ =
∂F

∂N

∣
∣
∣
∣
T,V

= −kT
∂ ln Z

∂N

∣
∣
∣
∣
T,V

.






(1.4.22)

2Some texts use A for the Helmholtz free energy.
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Since E = F + TS we can then express the internal energy as

E = kT 2 ∂ ln Z

∂T

∣
∣
∣
∣
V,N

. (1.4.23)

Thus we see that once the partition function is evaluated by summing over
the states, all relevant thermodynamic variables can be obtained by differ-
entiating Z.

1.4.5 The beta trick

There is a mathematical trick that can be very useful in many applications
in Statistical Mechanics. This relies on a change of variables to “inverse
temperature” defined by

β = 1/kT. (1.4.24)

Many calculations are more easily done in this way; moreover the physical
meaning of such calculations can more apparent.

As an example let’s consider a direct calculation of the mean energy of a
system E =

∑
j EjPj (the internal energy). We now write this mean as

E =
1

Z

∑

j

Eje
−βEj . (1.4.25)

We observe that the Ej in the sum may be “brought down” by a differenti-
ation with respect to β:

Eje
−βEj = −

∂

∂β
e−βEj (1.4.26)

So the internal energy is simply

E = −
1

Z

∑

j

∂

∂β
e−βEj . (1.4.27)

Then by swapping the order of summation and differentiation this reduces
to

E = −
1

Z

∂

∂β

∑

j

e−βEj (1.4.28)

or

E = −
1

Z

∂Z

∂β
. (1.4.29)
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Equivalently we may write this in terms of ln Z:

E = −
∂ ln Z

∂β
. (1.4.30)

Upon changing variables back to T = 1/kβ this is equivalent to

E = kT 2 ∂ ln Z

∂T
; (1.4.31)

and we have recovered Eq. (1.4.23).

1.4.6 Fluctuations

An isolated system has a well-defined energy. But the energy of a system in
contact with a heat bath continually fluctuates about some mean value. The
equilibrium with the heat bath is characterized by a temperature T and the
system’s mean energy is calculated from Eq. (1.4.23) or equivalently, from
Eq. (1.4.29). In this section we shall (in contrast to the usual practice in
Statistical Mechanics) distinguish between instantaneous and mean values.
So here we write this equation as

〈E〉 = −
1

Z

∂Z

∂β
. (1.4.32)

What is the magnitude of the fluctuations about this mean?
We shall evaluate the RMS (root mean square) of the energy fluctuations

σE, defined by

σE =
〈
(E − 〈E〉)2

〉1/2
. (1.4.33)

By expanding out (the square) we obtain

σ2
E =

〈
E2
〉
− 2 〈E〉2 + 〈E〉2

=
〈
E2
〉
− 〈E〉2

(1.4.34)

In order to evaluate σE using this equation we have 〈E〉2 by squaring
Eq. (1.4.32). We now apply the beta trick to the calculation of 〈E2〉. We
require to find

〈
E2
〉

=
1

Z

∑

j

E2
j e

−βEj . (1.4.35)

so we need to bring down two lots of Ej . This can be done with two differ-
entiations

E2
j e

−βEj =
∂2

∂β2
e−βEj . (1.4.36)
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So the mean square energy is simply

〈
E2
〉

= −
1

Z

∑

j

∂2

∂β2
e−βEj . (1.4.37)

Then by swapping the order of summation and differentiation this reduces
to

〈
E2
〉

=
1

Z

∂2

∂β2

∑

j

e−βEj

=
1

Z

∂2Z

∂β2
.

(1.4.38)

We need the second derivative of Z. The first derivative is given, from
Eq. (1.4.32), by

∂Z

∂β
= −Z 〈E〉 . (1.4.39)

Differentiating again gives

∂2Z

∂β2
= −

∂Z

∂β
〈E〉 − Z

∂ 〈E〉
∂β

= Z 〈E〉2 − Z
∂ 〈E〉
∂β

(1.4.40)

so that
〈
E2
〉

= 〈E〉2 −
∂ 〈E〉
∂β

. (1.4.41)

This gives us σ2
E as

σ2
E = −

∂ 〈E〉
∂β

. (1.4.42)

We now return to conventional notation, discarding the averaging brack-
ets, so that

σ2
E = −

∂E

∂β

= kT 2 ∂E

∂T

(1.4.43)

upon changing back to T as the independent variable. However since we
recognize the derivative of energy, ∂E/∂T as the thermal capacity, the RMS
variation in the energy may then be expressed as

σ2
E = kT 2CV (1.4.44)
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(the derivatives, following Eq. (1.4.23) are taken at constant V ) or

σE =
√

kT 2CV . (1.4.45)

Since CV and E are both proportional to the number of particles in the
system (extensive variables), the fractional fluctuations in energy vary as

σE

〈E〉
∼

1
√

N
(1.4.46)

which gets smaller and smaller as N increases.

Figure 1.7: Fluctuations in energy for a system at fixed temperature

We thus see that the significance of fluctuations vanishes in the N → ∞
limit, while N/V remains constant: the thermodynamic limit. And it is in
this limit that statistical mechanics has its greatest applicability.

We might note that the usual use of Eq. (1.4.44) is the opposite: to show
how the heat capacity is related to the energy fluctuations

CV =
1

kT 2
σ2

E. (1.4.47)

1.4.7 The Grand Partition Function

Here we are concerned with systems of variable numbers of particles. The
energy of a (many-body) state will depend on the number of particles in
the system. As before, we label the (many-body) states of the system by j,
but note that the jth state will be different for different N . In other words
we need the pair {N, j} for specification of a state. The probability that a
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system has N particles and is in the jth microstate, corresponding to a total
energy EN,j is given by the Gibbs factor, which we write as:

PN,j(V, T, μ) =
e−[EN,j(N,V )−μN ]/kT

Ξ(V, T, μ)
(1.4.48)

where the normalization constant Ξ is given by

Ξ(V, T, μ) =
∑

N,j

e−[EN,j(N,V )−μN ]/kT . (1.4.49)

Here both T and μ are properties of the bath. The quantity Ξ is called the
grand canonical partition function. It may also be written in terms of the
canonical partition function Z for different N :

Ξ(V, T, μ) =
∑

N

Z(N, V, T )eμN/kT . (1.4.50)

We will see that Ξ also is a useful quantity.

1.4.8 The Grand Potential

The generalized expression for entropy in this case is

S = −k 〈ln PN,j〉 . (1.4.51)

Here the probabilities are given by the Gibbs factor:

PN,j(V, T, μ) =
e−[EN,j(N,V )−μN ]/kTkT

Ξ(V, T, μ)
(1.4.52)

where the normalisation factor, the sum over states, is the grand partition
function Ξ. We then have

ln PN,j = −

(
EN,j

kT
−

μN

kT
+ ln Ξ

)

. (1.4.53)

Thus

S = k

〈
EN,j

kT
−

μN

kT
+ ln Ξ

〉

(1.4.54)

which is given by

S =
〈E〉
T

−
μ 〈N〉

T
+ k ln Ξ. (1.4.55)
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Now in the spirit of thermodynamics we don’t distinguish between mean and
actual values – since fluctuations will be of order 1

/√
N . Thus we write

E − TS + μN = −kT ln Ξ. (1.4.56)

The quantity E − TS + μN is equal to −pV by the Euler relation (see
Appendix A) so that we can write

pV = kT ln Ξ. (1.4.57)

The quantity pV is referred to as the grand potential.

1.4.9 Thermodynamic variables

Just as with the partition function, a host of thermodynamic variables can be
obtained from the grand partition function. This is seen from the differential
of the grand potential. It’s easiest to differentiate pV as −E + TS − μN ;
that is

d(pV ) = d(−E + TS − μN)

= −dE + TdS + SdT − μdN − Ndμ.
(1.4.58)

But since dE = TdS − pdV + μdN , this gives

d(pV ) = SdT + pdV + Ndμ. (1.4.59)

We can then identify the various partial derivatives:

S =
∂(pV )

∂T

∣
∣
∣
∣
V,μ

= kT
∂ ln Ξ

∂T

∣
∣
∣
∣
V,μ

+ k ln Ξ

p =
∂(pV )

∂V

∣
∣
∣
∣
T,μ

= kT
∂ ln Ξ

∂V

∣
∣
∣
∣
T,μ

=
kT

V
ln Ξ

μ =
∂(pV )

∂N

∣
∣
∣
∣
T,V

= kT
∂ ln Ξ

∂N

∣
∣
∣
∣
T,V

.






(1.4.60)

Since E + μN = −pV + TS we can then express the combination E + μN as

E + μN = kT 2 ∂ ln Ξ

∂T

∣
∣
∣
∣
V,μ

. (1.4.61)

Thus we see that once the grand partition function is evaluated by summing
over the states, all relevant thermodynamic variables can be obtained by
differentiating Ξ.
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1.5 Quantum Distributions

1.5.1 Bosons and Fermions

All particles in nature can be classified into one of two groups according to
the behaviour of their wave function under the exchange of identical particles.
For simplicity let us consider just two identical particles. The wave function
can then be represented as

Ψ = Ψ (r1, r2) (1.5.1)

where
r1 is the position of the first particle

and
r2 is the position of the second particle.

Let us interchange the particles. We denote the operator that effects this by
P (the permutation operator). Then

PΨ(r1, r2) = Ψ(r2, r1) (1.5.2)

We are interested in the behaviour of the wave function under interchange
of the particles. So far we have not drawn much of a conclusion. Let us now
perform the swapping operation again. Then we have

P2Ψ(r1, r2) = PΨ(r2, r1)

= Ψ(r1, r2);
(1.5.3)

the effect is to return the particles to their original states. Thus the operator
P must obey

P2 = 1 (1.5.4)

And taking the square root of this we find for P .

P = ±1. (1.5.5)

In other words the effect of swapping two identical particles is either to leave
the wave function unchanged or to change the sign of the wave function.

This property continues for all time since the permutation operator com-
mutes with the Hamiltonian. Thus all particles in nature belong to one class
or the other. Particles for which

P = +1 are called bosons
while those for which

P = −1 are called fermions.
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Fermions have the important property of not permitting multiple occupancy
of quantum states. Consider two particles in the same state, at the same
position r. The wave function is then

Ψ = Ψ (r, r) . (1.5.6)

Swapping over the particles we have

PΨ = −Ψ. (1.5.7)

But Ψ = Ψ (r, r) so that PΨ = +Ψ since both particles are in the same state.
The conclusion is that

Ψ (r, r) = −Ψ (r, r) (1.5.8)

and this can only be so if

Ψ (r, r) = 0. (1.5.9)

Now since Ψ is related to the probability of finding particles in the given
state, the result Ψ = 0 implies a state of zero probability – an impossible
state. We conclude that it is impossible to have more than one fermion in a
given quantum state.

This discussion was carried out using r1 and r2 to denote position states.
However that is not an important restriction. In fact they could have desig-
nated any sort of quantum state and the same argument would follow.

This is the explanation of the Pauli exclusion principle obeyed by elec-
trons.

We conclude:

• For bosons we can have any number of particles in a quantum state.

• For fermions we can have either 0 or 1 particle in a quantum state.

But what determines whether a given particle is a boson or a fermion? The
answer is provided by quantum field theory. And it depends on the spin of
the particle. Particles whose spin angular momentum is an integral multiple
of ~ are bosons while particles whose spin angular momentum is integer plus
a half ~ are fermions. (In quantum theory ~/2 is the smallest unit of spin
angular momentum.) It is not straightforward to demonstrate this funda-
mental connection between spin and statistics. Feynman’s heroic attempt is
contained in his 1986 Dirac memorial lecture [12]. However a slightly more
accessible account is contained in Tomonaga’s book The Story of Spin [13].
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For some elementary particles we have:

electrons

protons

neutrons





S =

1

2





→ fermions

photon S = 1

π meson

K meson

}

S = 0





→ bosons

For composite particles (such as atoms) we simply add the spins of the con-
stituent parts. And since protons, neutrons and electrons are all fermions we
can say:

• odd number of fermions → fermion;

• even number of fermions → boson.

The classic example of this is the two isotopes of helium. Thus

• 3He is a fermion;

• 4He is a boson.

Although these are chemically equivalent, at low temperatures the isotopes
have very different behaviour.

1.5.2 Grand Potential for Identical Particles

The grand potential allows the treatment of systems of variable numbers of
particles. We may exploit this in the study of systems of non-interacting (or
weakly-interacting) particles in the following way. We focus attention on a
single-particle state, which we label by k. The state of the entire system
is specified when we know how many particles are in each different (single-
particle) quantum state.

many-particle state ≡ {n1, n2, . . . , nk, . . .}

Energy of state =
∑

k

nkεk

No. of particles =
∑

k

nk.

(1.5.10)
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Here εk is the energy of the kth single-particle state. Note that the εk are
independent of N .

Now since the formalism of the grand potential is appropriate for systems
that exchange particles and energy with their surroundings, we may now
consider as our “system” the subsystem comprising the particles in a given
state k. For this subsystem

E = nkεk

N = nk

(1.5.11)

so that the probability of observing this, i.e. the probability of finding nk

particles in the kth state (provided this is allowed by the statistics) is

Pnk
(V, T, μ) =

e−(nkεk−nkμ)/kT

Ξk

(1.5.12)

where the grand partition function for the subsystem can be written

Ξk =
∑

nk

{
e−(εk−μ)/kT

}nk
. (1.5.13)

Here nk takes only values 0 and 1 for fermions and 0, 1, 2, . . . ∞ for bosons.
The grand potential for the “system” is

(pV )k = kT ln Ξk

= kT ln
∑

nk

{
e−(εk−μ)/kT

}nk
. (1.5.14)

The grand partition function for the entire system is the product

Ξ =
∏

k

Ξk (1.5.15)

so that the grand potential (and any other extensive quantity) for the entire
system is found by summing over all single particle state contributions:

pV =
∑

k

(pV )k. (1.5.16)

1.5.3 The Fermi-Dirac Distribution

For fermions the grand potential for the single state is

(pV )k = kT ln
∑

nk=0,1

{
e−(εk−μ)/kT

}nk

= kT ln
{
1 + e−(εk−μ)/kT

}
.

(1.5.17)
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From this we can find the mean number of particles in the state using

n̄k =
∂(pV )k

∂μ

∣
∣
∣
∣
T,V

=
e−(εk−μ)/kT

1 + e−(εk−μ)/kT

=
1

e(εk−μ)/kT + 1
.

(1.5.18)

This is known as the Fermi-Dirac distribution function.
The grand potential for the entire system of fermions is found by summing

the single-state grand potentials

pV = kT
∑

k

ln
{
1 + e−(εk−μ)/kT

}
. (1.5.19)

1.5.4 The Bose-Einstein Distribution

For bosons the grand potential for the single state is

(pV )k = kT ln
∞∑

nk=0

{
e−(εk−μ)/kT

}nk

= kT ln

{
1

1 − e−(εk−μ)/kT

}

= −kT ln
{
1 − e−(εk−μ)/kT

}

(1.5.20)

assuming the geometric progression is convergent. From this we can find the
mean number of particles in the state using

n̄k =
∂ (pV )k

∂μ

∣
∣
∣
∣
T,V

=
e−(εk−μ)/kT

1 − e−(εk−μ)/kT

=
1

e(εk−μ)/kT − 1
.

(1.5.21)

This is known as the Bose-Einstein distribution function.
The grand potential for the entire system of bosons is found by summing

the single-state grand potentials

pV = −kT
∑

k

ln
{
1 − e−(εk−μ)/kT

}
. (1.5.22)

(An elegant derivation of the Bose and the Fermi distributions which indi-
cates how the + and − sign in the denominators arises directly from the
eigenvalue of the P operator is given in the Quantum Mechanics text book
by Merzbacher [14]. Beware, however – it uses the method of Second Quan-
tization.) See also the simple derivation of the Bose and Fermi distributions
given in Appendix E, inspired by Feynman, based on the canonical distribu-
tion function.
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1.5.5 The Classical Limit – The Maxwell-Boltzmann
Distribution

The Bose-Einstein and Fermi-Dirac distributions give the mean numbers of
particles in the microstate of energy εj as a function of (εj − μ)/kT . When
this quantity is large we observe two things. Firstly the denominator of the
distributions will be very much larger than one, so the +1 or −1 distinguish-
ing fermions from bosons may be neglected. And secondly the large value for
the denominator means that the n̄j , the mean occupation of the state, will
be very much less than unity.

This condition will apply to all states, down to the ground state of εj = 0,
if μ/kT is large and negative. This is the classical limit where the issue of
multiple state occupancy does not arise and the distinction between fermions
and bosons becomes unimportant. We refer to such (hypothetical) particle as
maxwellons, obeying Maxwell-Boltzmann statistics. Thus for these particles
the mean number of particles in the state is given by

n̄k = e−(εk−μ)/kT ; (1.5.23)

This is essentially the Boltzmann distribution function.
The three distribution functions are shown in Fig. 1.8. Observe, in par-

ticular, that when μ = ε the Fermi occupation is one half, the Maxwell
occupation is unity and the Bose occupation is infinite.

Figure 1.8: Fermi-Dirac, Maxwell-Boltzmann and Bose-Einstein distribution
functions
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1.6 Classical Statistical Mechanics

1.6.1 Phase Space and Classical States

The formalism of statistical mechanics developed thus far relies very much,
at the microscopic level, on the use of (micro)states. We count the number
of states, we sum over states etc. etc. This is all very convenient to do within
the framework of a quantum-mechanical description of systems where states
of a (finite or bound) system are discrete, but what about classical systems.
How is the formalism of classical statistical mechanics developed – what is a
“classical state”?

To specify a state in classical mechanics we must know the position and
velocity of all particles in the system. (Position and velocity, since the equa-
tions of motion – Newton’s laws – are second-order differential equations).
For reasons which become clear in the Lagrangian and the Hamiltonian for-
mulations of mechanics, it proves convenient to use the position and the
momentum rather than velocity of the particles in the system. This is be-
cause it is then possible to work in terms of generalized coordinates and
momenta – such as angles and angular momenta – in a completely general
way; one is not constrained to a particular coordinate system. Thus we will
say that a classical state is specified by the coordinates and the momenta
of all the constituent particles. A single particle has 3 coordinates x, y, z
and three momentum components px, py, pz so it needs six components to
specify its state. The generalized coordinates are conventionally denoted by
q and the momenta by p. This p, q space is called phase space.

Figure 1.9: Trajectory in phase space

The classical state of a particle is denoted by a point in phase space.
Its evolution in time is represented by a curve in phase space. It should be
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evident that during its evolution the phase curve of a point cannot intersect
itself since there is a unique path proceeding from each location in phase
space.

There is a difficulty in counting these states since the p and q vary con-
tinuously; there would be an infinite number of states in any region of phase
space. In classical statistical mechanics it is expedient to erect a grid in phase
space with cells Δqx Δqy Δqz Δpx Δpy Δpz. Then the classical analogue of a
quantum microstate is a cell in phase space. In other words, a system is in

Figure 1.10: Classical microstate in phase space

a given microstate if it is in a specified cell in phase space.

What should be the size of these cells in phase space? From the historical
perspective we would say that the “area” of each product Δp Δq will be a
constant h and then we will observe:

• how that constant appears in calculated physical quantities and

• how such calculated physical quantities compare with those calculated
quantum-mechanically.

Looking ahead we will see that h is identified with Planck’s constant. This
might be surprising. But we note that the Uncertainty Principle of quantum
mechanics tells us we cannot discern a state to better than a Δp Δq cell
smaller than Planck’s constant.

The general rule is that the sums over states in the quantum case corre-
spond to integrals over phase space, with appropriate normalization, in the
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classical case: ∑

single
particle
states

→
1

h3

∫
d3p d3q. (1.6.1)

1.6.2 Boltzmann and Gibbs Phase Spaces

The microstate of a system is represented by a point in phase space. A
different microstate will be represented by a different point in the phase
space. In developing the statistical approach to mechanics we must talk about
different microstates – so we are considering different points in phase space
and the probabilities associated with them. Boltzmann and Gibbs looked at
this in different ways. Boltzmann’s idea was that a gas of N particles would
be represented by N points in the 6-dimensional phase space. The evolution
of the state of the system with time is then described by the “flow” of the
“gas” of points in the phase space. This sort of argument only works for
weakly interacting particles, since:

• only then can you talk about the state of an individual particle, and

• later arguments are based on the movement of the points in phase space
being independent.

Gibbs adopted a rather more general approach. He regarded the state of a
system of N particles as being specified by a single point in a 6N–dimensional
phase space. The 6–dimensional phase space of Boltzmann is sometimes re-
ferred to as μ–space and the 6N–dimensional phase space of Gibbs is some-
times referred to as Γ–space.

In both cases one applies probabilistic arguments to the collection of
points in phase space. This collection is called an ensemble. So in Boltz-
mann’s view a single particle is the system and the N particles comprise the
ensemble while in Gibbs’s view the assembly of particles is the system and
many imaginary copies of the system comprise the ensemble. In the Boltz-
mann case one performs averages over the possible states of a single particle,
while in the Gibbs case one is considering possible states of the entire system
and applying probabilistic arguments to those.

Both views are useful. The Boltzmann approach is easier to picture but
it can only be applied to weakly interacting particles. The Gibbs approach
is more powerful as it can be applied to strongly interacting systems where
the particles cannot be regarded as being even approximately independent.

The probability of finding a system in a microstate in the region dp dq of
phase space is given by ρ dp dq where ρ is the density of representative points
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in the phase space. So the probability density of the microstate p, q is given
by ρ(p, q).

1.6.3 The Fundamental Postulate in the Classical Case

If we say that all (quantum) states are equally likely, then the classical ana-
logue will be that all points in phase space are equally likely. The quantum
version of the Fundamental Postulate refers to an isolated system. This is
a system for which E, V and N are fixed. Classically when the energy is
fixed, this restricts the accessible region of phase space to a constant-energy
hypersurface. Similarly, fixing V and N determines which regions of phase
space are available. The classical version of the Fundamental Postulate then
states that for an isolated system all available regions of phase space
on the constant energy hyper-surface are equally likely.

The probability of a macrostate corresponding to a region of phase space
will then be proportional to the number of phase points in the region. So
correctly normalized, it will be given by the density of points ρ(p, q) where
by p and q we mean the set of all momentum coordinates and all position
coordinates.

1.6.4 The classical partition function

The classical analogue of the quantum partition function, Eq. (1.4.2), is given
by

Z =
1

h3N

∫
e−H(pi,qi)/kT d3Np d3Nq. (1.6.2)

The function H (pi, qi) is the energy of the system expressed as a function of
the position and momentum coordinates qi and pi (called the Hamiltonian).

1.6.5 The equipartition theorem

The equipartition theorem is concerned with the internal energy associated
with individual degrees of freedom of a system. It has important conse-
quences for the behaviour of the thermal capacity of classical systems.

We ask the question “What is the internal energy associated with a given
degree of freedom, – say pi?”. That is easy to write down:

〈Ei〉 =
1

Z

∫
Eie

−E(q1...qi...qN , p1...pi...pN )/kT d3Nq d3Np. (1.6.3)
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Assuming the energy Ei depends only on the pi and not on the other p s and
q s, we can factorize that bit out of the exponential and write the integral as

↓......... no p .........
i ↓

〈Ei〉 =

∫
Eie

−Ei/kT dpi

∫
e−E(q1...qi...qN ,p1...pn)/kT d3Nq d3N−1p

∫
e−Ei/kT dpi

∫
[same integral as above − no pi]

(1.6.4)

So the second integral in numerator and denominator cancel, leaving the
simple expression

〈Ei〉 =

∫
Eie

−Ei/kT dpi∫
e−Ei/kT dpi

. (1.6.5)

This may be simplified by using the beta trick discussed in Section 1.4.5. We
write β = 1/kT and use

Eie
−βEi = −

∂

∂β
e−βEi (1.6.6)

so that

〈Ei〉 = −
∂
∂β

∫
e−βEidpi

∫
e−βEidpi

(1.6.7)

or

〈Ei〉 = −
∂

∂β
ln

∫
e−βEidpi. (1.6.8)

At this stage we must be more specific about the functional form of Ei(pi).
Since the pi is a momentum then for a classical particle Ei(pi) = p2

i /2m: a
quadratic dependence. For simplicity let us write simply

Ei = bp2
i (1.6.9)

for some positive constant b. The integral is then
∫

e−βEidpi =

∫
e−βbp2

i dpi. (1.6.10)

We don’t actually need to evaluate the integral! Remember that we are going
to differentiate the logarithm of the integral with respect to β; so all we want
is the β-dependence. Let us make a change of variable and put

βp2
i = y2. (1.6.11)

The integral then becomes

β−1/2

∫
e−by2

dy (1.6.12)
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so that

〈Ei〉 = −
∂

∂β
ln

(

β−1/2

∫
e−by2

dy

)

= −
∂

∂β

{

−
1

2
ln β + ln

∫
e−by2

dy

}

.

(1.6.13)

The second term is independent of β so upon differentiation it vanishes. Thus
differentiating we obtain

〈Ei〉 =
1

2β
(1.6.14)

or, in terms of T :

〈Ei〉 =
1

2
kT. (1.6.15)

So you see we didn’t have to evaluate the integral – and the b has vanished;
the physics came out of the integral upon change of variables.

The general conclusion here may be stated as the Equipartition theo-
rem: For a classical (non-quantum) system each degree of freedom with a
quadratic dependence on coordinate or momentum gives a contribution to
the internal energy of kT/2.

[Incidentally, if Ei ∝ qn
i or pn

i (for even n) then the corresponding equiparti-
tion energy is given by 〈Ei〉 = kT/n. ]

1.6.6 Consequences of equipartition

We consider two examples – lattice vibrations, and a gas of particles.

Lattice vibrations

For the case of lattice vibrations each atom is essentially three harmonic
oscillators, one in the x, y, and z directions. Thus for N atoms we have
3N harmonic oscillators. Now in this case both the position and momentum
coordinates contribute a quadratic term to the energy. The internal energy
is then

E = 3NkT (1.6.16)

in the non-quantum (high temperature) limit. Differentiation with respect
to temperature gives the isochoric thermal capacity

CV = 3Nk

= 3R per mol.
(1.6.17)
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Gas of particles

Considering now a gas of noninteracting particles there is no contribution to
the energy from the position coordinates. Only the momentum coordinates
contribute a quadratic term to the energy and the internal energy is then

E =
3

2
NkT (1.6.18)

in the non-quantum (high temperature) limit. Differentiation with respect
to temperature gives the (isochoric) thermal capacity

CV =
3

2
Nk

=
3

2
R per mol.

(1.6.19)

The thermal capacity of the solid is double that of the fluid because in the
solid the position coordinates also contribute to the internal energy.
[In fact the walls of a box of gas can be modelled as an oscillator with a
power law potential V ∝ xn where n → ∞. ]

Breakdown of equipartition

Equipartition breaks down when quantum effects become important. In Sec-
tion 2.3.3 we shall see that the internal energy of a single quantum free
particle corresponds to 3

2
kT : the equipartition value for the three spatial de-

grees of freedom. However once we have a collection of N identical particles
comprising a quantum gas, the internal energy is given, in Section 2.7.1, by

E =
3

2
NkT

{

1 + a

√
2

π

1

3

( εq

kT

)3/2

+ a2 . . .

}

, (1.6.20)

where a = +1 for fermions, zero for “classical” particles and −1 for bosons
and εq is the quantum energy parameter (the Fermi energy in the case of
fermions). The equipartition result occurs at high temperatures; as the gas
cools, quantum effects become important. For fermions the internal energy
increases above the equipartition value, while for bosons the internal energy
decreases below the equipartition value.

In Problem 1.16 you will see that the internal energy of a quantum har-
monic oscillator may be written as

E = kT +
~2ω2

12kT
+ ∙ ∙ ∙ . (1.6.21)
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The first term represents the high-temperature equipartition value. The sec-
ond (and higher) terms indicate the deviations, showing the internal energy
increasing above its high-temperature value as the temperature is lowered.

1.6.7 Liouville’s theorem

We ask the question “How does a macroscopic system evolve in time?”. The
answer is that it will develop in accordance with the Second Law of thermo-
dynamics; the system evolves to the state of maximum entropy consistent
with the constraints imposed. Can this be understood from microscopic first
principles? In other words, can the law of entropy increase be derived from
Newton’s laws? Both Boltzmann and Gibbs agonized over this.

We need a definition of entropy which will be suitable for use in the
classical case. The problem is that there are not discrete states now, since
the p and the q can vary continuously. By analogy with the Gibbs expression
for entropy:

S = −k
∑

j

Pj ln Pj , (1.6.22)

since the probability (density) is given by the density of points in phase space,
we now have

S = −k

∫
ρ ln ρ dp dq. (1.6.23)

It is essentially (minus) the average of the logarithm of the density of points
in phase space.

If one calculates the way points move around phase space under the in-
fluence of the laws of mechanics one finds that the “flow” is incompressible.
Thus the density remains constant. This result is known as Liouville’s the-
orem. We need the machinery of Hamiltonian mechanics to show this. If
you are happy with Hamiltonian mechanics the proof is sketched below. But
the implication is that since ρ remains constant then the entropy remains
constant, so the Second Law of thermodynamics seems to be inconsistent
with the laws of mechanics at the microscopic level.

To demonstrate Liouville’s theorem we first note that the flow of points
in phase space must obey the equation of continuity, since the number of
points is conserved:

∂ρ

∂t
+ div vρ = 0. (1.6.24)

However in this case ρ depends on the position and momentum coordinates,
q and p. Thus the divergence contains all the ∂/∂q derivatives and all the
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∂/∂p derivatives. And the “velocity” v has components dp/dt as well as the
usual dq/dt. Thus the divergence term is actually

div vρ =
∂

∂p

(
dp

dt
ρ

)

+
∂

∂q

(
dq

dt
ρ

)

(1.6.25)

(these equations really contain all the q and p coordinates; the above, as
elsewhere, is a shorthand simplification). We expand the p and q derivatives
to give

div vρ =

(
∂

∂p

dp

dt
+

∂

∂q

dq

dt

)

ρ +
∂ρ

∂p

dp

dt
+

∂ρ

∂q

dq

dt
(1.6.26)

and then we use Hamilton’s equations

dp

dt
= −

∂H

∂q
,

dq

dt
=

∂H

∂p
(1.6.27)

in the first bracket. Then

∂

∂p

dp

dt
+

∂

∂q

dq

dt
= −

∂2H

∂p∂q
+

∂2H

∂q∂p
= 0 (1.6.28)

Thus we find that
∂ρ

∂t
+

∂ρ

∂p

dp

dt
+

∂ρ

∂q

dq

dt
= 0. (1.6.29)

But we recognize this as the total derivative of ρ; it is the derivative of the
density when moving with the flow in phase space. This is zero. Thus as
the representative points evolve and flow in phase space, the local density
remains constant. This is the content of Liouville’s theorem, expressed in its
usual form as

dρ

dt
= 0. (1.6.30)

We have a paradox: since ρ remains constant during evolution then the
entropy remains constant; the Second Law of thermodynamics seems to be
inconsistent with the laws of mechanics at the microscopic level.

1.6.8 Boltzmann’s H theorem

The resolution of the paradox of the incompatibility between Liouville’s the-
orem and the Second Law may be understood from the nature of the flow
of points in phase space. Boltzmann defined a quantity H, which was essen-
tially the integral of ρ ln ρ over phase space and he obtained an equation of
motion for H as a probabilistic differential equation for the flow of points into
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and out of regions of phase space. We shall adopt a variant of the approach
of Gibbs to study the evolution of Boltzmann’s H. Please note this H is
neither the hamiltonian of the previous section nor the enthalpy function;
this is Boltzmann’s H.

The flow of points in phase space is complicated. Since we have a given
number of elements in our ensemble, the number of points in phase space is
fixed. And Liouville’s theorem is saying that the multi-dimensional volume
occupied by the points is constant. But the flow can be “dendritic” with
fingers spreading and splitting in all directions, as in Fig. 1.11.

Figure 1.11: Evolution of a region of phase space

And as this happens, there will come a time when it is difficult to distin-
guish between what is an occupied region and what is an unoccupied region
of phase space; they will be continually folded into each other. Gibbs argued
that there was a scale in phase space, beyond which it was not possible (or
at least reasonable) to discern. If the details of the state “3” in Fig. 1.11 are
too fine to discern, then it will simply appear as a region of greater volume
and, therefore, lesser density.

Figure 1.12: Apparent reduction in density in phase space
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The procedure of taking an average over small regions of phase space in
this way is known as “coarse graining”. Gibbs showed rigorously (rather than
by just using diagrams as here) that the coarse grained density of points in
phase space decreased as time proceeded [15].

Thus the conclusion is that the coarse-grained H decreases; so the coarse-
grained entropy increases.

There is a connection with quantum mechanics, which may be invoked in
the question of coarse-graining. The volume of a “cell” in phase space is a
product of p, q pairs. Now the Uncertainty Principle tells us that we cannot
locate a point within a p q area to within better than Planck’s constant. This
gives the ultimate resolution that is achievable in specifying the state of a
system – so at the fundamental level there is indeed a firm justification for
coarse-graining.

Quantum mechanics has a habit of popping up in the most unexpected
areas of statistical thermodynamics. This theme continues into the next
section.

1.7 The Third Law of thermodynamics

1.7.1 History of the Third Law

The third law of thermodynamics arose as the result of experimental work
in chemistry, principally by the famous physical chemist Walther Nernst. He
published what he called his “heat theorem” in 1906. A readable account of
the history of the Third Law and the controversies surrounding its acceptance
is given by Dugdale [16].

Nernst measured the change in Gibbs free energy and the change in en-
thalpy for chemical reactions which started and finished at the same temper-
ature. At lower and lower temperatures he found that the changes in G and
the changes in H became closer and closer.

Nernst was led to conclude that at T = 0 the changes in G and H were
the same. And from some elementary thermodynamic arguments he was able
to infer the behaviour of the entropy at low temperatures.

Changes in H and G are given by

ΔH = TΔS + V Δp

ΔG = −SΔT + V Δp .
(1.7.1)

Thus ΔG and ΔH are related by

ΔG = ΔH − TΔS − SΔT (1.7.2)
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Figure 1.13: Nernst’s observations

and if the temperature is the same before and after, ΔT = 0, so then

ΔG = ΔH − TΔS. (1.7.3)

This is a very important equation for chemists.
Now Nernst’s observation may be stated as

ΔH − ΔG → 0 as T → 0, (1.7.4)

which he realized implied that

TΔS → 0 as T → 0. (1.7.5)

1.7.2 Entropy

On the face of it this result is no surprise since the factor T will ensure the
product TΔS goes to zero. But Nernst took the result further. He studied
how fast ΔH − ΔG tended to zero. And his observation was that it always
went faster than linearly. In other words he concluded that

ΔH − ΔG

T
→ 0 as T → 0. (1.7.6)

So even though 1/T was getting bigger and bigger, the quotient (ΔH −
ΔG)/T still tended to zero. But we know that

ΔH − ΔG

T
= ΔS. (1.7.7)

So from this Nernst drew the conclusion

ΔS → 0 as T → 0. (1.7.8)

The entropy change in a process tends to zero at T = 0. The entropy thus
remains a constant in any process at absolute zero. We conclude:
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• The entropy of a body at zero temperature is a constant, independent
of all other external parameters.

This was the conclusion of Nernst; it is sometimes called Nernst’s heat theo-
rem. It was subsequently to be developed into the Third Law of thermody-
namics.

1.7.3 Quantum viewpoint

From the purely macroscopic perspective the third Law is as stated above:
at T = 0 the entropy of a body is a constant. And many conclusions can be
drawn from this. One might ask the question “what is the constant?”. How-
ever we do know that thermodynamic conclusions about measurable quan-
tities are not influenced by any such additive constants since one usually
differentiates to find observables.

If we want to ask about the constant then we must look into the mi-
croscopic model for the system under investigation. Recall the Boltzmann
expression for entropy:

S = k ln Ω

where Ω is the number of microstates in the macrostate. Now consider the
situation at T = 0. Then we know the system will be in its ground state,
the lowest energy state. But this is a unique quantum state. Thus for the
ground state

Ω = 1 (1.7.9)

and so
S = 0. (1.7.10)

Nernst’s constant is thus zero and we then have the expression for the Third
Law:

• As the absolute zero of temperature is approached the entropy of all
bodies tends to zero.

We note that this applies specifically to bodies that are in thermal equilib-
rium. The Third Law can be summarized as

∂S

∂ anything
→ 0 as T → 0. (1.7.11)

The above discussion is actually an over-simplification. In reality there
may be degeneracy in the ground state of the system; then the above argu-
ment appears to break down. However, recall that entropy is an extensive
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quantity and that the entropy of the system should be considered in the
thermodynamic limit. In other words, strictly, we should examine how the
intensive quantity S/V or S/N behaves in the limit V → ∞, N → ∞ while
V/N remains constant.

If the degeneracy of the ground state is g then we must look at the be-
haviour of ln(g)/N . This will tend to zero in the thermodynamic limit so
long as g increases with N no faster than exponentially. This is the funda-
mental quantum-mechanical principle behind the Third Law. The interested
reader should consult the paper by Leggett [17] for a deeper discussion of
these points.

To complete this discussion it is instructive to see how the Third Law
would fail if classical mechanics were to apply down to T = 0. We saw, in
Section 1.6.7, that the Gibbs expression for entropy:

S = −k
∑

j

Pj ln Pj (1.7.12)

must be replaced, in the classical case by:

S = −k

∫
ρ ln ρ dp dq, (1.7.13)

where ρ is the density of points in phase space. This is necessary because in
the classical case there are no discrete states and the momenta and coordi-
nates, the p and q, can vary continuously.

As the temperature is lowered the mean energy of the system will de-
crease. And corresponding to this, the “volume” of phase space occupied
will decrease. In particular the momentum coordinates q will vary over a
smaller and smaller range. In the T → 0 limit the momentum range will
become localized closer and closer to q = 0. The volume of occupied phase
space shrinks to zero and the entropy thus tends to −∞. This indeed is the
limiting value indicated by the classical treatment of the Ideal Gas, as we
shall see in Section 2.3.3.

The Uncertainly Principle of quantum mechanics limits the low tempera-
ture position-momentum specification of a system; you cannot localize points
in phase space to a volume smaller than the appropriate power of Planck’s
constant. This fundamental limitation of the density of phase points recovers
the Third Law. Thus again we see the intimate connection between quantum
mechanics and the Third law.

The Second Law tells us that there is an absolute zero of temperature.
Now we see that the Third Law tells us there is an absolute zero of entropy.
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1.7.4 Unattainability of absolute zero

The Third Law has important implications concerning the possibility of cool-
ing a body to absolute zero. Let us consider a sequence of adiabatic and
isothermal operations on two systems, one obeying the Third Law and one
not, as in Fig. 1.14.

Figure 1.14: Approaching absolute zero

Taking a sequence of adiabatics and isothermals between two values of
some external parameter we see that the existence of the Third Law implies
that you cannot get to T = 0 in a finite number of steps. This is, in fact,
another possible statement of the Third Law.

Although one cannot get all the way to T = 0, it is possible to get closer
and closer. Fig 1.15, adapted and extended from Pobel’s book [18], indicates
the success in this venture.

1.7.5 Heat capacity at low temperatures

The Third Law has important consequences for the heat capacity of bodies
at low temperatures. Since

C =
∂Q

∂T

= T
∂S

∂T
,

(1.7.14)
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Figure 1.15: The road to absolute zero (adapted from Pobel [18]).

and the Third Law tells us that

∂S

∂T
→ 0 as T → 0 (1.7.15)

we then have
C → 0 as T → 0 (1.7.16)

Classical models often give a constant heat capacity – from equipartition.
For an ideal gas (Section 2.3.3)

CV =
3

2
Nk (1.7.17)

independent of temperature. The Third Law tells us that this cannot hold
at low temperatures. And indeed we shall see that for both Fermi and Bose
gases CV does go to zero as T → 0.
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1.7.6 Other consequences of the Third Law

Most “response functions” or susceptibilities – generalized spring constants –
go to zero or to a constant as T → 0 as a consequence of the Third Law. This
is best seen by examining the relevant Maxwell relation (Appendix B.6). For
example consider the thermal expansion coefficient. The Maxwell relation
here is

∂V

∂T

∣
∣
∣
∣
p

= −
∂S

∂p

∣
∣
∣
∣
T

. (1.7.18)

The right hand side is zero by virtue of the Third Law. Thus we conclude
that

∂V

∂T

∣
∣
∣
∣
p

→ 0 as T → 0; (1.7.19)

the expansion coefficient goes to zero.
An interesting example is the magnetic susceptibility of a paramagnet,

which we will treat in Section 2.9. The parallel with the ubiquitous model
pV system is made by noting that the magnetic work increment is

ΔWm = −MΔB, (1.7.20)

corresponding to the mechanical work increment

ΔW = −p ΔV. (1.7.21)

Thus we can take over pV results through the identification

M → p

B → V
(1.7.22)

where M is the total magnetic moment.
The magnetic susceptibility is

χ =
μ0

V

∂M

∂B
(1.7.23)

so that

χV/μ0 →
∂p

∂V
. (1.7.24)

There is no Maxwell relation for this, but consider the variation of the sus-
ceptibility with temperature:

∂(χV/μ0)

∂T
=

∂2M

∂T∂B

→
∂2p

∂T∂V
.

(1.7.25)
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The order of differentiation can be reversed here. In other words

∂

∂B

∂M

∂T
→

∂

∂V

∂p

∂T
. (1.7.26)

And now we do have a Maxwell relation:

∂p

∂T

∣
∣
∣
∣
V

=
∂S

∂V

∣
∣
∣
∣
T

gives
∂M

∂T

∣
∣
∣
∣
V

=
∂S

∂B

∣
∣
∣
∣
T

. (1.7.27)

The Third Law tells us that the right hand side of these equations goes to
zero as T → 0. We conclude then that

∂χ

∂T
→ 0 as T → 0 (1.7.28)

or
χ → const as T → 0. (1.7.29)

The Third Law tells us that the magnetic susceptibility becomes constant as
T → 0. But what does Curie’s law, Eq. (2.9.12) say? This states

χ =
C

T
(1.7.30)

where C is the Curie constant. From this we conclude

χ → ∞ as T → 0 !! (1.7.31)

This is completely incompatible with the Third Law.
However Curie’s law is a specifically high temperature result (strictly, it

applies to the small B/T limit). The general expression for the magnetization
of an ideal paramagnet of N spin 1∕2 moments μ is, Eq. (2.9.9):

M = Nμ tanh

(
μB

kT

)

(1.7.32)

and corresponding to this, the (differential) susceptibility is

χ =
Nμ2

V kT
sech2

(
μB

kT

)

. (1.7.33)

Now we see that
χ → 0 as T → 0 (1.7.34)

in conformity with the Third Law, so long as the magnetic field B is finite.
Of course you have to use a magnetic field, however small, to measure the
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susceptibility. Nevertheless, even in the absence of an externally-applied
magnetic field, there will be an internal field present: the dipole fields of the
magnetic moments themselves. Thus the Third Law is not under threat.

There is a further consideration in the case of fluid magnetic systems. In
a fluid, where the particles must be treated as delocalized, the statistics will
also have an effect. Consider the behaviour of fermions at low temperatures,
to be treated in Section 2.5. Very roughly, only a fraction T/TF of the
particles are free and available to participate in “normal” behaviour. We
then expect that the Curie law behaviour will be modified to

χ ∼

(
T

TF

)

×
C

T
(1.7.35)

or

χ ∼
C

TF

(1.7.36)

which is indeed a constant, in conformity with the Third Law. This result
is correct, but a more detailed calculation must be done to determine the
numerical constants involved.

1.7.7 Pessimist’s statement of the laws of thermody-
namics

As we have now covered all the laws of thermodynamics we can present
statements of them in terms of what they prohibit in the operation of Nature.

• First Law: You cannot convert heat to work at greater than 100%
efficiency

• Second Law: You cannot even achieve 100% efficiency — except at
T = 0

• Third Law: You cannot get to T = 0.

This is a simplification, but it encapsulates the underlying truths, and it is
easy to remember.




