4.8 Quantum phase transitions

® "Regular” phase transition driven by thermal fluctuations
— These fluctuations diverge at the critical point

— (Control the passage through the transition by varying the temperature

e “Quantum” phase transition driven by quantum fluctuations

— Thisis a transition at 7 = 0

— Pass through the transition by varying a control parameter (eg pressure, conc)

— Quantum fluctuations diverge at the Quantum Ciritical Point (2nd order)
— [ransition between different ground states
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4.8.2 Transverse Ising model LiHoF,

e At B = () have a conventional CP
witha T, ~ 1.55 K.

[—
N\

o At T =0haveaQCPwithaB, ~5T.

temperature (K)
-
o0

e Thisis an Ising system: ' ~ Z WY

paramagnet

0.4 - ferromagnet '.‘ —
e Control parameter is a transverse field B, - ': .
0 | 1
_ i i 0 2 4
A = 2nJ Z 5 Z 5 Z }/hBX Z SX transverse field (T)
ij l D. Bitko, T. Rosenbaum, and G. Aeppli,

Physical Review Letters, vol. 77, pp. 940-943, 1996.
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e At B, = 0 have conventional Ising model
— Interaction favours parallel spins — ground state Is a ferromagnet

e Application of transverse field induces transitions between T and | spins

— because [ A, Szi] # 0. (Whereas [ 7, Szi] =0
e SO transverse field = fluctuations in MZ of the Ising ordered phase
e Sufficiently large B, will kill M, — will destroy the Ising ground state.

e So B will cause a transition to a different ground state.

e 3. is the control parameter.

® [he ground state is changed by the control parameter.
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4.8.3. Recap of mean field Ising model

M M,B
o Free spins — =tanh | —— M || B)
M, NkT
e Weiss local field b=IM;z (b || z: comes from S (S7))
MZ MZ TC /IM(%
Spontaneous magnetisaton — = tanh { —— | where T, = ——
° M, M, T Nk
T 2M_ /M,
“Solution”: Rl T —————
° T. In(1+ M. /My —In(1 + M./M,)

Statistical Mechanics Week 9



Conventional Ising model

® Solution 1.0
M/My |
T ZMZ/MO 0.8F

T, In(1 + M./My) — In(1 + M./M,)

C

0.6}

0.4
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4.8.4 Application of a transverse field
e Ising mean field: b=I1M,

e Applied (transverse) field: B = B X

o lOtal field: magnitude B, = B)% 1 /IzMz2

AM

. : . <
direction S1n 0 =
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. . . MOBtot
Mean field recipe says M = M, tanh

NKT
pointing parallel to the (total) field.

e We want the magnetisation pointing in the z direction: M, = M sin &

IM V. \/ B +A°M;
M =——=  M,tanh | —

: v TE
/B2 + 12M2 A
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IM V. \/ B +A°M;
M =——= M,tanh | —

<
\/ B2 + 12M? N

® Reduced (dimensionless) variables
bx — BX/AMO’ mZ — MZ/MO’ [ = T/TC

e [hen m, satisfies the implicit equation

\/ b7+ m>
\/ b7+ m> = tanh ———
[
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4.8.5 Transition temperature

\/ b+ m?
\/ b7 + m> = tanh ——

[

e Transition occurs when m, — 0.

e Transition temperature will be a function of transverse field: 17, = T.(B,)

T.(B.)
/ (b ) _ be T.(By =0)
=Y In(1+b)—In(1-5)
I.(B,) 2B, /AM,
T. (B, =0)  In(AM, + B,) — In(AM,, — B,)
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I (Bx> _ 2B, /1M Classical (b, = 0) find m, = \/5(1 — )2
T.(B,=0) In(AMy+B)—In(AMy—B,)  Quantum ( = 0)find m_=+/2(1 — b)"

TC(BZE) 1.0:
1.2 Te(Br = 0) g3f
2 |
Z 0.6
£ 08 |
g 0.4
3 @ paramagnet i
0.4 ferromagnet | !
| 0.2

0 | 1 OO. ...........................

0 2 4 0.0 02 04 06 0.8 1.0 1.2 Ba:/)\MO

transverse field (T)
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4.8.7 Dimensionality and critical exponents Plausibility argument

e (Critical exponents — spatial dimensionality i1s important

— indeed for d > d mean field will hold. ¢n = 4 for short-range interactions
= 3 for dipole interaction

e Partition function involves summation of Boltzmann factors e —p .

e Compare with quantum generator of time evolution: e\ i
® SO Boltzmann factor is like an (imaginary) extra dimension.

e AsT — 0O, or f — 00, spatial displacement gets larger (thermodynamic limit)

® Sums In partition function cover the spatial extent of the system

e Soin T — 0 limit there is an additional dimension to be traversed.
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e Soin 7T — 0O limit there is an additional dimension to be traversed.

e A d—dimensional quantum transition is like a d + 1 dimensional classical one

(should have same critical exponents)
Susceptibility measurements

(T—T‘:)/'I’c
e Slope of the fit lines is — 1. PV UL (I LSS |
A H, =49 kOe:
® [his gives the susceptibility ] }
critical exponent y = 1. fg 10’;’ classical]
& | quantum |
. . . E | |
e Since d,, = 3 (dipole Ising) we expect S 1o} 1
. | a
y = 1 for classical (upper), and  T-01K v |
. * 1
y = 1 definitely for quantum (lower) ol )
. 107 10 10! 1
— as with f#, above. (H,-H)/H
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1.7 The Third Law of Thermodynamics

1.7.1 History of the Third Law

e \Valter Nernst: chemist! — Nernst ‘heat theorem’ — 1906

® History and controversies — see Dugdale’s book and Wilks’s book.

e Question of status of Third Law.

® Nernst measured / inferred the change

N Gibbs free energy and the change In

enthalpy for chemical reactions which started and finished at the same

temperature.
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e Nernst’s conclusion: As T' — 0 the enerey
changes in H and G tend to same: change

AH—-AG—->0 a T -0

® Nernst used thermodynamic arguments
to infer behaviour of § at low T-

AH =TAS +VAp, AG=-SAT+ VAp Y T
so AG = AH —-TAS — SAT, or atconstant’, AG=AH —TAS

e Thus Nernst inferredthat 7TAS - 0 as 7T — 0

— No surprise, but . .. ...
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1.7.2 Entropy
e How fast does AH — AG go to zero?

® Nernst observed it went faster than linearly, 1.e.
AH - AG
A

—0 as T -0.
but AH — AG = TAS.

e So Nernst concluded AS—- 0 a T -0

The entropy change in a process tends to zero at 7' = 0. The entropy thus
remains a constant in any process at absolute zero.

® [he entropy of a body at zero temperature is a constant, independent of all other
external parameters. — Nernst heat theorem.
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1.7.3 Microscopic viewpoint

e Nernst heat theorem: S = const as 7T — 0.

e \Vhat Iis the constant”? Look to microscopics.
e Boltzmann entropy S = kln Q2. €2 is no of microstates in the macrostate.

o At T'= 0 system will be in its unique ground state. Thus 2 = 1 and so S = 0.
® Nernst's constant is zero.

® [hird Law:
AS the absolute zero of temperature Is approached

the entropy of all bodies tends to zero. 05
—-0as7 -0

e Applies to systems in equilibrium. 0 anything
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Degeneracy?

 What about degeneracy of ground state? — Then argument breaks down.
» Note § is extensive; must be considered in the thermodynamic limit.

» Should examine how the intensive S/N behaves in the limit N — 0.

» |f degeneracy of the ground state is g then must look at In(g)/N.

 This will tend to zero in the thermodynamic limit so long as g increases with N
no faster than exponentially. This is the fundamental quantum-mechanical
principle behind the Third Law.

 See Leggett article for deeper discussion.
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Quantum necessity

e The Third Law would fail if classical mechanics were to apply downto 7" = 0.

» Gibbs entropy: § = — kZ Pj In Pj

1
- - Qe 3N, 13N
in classical case: § = h6Nka Inpd*pd’ g

where p Is density of points in phase space.
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Classical entropy S x — { plnpdpd*Ng

« As [ decreases the mean energy of the system will decrease.

* S0 the ‘volume’ of phase space occupied will decrease — density increases.
« Momentum coordinates p will vary over a smaller and smaller range.
« As T — 0 the p range will become localised closer and closer to p = 0.

» Volume of occupied phase space — 0,s0$ - — .

| | | mkT 32 Vi o,
N agreement with classical gas: S = NkIn —e
2rh? N
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 The Uncertainly Principle of guantum mechanics limits the low temperature
position-momentum of a system; you cannot localise points in phase space
to a volume smaller than the appropriate power of Planck’s constant.

This fundamental limitation of the density of phase points recovers the Third
Law. Thus again we see the intimate connection between quantum
mechanics and the Third law.

 The Second Law tells us that there is an absolute zero of temperature. Now
we see that the Third Law tells us there is an absolute zero of entropy.
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1.7.4 Unattainability of absolute zero

S S
isothermal
Y
Y
<
<
adiabatic A
e g
"
=
0 T 0 T
System not obeying Third Law System obeying Third Law
can get to 7' = 0 in two steps cannot get to 7' = 0 in a finite

number of steps

Seqguence of adiabatics and isothermals between two values of some external

parameter (cyclic process), Third Law implies that you cannot getto 7' = 0 in a
finite number of steps. This Is, In fact, another possible statement of the Third
Law.
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* Although one cannot get all the way

to 7= 0, it is possible to get closer
and closer.

temperatures

The figure (adapted and extended | “He —“He
from Pobel’s book), e
Indicates the success In this venture.

refrigeration

N
::38
o=
N
— QO
= O
el
QD

~

Nuclear
magnetic
refrigeration

Temperature (K)

Laser cooling of
traped gases

ptical”
temperatures

CCO

1850 1900 1950 2000
Year
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: 05
Consequences of the Third Law 54 ming ~ 0270
1.7.5 Heat capacity
. oQ N
Heat capacity C=—=T—.
oT oT
0S
Third law = — =0 a T-0.
oT
Therefore C—->0 a T-=0.
L | Solid heat capacity
Contrast equipartiton  Cy, = ENk for classical gas. Classical equipartition
But Fermi and Bose gas Cy, does go to zeroas 1" — 0. Finstein and Debye
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Expansion coefficient

o Application of the Third Law often involves the use of a Maxwell relation.

aV
The relevant Maxwell relation hereis ——

ol

P

— Left side has expansion coefficient.
— Right side connects with Third Law.

N
Third Law —> —

op

—0 as T -0

I

So expansion coefficient — Qas 7T — 0.
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Magnetic susceptibility

e Get the variables right (analogy with p — V' system)

AW = — pAV compare with AW = —- MAB

So take p — V'results and substitute p = M and V' — B. — “magnetic recipe”

Magnetic susceptibility: Y = @6_M
V 0B
Recipe says xViuy — 6_p
oV
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e | ook at dy/0dT:

ol 010B
dzp
_)
J)%
e Swap order of differentiation
0 OM 0 dp
—— — _) —— —

oB oT oV oT
Now we do have a Maxwell relation
oM

op 03
—— — % ———

or| ~ ov oT
vV

I B

A
)

Now the right hand side of these — 0 by the Third Law.
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e | ook at dy/0dT:

oT  0T0B
dzp
_)
J)%
e Swap order of differentiation
0 OM 0 dp
—— — _) —— —

oB 0T oV oT
Now we do have a Maxwell relation
oM | oS

op 03
—_— — —_ — _—
oB

or| ~ ov oT
vV B

I I

Now the right hand side of these — 0 by the Third Law.

Statistical Mechanics Week 9

Conclusion:

0
—)(—>OasT—>O

ol

or

y = const asT — 0

Curie’s law !l
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