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4.8  Quantum phase transitions
• “Regular” phase transition driven by thermal fluctuations  
 
— These fluctuations diverge at the critical point  
 
— Control the passage through the transition by varying the temperature 

• “Quantum” phase transition driven by quantum fluctuations 
 
— This is a transition at  
 
— Pass through the transition by varying a control parameter (eg pressure, conc)  
 
— Quantum fluctuations diverge at the Quantum Critical Point (2nd order)  
     — Transition between different ground states

T = 0
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4.8.2  Transverse Ising model

• At  have a conventional CP  
with a . 

• At  have a QCP with a . 

• This is an Ising system:    

• Control parameter is a transverse field  
 
     

B = 0
Tc ∼ 1.55 K

T = 0 Bc ∼ 5 T

ℋI ∼ ∑ Si
z Sj

z

Bx

ℋ = − 2ℏJ∑
ij

Si
z Sj

z − γℏBx ∑
i

Si
x

2

D. Bitko, T. Rosenbaum, and G. Aeppli,  
Physical Review Letters, vol. 77, pp. 940–943, 1996. 
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• At  have conventional Ising model  
— interaction favours parallel spins — ground state is a ferromagnet  

• Application of transverse field induces transitions between  and  spins 
— because . (Whereas  .) 

• So transverse field  fluctuations in  of the Ising ordered phase 

• Sufficiently large  will kill  — will destroy the Ising ground state. 

• So  will cause a transition to a different ground state. 

•  is the control parameter. 

• The ground state is changed by the control parameter.

Bx = 0

↑ ↓
[ℋ, Si

z] ≠ 0 [ℋI, Si
z] = 0

⟹ Mz

Bx Mz

Bx

Bx
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4.8.3. Recap of mean field Ising model

• Free spins                                 ( ) 

• Weiss local field                                     (  : comes from ) 

• Spontaneous magnetisation   where  

• “Solution”:         

M
M0

= tanh ( M0B
NkT ) M ∥ B

b = λMz ̂z b ∥ z Si
z ⟨Sj

z⟩

Mz

M0
= tanh (

Mz

M0

Tc

T ) Tc =
λM2

0

Nk

T
Tc

=
2Mz/M0

ln(1 + Mz/M0) − ln(1 + Mz/M0)
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• Solution 
 
 
 
 
 
 
 
 
 
 
Mz

M0
= 3 (1 −

T
Tc )

1/2

+
2
5

3 (1 −
T
Tc )

3/2

+ …

5

T
Tc

=
2Mz/M0

ln(1 + Mz/M0) − ln(1 + Mz/M0)

 
Critical 
point

↑

Conventional Ising model
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4.8.4 Application of a transverse field

• Ising mean field:                  

• Applied (transverse) field:      

• Total field: magnitude        
 

                 direction       

b = λMz ̂z

B = Bxx̂

Btot = B2
x + λ2M2

z

sin θ =
λMz

B2
x + λ2M2

z
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Mean field recipe says           

pointing parallel to the (total) field. 

• We want the magnetisation pointing in the z direction:  
 

                

M = M0 tanh ( M0Btot

NkT )
Mz = M sin θ

Mz =
λMz

B2
x + λ2M2

z

M0 tanh
M0

N

B2
x + λ2M2

z

kT
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• Reduced (dimensionless) variables  
 
                            ,    ,     

• Then  satisfies the implicit equation  

                                       
 

Mz =
λMz

B2
x + λ2M2

z

M0 tanh
M0

N

B2
x + λ2M2

z

kT

bx = Bx /λM0 mz = Mz/M0 t = T/Tc

mz

b2
x + m2

z = tanh
b2

x + m2
z

t
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4.8.5 Transition temperature

                                       

• Transition occurs when . 

• Transition temperature will be a function of transverse field:  
 

b2
x + m2

z = tanh
b2

x + m2
z

t
mz → 0

Tc = Tc(Bx)

tc(bx) =
2bx

ln(1 + bx) − ln(1 − bx)

9

Tc (Bx)
Tc (Bx = 0)

=
2Bx /λM0

ln(λM0 + Bx) − ln(λM0 − Bx)
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Comparison with experiment

10

Tc (Bx)
Tc (Bx = 0)

=
2Bx /λM0

ln(λM0 + Bx) − ln(λM0 − Bx)
Classical ( ) find 

Quantum ( ) find 

bx = 0 mz = 3(1 − t)1/2

t = 0 mz = 2(1 − bx)1/2
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4.8.7 Dimensionality and critical exponents                Plausibility argument
• Critical exponents — spatial dimensionality is important 

— indeed for , mean field will hold. 

• Partition function involves summation of Boltzmann factors . 

• Compare with quantum generator of time evolution: . 

• So Boltzmann factor is like an (imaginary) extra dimension. 

• As , or , spatial displacement gets larger (thermodynamic limit) 

• Sums in partition function cover the spatial extent of the system  

• So in  limit there is an additional dimension to be traversed.

d ≥ dm

e−βℋ

eiℋt/ℏ

T → 0 β → ∞

T → 0

11

 for short-range interactions 
     for dipole interaction
dm = 4

= 3
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• So in  limit there is an additional dimension to be traversed. 

• A dimensional quantum transition is like a  dimensional classical one 
(should have same critical exponents) 
                                                                            Susceptibility measurements 

• Slope of the fit lines is . 

• This gives the susceptibility 
critical exponent . 

• Since  (dipole Ising) we expect  
 for classical (upper), and 
 definitely for quantum (lower)  

— as with , above.

T → 0

d− d + 1

−1

γ = 1

dm = 3
γ = 1
γ = 1

β

12

quantum
classical
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1.7 The Third Law of Thermodynamics
1.7.1 History of  the Third Law

• Walter Nernst: chemist! – Nernst ‘heat theorem’ – 1906 

• History and controversies – see Dugdale’s book and Wilks’s book. 

• Question of status of Third Law.  
 

• Nernst measured / inferred the change in Gibbs free energy and the change in 
enthalpy for chemical reactions which started and finished at the same 
temperature.

1
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• Nernst’s conclusion: As  the  
changes in  and  tend to same: 
 

 

• Nernst used thermodynamic arguments  
to infer behaviour of  at low : 
 

 
 
so ,   or, at constant ,      

• Thus Nernst inferred that      
 
— No surprise, but . . . . . .

T → 0
H G

ΔH − ΔG → 0 as T → 0

S T

ΔH = TΔS + VΔp, ΔG = − SΔT + VΔp

ΔG = ΔH − TΔS − SΔT T ΔG = ΔH − TΔS

TΔS → 0 as T → 0
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1.7.2 Entropy
• How fast does  go to zero?   

• Nernst observed it went faster than linearly, i.e. 
 

                                 . 

but . 

• So Nernst concluded          
 
The entropy change in a process tends to zero at . The entropy thus 
remains a constant in any process at absolute zero. 

• The entropy of a body at zero temperature is a constant, independent of all other 
external parameters.  — Nernst heat theorem.                                                   _

ΔH − ΔG

ΔH − ΔG
T

→ 0 as T → 0
ΔH − ΔG = TΔS

ΔS → 0 as T → 0

T = 0

3
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1.7.3  Microscopic viewpoint

• Nernst heat theorem: . 

• What is the constant? Look to microscopics. 

• Boltzmann entropy     .        is no of microstates in the macrostate. 

• At  system will be in its unique ground state. Thus  and so . 

• Nernst’s constant is zero. 

• Third Law: 
As the absolute zero of temperature is approached  
the entropy of all bodies tends to zero. 

• Applies to systems in equilibrium.

S → const as T → 0

S = k ln Ω Ω

T = 0 Ω = 1 S = 0

4

∂S
∂ anything

→ 0 as T → 0
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Degeneracy?
• What about degeneracy of ground state? – Then argument breaks down. 

• Note  is extensive; must be considered in the thermodynamic limit.


• Should examine how the intensive   behaves in the limit .


• If degeneracy of the ground state is  then must look at .


• This will tend to zero in the thermodynamic limit so long as  increases with   
no faster than exponentially. This is the fundamental quantum-mechanical 
principle behind the Third Law. 

•  See Leggett article for deeper discussion. 
 
                                                                                                                         _

S

S/N N → ∞

g ln(g)/N

g N

5
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Quantum necessity
• The Third Law would fail if classical mechanics were to apply down to . 

• Gibbs entropy:   
 

in classical case:   
 
where  is density of points in phase space.

T = 0

S = − k∑ Pj ln Pj

S = −
1

h6N
k∫ ρ ln ρ d3Np d3Nq

ρ

6
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Classical entropy           


• As  decreases the mean energy of the system will decrease. 


• So the ‘volume’ of phase space occupied will decrease — density increases.


• Momentum coordinates  will vary over a smaller and smaller range.


• As  the  range will become localised closer and closer to .


• Volume of occupied phase space , so . 
 

in agreement with classical gas:                          

S ∝ − ∫ ρ ln ρ d3Np d3Nq

T

p

T → 0 p p = 0

→ 0 S → − ∞

S = Nk ln [( mkT
2πℏ2 )

3/2 V
N

e5/2] ↓

7
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• The Uncertainly Principle of quantum mechanics limits the low temperature 
position-momentum of a system; you cannot localise points in phase space 
to a volume smaller than the appropriate power of Planck’s constant.  
 
This fundamental limitation of the density of phase points recovers the Third 
Law. Thus again we see the intimate connection between quantum 
mechanics and the Third law.


• The Second Law tells us that there is an absolute zero of temperature. Now 
we see that the Third Law tells us there is an absolute zero of entropy.  
 
 
 
 
 
                                                                                                                         _

8



Statistical Mechanics                                                                                            Week 9                               

1.7.4 Unattainability of  absolute zero  

 
 
 
 
 
 
 
 
 
 
 
Sequence of adiabatics and isothermals between two values of some external 
parameter (cyclic process), Third Law implies that you cannot get to  in a 
finite number of steps. This is, in fact, another possible statement of the Third 
Law. 

T = 0

9
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• Although one cannot get all the way  
to , it is possible to get closer  
and closer.  
 
The figure (adapted and extended  
from Pobel’s book),  
indicates the success in this venture. 

•

T = 0

10
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Consequences of the Third Law
1.7.5 Heat capacity

Heat capacity                           . 

Third law                       . 

Therefore                                . 

Contrast equipartition        for classical gas.  

But Fermi and Bose gas  does go to zero as .

C =
∂Q
∂T

= T
∂S
∂T

⟹
∂S
∂T

→ 0 as T → 0

C → 0 as T → 0

CV =
3
2

Nk

CV T → 0
11

Solid heat capacity 
Classical equipartition 
 
Einstein and Debye 

∂S
∂ anything

→ 0 as T → 0
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Expansion coefficient

• Application of the Third Law often involves the use of a Maxwell relation. 
 

The relevant Maxwell relation here is    . 

 
— Left side has expansion coefficient.  
— Right side connects with Third Law.  
 

Third Law                     

 
So expansion coefficient  as .

∂V
∂T

p

= −
∂S
∂p

T

⟹
∂S
∂p

T

→ 0 as T → 0

→ 0 T → 0

12
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Magnetic susceptibility

• Get the variables right (analogy with  system)  
 
                          compare with     
 
So take  results and substitute  and . — “magnetic recipe”  
 

Magnetic susceptibility:               . 
 

Recipe says                                  
 
but there is no Maxwell relation for this. So . . . . . 

p − V

ΔW = − pΔV ΔW = − MΔB

p − V p → M V → B

χ =
μ0

V
∂M
∂B

χV/μ0 →
∂p
∂V

13
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• Look at : 

                                             

                                                            . 

• Swap order of differentiation  

                                                
Now we do have a Maxwell relation  

                                   

 
Now the right hand side of these  by the Third Law.                                  ↓

∂χ/∂T
∂(χV/μ0)

∂T
=

∂2M
∂T∂B

→
∂2p

∂T∂V

∂
∂B

∂M
∂T

→
∂

∂V
∂p
∂T

∂p
∂T

V

=
∂S
∂V

T

→
∂M
∂T

B

=
∂S
∂B

T

→ 0
14
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• Look at : 

                                             

                                                            . 

• Swap order of differentiation  

                                                
Now we do have a Maxwell relation  

                         

 
Now the right hand side of these  by the Third Law.

∂χ/∂T
∂(χV/μ0)

∂T
=

∂2M
∂T∂B

→
∂2p

∂T∂V

∂
∂B

∂M
∂T

→
∂

∂V
∂p
∂T

∂p
∂T

V

=
∂S
∂V

T

→
∂M
∂T

B

=
∂S
∂B

T

→ 0
15

Conclusion: 
 

 

 
or 
 

 
 
Curie’s law !!!

∂χ
∂T

→ 0 as T → 0

χ → const   as T → 0
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