
4211 Statistical Mechanics             1                                          Week 8 

Chapter 5       Fluctuations and Dynamics 
1.4.5  (Energy) Fluctuations 
 
• Isolated system       – fixed energy          – temperature fluctuates 
• System + heat bath – fixed temperature – energy fluctuates 

 
Calculate the average energy:  

  
E = kT 2 ∂ln Z

∂T V ,N

= 1
Z

Eie
−Ei kT

i
∑ = Ei pi

i
∑  

but the instantaneous energy in the system will fluctuate. 
 
• Magnitude of the fluctuations ??? 

 
 

a 

MacDonald: Noise & Fluctuations 
Uhlenbeck & Ornstein 1930 
Wang & Uhlenbeck 1945 
Wax: Dover reprint 
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• Magnitude of the fluctuations ??? 
 
RMS (root mean square) of the energy fluctuations σE, defined by 

		
σ E = E − E( )2

1/2

.  (1.36) 
 
By expanding this out we obtain 

σ E E E E

E E

2 2 2 2

2 2

2= − +

= − .  (1.37) 

So we need these two  !  ! 
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Use the “β trick” (twice) where β = 1/kT .  
 
Start from the expression for 〈E〉 as 

E = 1
Z

Eje
−βEj

j
∑ = − 1

Z
∂
∂β

e−βEj

j
∑     so     Z E = − ∂Z

∂β
. 

 
Get at 〈E2〉 by differentiating with respect to β again 

E2 = 1
Z

Ej
2e−βEj

j
∑ = 1

Z
∂2

∂β 2 e−βEj

j
∑     so    Z E2 = ∂2Z

∂β 2 .  
 
so that another Ej  comes down in the sum.  
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Evaluate the second derivative: 
∂2Z
∂β 2 =

∂
∂β

−Z E( ) = − ∂Z
∂β

E − Z ∂ E
∂β

= Z E 2 − Z ∂ E
∂β  

 
so that 

1
Z
∂2Z
∂β 2 = E 2 −

∂ E
∂β

. 
This is E2 , so that 

E2 = E 2 −
∂ E
∂β

.  

This means                       σ E
2 = −

∂ E
∂β

. 

Now convert from β back to 1/kT: 
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∂
∂β

= ∂
∂T

/ dβ
dT

    and    dβ
dT

= −1/ kT 2 , 

or 

  
σ E

2 = kT 2 ∂ E
∂T

= kT 2CV  
Thus the RMS variation in the energy is given by 

      σ E VkT C= 2 .  (1.40) 
Since CV and 〈E〉 are both proportional to the number of particles in 
the system, the fractional fluctuations in energy vary as 

            
σ E

E N
~ 1

  (1.41) 
                                          
This gets smaller and smaller as N increases.  
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E〈 〉E

σE

P E( )

 
 
  

We thus see that the 
importance of fluctuations 
vanishes in the 
thermodynamic limit N → ∞, 
V → ∞ N/V remains 
constant. And it is in this limit 
that statistical mechanics 
has its greatest applicability. 
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Chapter 5         Fluctuations and Dynamics 
5.1  (General) fluctuations 
5.1.1  Probability distribution functions 
 
When a thermodynamic property is fixed its conjugate fluctuates.  
 
• When temperature is fixed, energy fluctuates.  
• In ‘small region’ all extensive variables will fluctuate.  

 
‘Small region’ is subsystem in equilibrium with a reservoir 
comprising the rest of the system. Conditions of the equilibrium:  
all intensive variables are fixed: temperature, pressure, chemical 
potential etc. 
 

b 
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Must consider the appropriate thermodynamic potential: 
• Gibbs free energy G(T, p, μ), since T, p, and µ are fixed.  

 
Question: What is probability of occurrence of a fluctuation  X ?   
 
Isolated system: invert Boltzmann relation S = klnΩ, to give the 
probability of observing a fluctuation of magnitude X as 
 

		P X( )∝eS X( )/k
.  (5.1) 

 
Open system: probability of a fluctuation of magnitude X is then 
 

		P X( )∝e−G X( )/kT
.  (5.2) 
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(Probability is P(X) ∝ eS(X)/k where S(X) is the total entropy: system 
plus reservoir. It becomes P(X) ∝ e–G(X)/kT where G(X) is the Gibbs 
free energy of the system.) 
 
In equilibrium G is a minimum. 
 

G

XX0  
 
 

Here X  could be a general 
extensive variable or an order 
parameter of a phase transition. 
For convenience we shall put  
X0 = 0 so that the variable X 
measures the deviation from the 
mean (equilibrium) value.  
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For small deviations of X from its equilibrium value we may write 

		 
G X( ) =G 0( )+ X ∂G

∂X 0
+ X

2

2
∂2G
∂X 2

0

+!. 
- minimum:  the linear term vanishes. So leading term is thus 
quadratic. To leading order in X the probability is then 

( ) ( ) ( )( ){ }2exp 0 0 2P X G G X kT′′∝ − +  
or 

( ) ( ) 20 2G X kTP X e ′′−∝ .  (5.3) 
This is a Gaussian probability distribution, which has the general 
form 

		P X( )∝e−X2 2 X2 . 
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                                         		P X( )∝e−X2 2 X2  
And from this we can identify the mean square measure of the 
fluctuations of X as 

0

1
2

2
2
X X

GX kT
X

−

=

⎛ ⎞∂⎜ ⎟=
⎜ ⎟∂⎝ ⎠  (5.4) 

 
We see that the broader the minimum in G the greater the 
magnitude of the fluctuations. So, in particular, at a critical point 
where we saw that G″ → 0 (anomalous flattening) the fluctuations 
become infinite. This is an important property of a critical point. We 
also note that the fluctuations will diverge at the spinodal point of a 
first order transition. 
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5.1.2  Mean behaviour of fluctuations 
 
Moments 〈Xn〉 give ‘static’ information about fluctuations. 
 
But what about dynamical information – time dependence? 
 
-- Averages are problematic!! 

c 
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f i

ai

t0 t 
Fig. 5.2  Mean regression of a random fluctuation from an initial 

value 
 
This function describes “on the average” how X varies if at time t0 it 
had the value ai.  
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f t( )

t

averages
     to

t

< >f t( )

 
 

Fig. 5.3  Average behaviour of many different initial states 
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Possible averaging procedures 
 

1.   Average the squares of the fluctuations 
 

2.   Average the magnitude of fluctuations (weight function ±1) 
 

3.   Average using a clever weight function.  
  - weight with initial value: 

 

		 X 0( )X t( ) . 
This is our preferred expression for the “average” regression of a 
fluctuation from some initial value back to the mean.  
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5.1.3  The autocorrelation function 
The above expression is the mean over the ensemble where each 
element is weighted in proportion to its initial value. This function of 
the randomly varying quantity X(t) is known as the autocorrelation 
function. We shall denote it by the symbol G(t): 
 

		G t( ) = X 0( )X t( ) .  (5.5) 
 
 
 
 
 

 

d 
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Observe the smooth behaviour of the autocorrelation function. In a 
sense this function has distilled the fundamental essence of the 

random function X(t) without its 
mass of unimportant fine detail. 
 
 
The zero time value of G(t) has 
an immediate interpretation. 
From the definition of G(t) we 
have  

         		G 0( ) = X 2
  (5.6) 

the mean square value of the fluctuating variable. For long times, 
as we have argued above, G(t) must go to zero.  
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The time-translation invariance property, which we stated to be a 
property of equilibrium systems now becomes the stationarity 
principle: 

		 X τ( )X t +τ( ) = X 0( )X t( ) : 
i.e.    equilibrium  ⇒  stationarity. 
 
And stationarity implies the time-reversal behaviour. From 
stationarity we have: 

		 X −τ( )X 0( ) = X 0( )X τ( )  
but classically the X commute, so that  

		 X −τ( )X 0( ) = X τ( )X 0( )  

or                                      	G t( ) =G −t( ) .                      (5.7) 
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5.1.4  The correlation time 
The correlation function indicates the time scale of the variations of 
the random variable. Quantify this by introducing  
a correlation time τc  
 
 
 

		

G t( )≈G 0( ) t <<τ c
G t( )≈0 t >>τ c  

 
 
 
 

e 

G t( )

tτc
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The correlation time is a ‘rough measure’ of the width of the 
correlation function. Now a rough measure of the area of the 
correlation function is a rough measure of its width multiplied by a 
rough measure of its height. A rough measure of the height of the 
correlation function is its initial height G(0). And its area is most 
conveniently expressed as the integral. Thus we are saying 

		 G t( )dt0

∞

∫ = τ cG 0( )  
or 

		
τ c =

1
G 0( ) G t( )dt0

∞

∫ .  (5.8) 

This expression is taken as the definition of the correlation time. 
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5.5 Relaxation to equilibrium

• How does a non-equilibrium system relax to its equilibrium state? 
— time variation, time scale etc. 

• This is outside the framework of “equilibrium” Statistical Mechanics. 

• Once again we will use “clever arguments’’ to extend the applicability of SM. 

• Original formulation was a hypothesis of Onsager. 

• But now justified from microscopic first principles. (linear response theory)

1

5.5.1 Onsager’s hypothesis

Week 8 chunk x

Week 8
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Two scenarios: 

1. Look at the equilibrium fluctuations in a system (perhaps through a microscope).  
The observed quantity (perhaps density) will vary randomly about its mean value.  
Sometimes there will be small excursions and sometimes, large excursions from 
the mean. These excursions return, on the average, to the mean value.  

2. Apply a disturbance to this system, driving it from equilibrium. Then remove the 
disturbance. The system will then return to equilibrium. The observed quantity 
will fluctuate while — on average, returning to its mean (equilibrium) value. 

Onsager made the remarkable hypothesis that one would not be able to distinguish 
between the two situations. 

2Week 8
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Onsager’s hypothesis: The relaxation of a system following a disturbance is the 
same as the average regression of a fluctuation in an equilibrium system. 


• The behaviour of a non-equilibrium system may be understood by studying 
the properties of the corresponding equilibrium system. 


• At the microscopic level there is no distinction between equilibrium and non-
equilibrium. But then, of course, equilibrium is a thoroughly macroscopic 
concept.


• A large excursion in an equilibrium system is indistinguishable from an 
imposed excursion in a non-equilibrium system. 


•

3Week 8
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Relaxation of a non-equilibrium system to equilibrium.  
(Use  variables — measure  from its equilibrium value) 

• System is “held” in a non-equilibrium state by applying a “force” . 

• This non-equilibrium “displacement” will be denoted by . 

• The “force”  is removed — then  relaxes from  to zero.   
                   

M, B M

b

M(0)

B M M(0)

4

M(t > 0) = b Φ(t)

Week 8

M(t < 0) = b Φ(0)
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Relaxation function :


                                                        when  
 
(  and  are “macroscopic/hydrodynamic” quantities) 

Onsager’s hypothesis  .  (  is microscopic/instantaneous) 

Include constant of proportionality: .


The pre-factor comes from equipartition/microscopic calculation (linear response). 

• This is a simplified version of the treatment in the book. 

Φ(t)

M(t) = b Φ(t) t > 0

M(t) M(0)

⟹ Φ(t) ∝ ⟨m(0) m(t)⟩ m

Φ(t) =
1
kT

⟨m(0) m(t)⟩

5Week 8
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5.2  Brownian Motion 
 
The key point about Brownian motion is that it is the motion of a 
macroscopic body arising from impacts from atoms/molecules of 
the surrounding fluid.  

                                      
 

f 
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5.2.1  Kinematics of a Brownian particle 
(Brownian particle in one dimension)   Kinematics!! 
 

t

x t2( )

 
Fig. 5.8  Typical squared displacement of Brownian particle 
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The distance travelled by the Brownian particle in a time t may be 
found by integrating up its velocity: 

		x t( ) = v τ( )0

t

∫ dτ . 
Here v(τ) is the particle’s velocity at time τ. 
 
The square of the displacement is then  

		

x2 t( ) = v τ( )0

t

∫ dτ{ }2
= v τ1( )0

t

∫ dτ1 v τ2( )0

t

∫ dτ2
= dτ1 dτ2v τ1( )0

t

∫ v τ2( )0

t

∫
 

so the mean square displacement is 
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		 x
2 t( ) = dτ1 dτ2 v τ1( )v τ2( )0

t

∫0

t

∫ . 
We see that the mean square displacement is given in terms of the 
velocity autocorrelation function.  

		Gv τ1 −τ2( ) = v τ1( )v τ2( )  
Here we have used the subscript v to indicate that it is the 
autocorrelation function of the velocity. The stationarity of the 
random velocity (a consequence of thermal equilibrium) is indicated 
in the argument (τ1 – τ2). This allows us to take a further step in the 
expression for the mean square displacement.  
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We may change variables in the double integral to 
τ τ τ

τ τ
= −
= +

1 2

1 2T  
whereupon we may integrate over the variable T. This is a nontrivial 
procedure, detailed in the Appendix 4; the result is 

		 x
2 t( ) =2 t −τ( )Gv τ( )dτ0

t

∫ . (5.9) 
This is a useful expression, as we shall see. It is worthwhile to re-
emphasise what has been achieved at this stage. Using only 
kinematics we have found an expression for the mean square of 
the Brownian particle in terms of the particle’s velocity 
autocorrelation function. This also reinforced the idea that 
autocorrelation functions are useful quantities when considering 
random processes. 
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Two limiting cases – still kinematics 
 
5.2.2  Short time limit 
The natural time scale for the process is the velocity correlation 
time, which we shall denote by τv. Recall we have the definition, 
Eq. (5.8): 

		
τ v =

1
Gv 0( ) Gv t( )dt0

∞

∫ . 
More particularly, we have the statement that    

		Gv t( )≈Gv 0( ) t <<τ v . 

g 
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So when we consider times much shorter than τv, we may replace 
Gv(t) by Gv(0) in the integral expression for 〈x2(t)〉. But in this case 
Gv(0) comes out of the integral and we have 

		 x
2 t( ) =2Gv 0( ) t −τ( )dτ0

t

∫ . 
 
Now the integral may be evaluated simply, giving 

		

x2 t( ) =2Gv 0( ) t dτ
0

t

∫ − τ dτ
0

t

∫⎡
⎣⎢

⎤
⎦⎥

=2Gv 0( ) t2 −t2 /2⎡⎣ ⎤⎦
=Gv 0( )t2.  

 
 



4211 Statistical Mechanics             28                                          Week 8 

The mean square displacement is proportional to the square of the 
time interval. We may write our result as 
 

		 x
2 t( ) = v2 t2.   (5.10) 

 
This indicates that the Brownian particle is moving essentially 
freely; at these short times there have not been sufficient atomic 
impacts to have any significant effect on the particle. This is 
referred to as the ballistic regime. 
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5.2.3  Long time limit 
The other statement about the correlation time is 

		Gv t( )≈0 t >>τ v ; 
the autocorrelation function will have decayed to zero at long 
times. So when we consider times much longer than τv, Gv(t) will be 
zero and in the expression for 〈x2(t)〉 we will make negligible error by 
extending the upper limit of the integral to infinity. 

		 x
2 t( ) =2 t −τ( )Gv τ( )dτ0

∞

∫ . 
The integral may be rearranged as 

		 x
2 t( ) =2t Gv τ( )dτ0

∞

∫ −2 τGv τ( )dτ0

∞

∫ . 
The second term (independent of time) is negligible compared with 
the first at long times, so we conclude that in the long time limit 

h 



4211 Statistical Mechanics             30                                          Week 8 

		 x
2 t( ) =2t Gv τ( )dτ0

∞

∫ .  (5.11) 
 
Now we see that the mean square displacement of the Brownian 
particle is proportional to time (rather than the t2 of the ballistic 
regime).  
 
You should recall that a mean square displacement proportional to 
time is characteristic of a diffusive process. And in fact in 1d the 
solution of the diffusion equation gives directly 

		 x
2 t( ) =2Dt   (5.12) 

where D is the diffusion coefficient. 
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Thus we conclude that in the long time limit the motion of the 
Brownian particle is diffusive, and its diffusion coefficient is given by 

		D= Gv t( )dt0

∞

∫  
or 

		D= v 0( )v t( ) dt0

∞

∫ . 
The diffusion coefficient is given by the area under the velocity 
autocorrelation function.  
 
The long time limit, when t >> τv, is called the diffusive regime. 
 
Recall that the definition of the correlation time was given in terms 
of the area under the autocorrelation function, Eq. (5.8): 
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τ v =

1
Gv 0( ) Gv t( )dt0

∞

∫ . 
From this it follows that we may write the diffusion coefficient as 

		D=Gv 0( )τ v  
or 

D v v= 2 τ .  (5.13) 
 
Again we re-emphasise that the preceding discussion is purely 
kinematical. All the quantities we have considered are properties of 
the Brownian particle. The random atomic bombardment causes 
the velocity of the particle to vary randomly but we have not, as 
yet, considered the dynamics of the collision processes. 
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Equipartition 
 
Although we shall not consider the dynamics of the collision 
processes in this section, since the system of Brownian particle 
plus surrounding fluid is regarded as being in thermal equilibrium, 
we may apply the equipartition theorem to the Brownian particle. 
The objection might be raised that equipartition is a classical result 
which becomes invalid when issues of indistinguishability and 
multiple occupation of states becomes important. However we will 
apply equipartition specifically to the Brownian particle, not to the 
surrounding medium. And since the Brownian particle is a 
macroscopic object its behaviour may be understood purely in 
classical terms. Since it is in thermal equilibrium with a bath at a 
temperature T the equipartition theorem tells us that 

i 
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1
2

1
2

2M v kT=   (5.14) 
in one dimension, where M is the mass of the Brownian particle. 
The mean square velocity is then 

v kT
M

2 = .  (5.15) 
This is a consequence of the microscopic atomic bombardment 
from the surrounding fluid, but the expression is a purely 
thermodynamic result independent of the details of the interaction. 
It is sufficient that thermal equilibrium is established. 
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Equipartition allows us to write the diffusion coefficient of the 
Brownian particle as 

D kT
M v= τ .  (5.16) 

This does not mean that the diffusion coefficient is proportional to 
temperature since the velocity correlation time will, in general, 
depend on temperature. At a certain level this is still a kinematical 
result about the Brownian particle since τv is also a property of the 
Brownian particle. What we really want to know is how the 
interactions with the atoms of the surrounding medium affect the 
particle’s motion. For this we need to consider the dynamics of the 
process. 
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5.3  Langevin’s Equation 
5.3.1  Introduction 
The task of examining the dynamics of Brownian motion was 
initiated by Langevin in 1908. Langevin wrote down an equation of 
motion for the Brownian particle. Essentially this was an equation 
of the form F = ma, but Langevin’s important contribution was in 
the way he viewed the force acting on the Brownian particle. Our 
treatment is inspired by the papers of Uhlenbeck and Ornstein, and 
Wang and Uhlenbeck. 
 
Langevin wrote the force acting on the particle as 

		
F t( ) = f t( )− 1µ v .  (5.17) 

j 
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He regarded the force F(t) acting on the particle as being made up 
of two contributions: a random part f(t) and a systematic or friction 
force proportional to and opposing the particle’s velocity v. The 
constant µ in the friction force is known as the mobility. This view 
of the forces acting is eminently sensible; we know that there will 
be random atomic bombardments and a body moving in a fluid is 
known to experience friction.  
 
The Langevin equation is written 

                                   		
M
dv t( )
dt = f t( )− 1µ v t( )                     (5.18) 

and this must be solved for the velocity v(t). 
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Considering the specific problem of Brownian motion as outlined in 
the previous sections, it is to be expected that by solution of the 
Langevin equation an expression for the velocity autocorrelation 
function may be found in terms of the random force f(t). This will be 
done below. 
 
The Langevin equation is, however, capable of much more. In 
particular, it will give a relation between the random force and the 
friction force. This is a result of considerable generality and 
importance since it connects in a fundamental way the random 
fluctuations in the system f(t) and the dissipation characterised by 
the friction (or the mobility). This connection, in its general form, is 
known as the fluctuation dissipation theorem.  
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5.3.2  Separation of forces 
 
It is commonly stated that it is a hypothesis of Langevin’s approach 
that the force on the Brownian particle may be decomposed as the 
sum of a random part and a systematic friction part proportional to 
velocity.  
 
We shall see that this decomposition may actually be justified and 
understood in terms of the different centre of mass frames of the 
fluid and the Brownian particle. 
 
 
 
 
 

k 



4211 Statistical Mechanics             40                                          Week 8 

 
 
A Brownian particle at rest in the centre of mass frame of the fluid 
medium suffers bombardments from the atoms of the fluid. These 
bombardments will result in a random force. On average there will 
be as many impacts in each direction so the average of the force 
will be zero. 
 
Now consider the particle moving with respect to the centre of 
mass frame of the fluid. Then the impacts from the front will be at a 
greater relative velocity and the impacts from the rear will be at a 
lesser relative velocity. This will result in a mean force on the 
particle in opposition to its motion.  
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We can see this from a simple model. Let us consider two impacts, 
one from the rear and one from the front, where the atoms are 
moving with velocities +v and  –v. with respect to the fluid centre of 
mass.  
 

                                
 

Fig. 5.9  Bombardment of Brownian particle 
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The impact from the atom to the left transfers momentum mΔv to 
the Brownian particle.  
Assuming the atom mass m is very much less than that of the 
Brownian particle M, its velocity will be reversed. Its change of 
velocity is then twice the relative velocity, 2(v – V), so the 
momentum transferred is then  

		Δpleft =2m v −V( ) . 
In the impact from the right the change of velocity of the atom will 
similarly be twice the relative velocity, in this case 2(v + V). So the 
momentum transferred from this impact is  

		Δpright =2m v +V( )  
 The net momentum transfer is the difference between these 

Δp mV= −4 . 
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The net momentum transfer is the difference between these 
Δp mV= −4 . 

 
Then if there are n impacts per unit time the net force on the 
Brownian particle will be  

−4nmV . 
On average, in the centre of mass frame of the fluid, there will be 
equal impacts from the left and right, leading to an average force 
proportional to V. 
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We have seen that Langevin’s decomposition of the forces acting 
on the Brownian particle may be understood in terms of the 
different centre of mass frames of the fluid and the particle. The 
random force f(t), whose mean value is zero, is supplemented by a 
mean force proportional to and opposing the velocity of the 
particle. Thus we have justified writing the force as 

		
F t( ) = f t( )− 1µ v  

and we see that the mobility µ should be related to f(t) in a 
fundamental way. This relation will follow from our consideration of 
the solution of the Langevin equation. 
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5.3.3  The Langevin equation 
We write the Langevin equation as 

		
M
dv t( )
dt + 1

µ
v t( ) = f t( ) , (5.19) 

which emphasises its structure as an inhomogeneous linear first 
order ordinary differential equation with source f(t). It is convenient 
to make a simplification by the substitutions 

		

A t( ) = f t( )
M

γ = 1
Mµ

.  

Then the Langevin equation becomes 

l 
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dv t( )
dt +γ v t( ) = A t( ) . 

This has solution 

		v t( ) = v 0( )e−γ t + eγ u−t( )A u( )du0

t

∫ . 
The first term represents the transient part of the solution: that 
which depends on the initial conditions and which arises from the 
solution to the corresponding homogeneous equation. This is the 
complementary function. The second term represents the steady 
state response to the source ‘force’ A(t). This is the particular 
integral and this part persists when all memory of the initial 
condition has gone. 
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It is conventional to enunciate properties of the (scaled) random 
force A(t). These are listed as 
 
1 〈A(t)〉 = 0. This follows, in our treatment, from the considerations 

of the centre of mass frame of the fluid. 
 

2 〈A(t1) A(t2)〉 = 0 unless t1 is ‘almost identical with’ t2. We 
understand this to mean that the correlation time of the random 
force is short.    
 

3 〈A2(t)〉 has some definite value (independent of t). 
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We may develop property 2 by approximating 
 

		 A t1( )A t2( ) = A2δ t1 −t2( ) . (5.20) 
 
If we integrate this we obtain 
 

( ) ( )2 0 dA A A t t
∞

−∞
= ∫   (5.21) 

 
so that A2 is the area under the (scaled) random force correlation 
function. 
 
 
 



4211 Statistical Mechanics             49                                          Week 8 

 
As a simple application of the above results we can examine the 
mean value of v(t). We find for a given initial condition 
 

		 v t( ) = v 0( )e−γ t   (5.22) 
 
since by property 1 〈A(t)〉 = 0. This tends to zero as time proceeds 
and memory of the initial condition fades. 
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5.3.4  Mean square velocity and equipartition 
By similar arguments we can now examine the mean square 
velocity. A key result then follows when we exploit the equipartition 
theorem to relate the equilibrium mean square velocity of the 
Brownian particle to the temperature of its surrounding medium. 
The expression for the mean square velocity is 

		 v
2 t( ) = v2 0( )e−2γ t +2e−2γ t eγ u v 0( )A u( ) du0

t

∫ +e−2γ t du
0

t

∫ dw
0

t

∫ eγ u+w( ) A u( )A w( ) . 
The first term is the transient response which dies away at long 
times; it is of no interest. The second term vanishes since there is 
no correlation between v(0) and A(t). The third term is of interest 
since it describes the equilibrium state of the particle, independent 
of the initial conditions. In this term we make use of property 2 and 
approximate the force autocorrelation function by the delta function 
expression, Eq. (5.20): 

m 
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		 A t1( )A t2( ) = A2δ t1 −t2( ) . 
This forces w = u when the integral over w is performed. Thus we 
obtain at long times   

		

v2 t( ) = A2e−2γ t du
0

t

∫ e2γ u

= A
2e−2γ t

2γ e2γ t −1( )
= A

2e−2γ t

2γ 1−e−2γ t( ).  (5.23) 

And in the long time limit this takes on the time-independent value 

v A2
2

2
=

γ . 
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Equipartition 
The importance of this expression becomes apparent when we 
exploit the equipartition theorem. This tells us, as we have seen,  

v kT
M

2 =   (5.24) 
so that  

γ = M
kT
A

2
2
  (5.25) 

which provides us with a relation between the mobility (contained in 
γ) and the random force (contained in A). From the definition of γ , 
that for A2 and that for A(t) we can then express the mobility as 
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( ) ( )1 1 0 d
2

f f t t
kTµ

∞

−∞
= ∫ . (5.26) 

 
This expression achieves the objective of relating the two forces in 
the Langevin equation, the mobility or friction force and the random 
force of atomic bombardment. The structure of this expression is 
that the systematic/dissipative force is expressed in terms of the 
autocorrelation function of the random/fluctuation force. This is a 
very general result, called the fluctuation dissipation theorem. The 
kT factor that appears in the relation between the macroscopic and 
the microscopic force is, recall, a consequence of equipartition.    
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5.3.5  Velocity autocorrelation function 
In our kinematical analysis of Brownian motion we saw that the 
motion of the Brownian particle was conveniently expressed in 
terms of the velocity autocorrelation function. The calculation of this 
is only slightly more complicated than that of the mean square 
velocity. We have 

		 v t( )v t +τ( ) = v2 0( )e−γ 2t+τ( ) +e−γ 2t+τ( ) du
0

t

∫ dw
0

t+τ

∫ eγ u+w( ) A u( )A w( )  
where the cross term vanishes, as above. And as discussed 
above, the first term is of no interest since at long times t the 
memory of the initial state is lost. The steady-state behaviour is 
contained in the remaining term. To proceed we use property 2 of 
the force autocorrelation function and the delta function 
approximation. This forces w = u when the integral over w is 

n 
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performed. The calculation is identical to that for the mean square 
velocity, except for the additional e–γτ prefactor 

		
v t( )v t +τ( ) = A

2

2γ e
−γτ

 
or 

		Gv t( ) = v2 0( ) e−γ t .  (5.27) 
Thus we conclude that the correlation time for the velocity 
autocorrelation function is simply the damping time associated with 
the friction force 

τ γv =
−1 . 

We saw that the diffusion coefficient of the Brownian particle was 
given in terms of τv by 



4211 Statistical Mechanics             56                                          Week 8 

D kT
M v= τ , 

which we can now re-express as 

D kT
M

=
γ  

or 
D kT= µ .  (5.28) 

This connection between the diffusion coefficient and the mobility 
is known as the Einstein relation.  
 
That is fine; it is purely kinematical and descriptive. But the real 
advance is that the fluctuation dissipation theorem of the previous 
section allows us to express this in terms of the fluctuating 
microscopic forces. That is the true content of the Einstein relation. 
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5.3.6  Electrical analogue of the Langevin equation 
The Langevin equation, Eq. (5.19): 

( ) ( ) ( )d 1
d
v t

M v t f t
t µ

+ =                   
L

dI t( )
dt

+ RI t( ) =V t( )  
describes the velocity v(t) of the Brownian particle of mass M in 
terms of the mobility µ (inverse friction) and the random force f(t). 
However the real achievement of the approach was in relating the 
mobility to the random force, Eq. (5.26).  
 

( ) ( )1 1 0 d
2

f f t t
kTµ

∞

−∞
= ∫  

Imagine an electrical circuit comprising an inductor of inductance L 
and a resistor of resistance R. The current I flowing in the circuit 
results from the motion of a very large number of electrons. 

o 

In this section we shall explore an 
electrical analogue of this. 
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The voltage V across the circuit is given by 
( ) ( ) ( )dI t

L RI t V t
dt

+ = . (5.29) 
The random motion of the electrons will result in a randomly 
fluctuating voltage V(t). 
 
The analogue of the fluctuation-dissipation result, Eq. (5.26) gives 

( ) ( )1 1 0 d
2

f f t t
kTµ

∞

−∞
= ∫       "         ( ) ( )1 0 d

2
R V V t t

kT

∞

−∞

= ∫  
This shows how the resistance (dissipation) is related to the 
fluctuations of voltage.  
  

                           
V 2

Δf
= 4kTRΔf . 

Frequency domain 
Johnson noise 
Nyquist theorem 
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