4.5 Landau theory of phase transitions 4.5.1 Landau free energy

- extend the concept of the free energy. . . .
- The (magnetic) Helmholtz free energy has "proper variables" T and B. F = F(T, B). And in differential form
- Thus S and M are given by

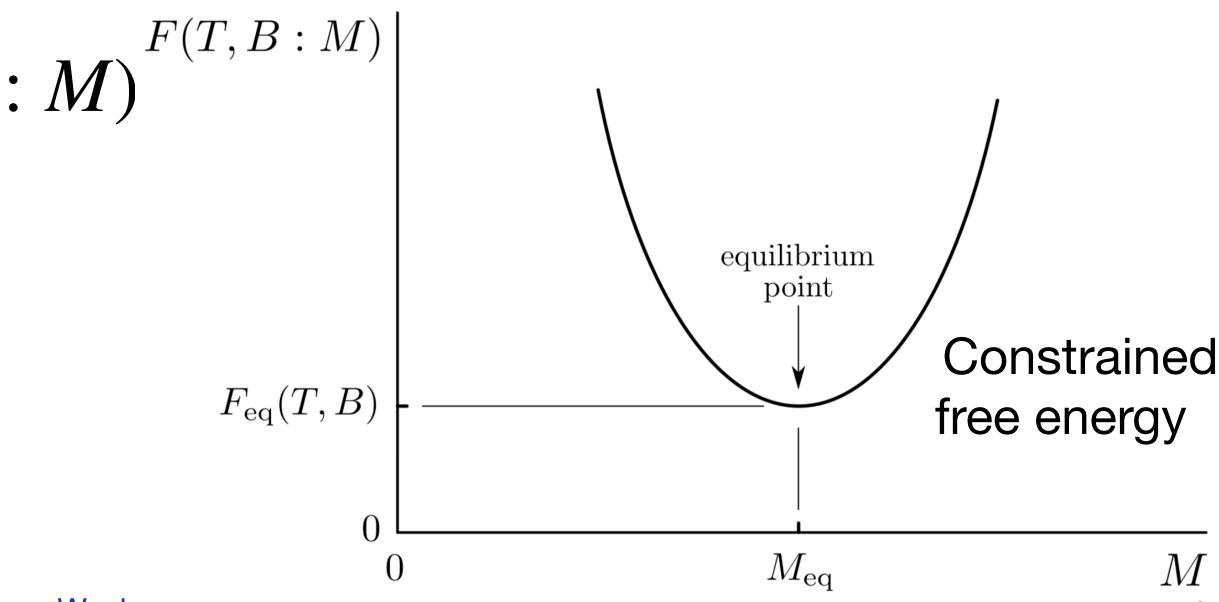
$$= -\frac{\partial F}{\partial T}\Big|_{B}$$

In order to develop a general theory of phase transitions it is necessary to

 $\mathrm{d}F = -S\mathrm{d}T - M\mathrm{d}B.$

$$M = -\frac{\partial F}{\partial B}\Big|_{T}$$

- This free energy describes a system in equilibrium $F_{eq}(T, B)$.
- Now let us hold the system <u>away from equilibrium</u>, by <u>constraining</u> the value of M. Write the corresponding free energy as F(T, B : M).
- Upon releasing the constraint on M, the system will relax to its equilibrium state; *M* will move towards its equilibrium $-\partial F/\partial B|_T$.
- This will be the minimum of F(T, B : M)(Generalisation of the law of maximal entropy)



Week o

- the order parameter.
- Thus Landau's free energy is a function of the order parameter.
- Landau (constrained) free energy.

• These ideas were used by Landau. The constraint on the free free energy is

And the equilibrium value of the order parameter is found by minimising the

• For definiteness we will, in this section, consider the case of a ferromagnet, but it should be appreciated that the ideas introduced apply more generally.

3

4.5.2 Landau free energy for ferromagnet Motivation for Landau theory

Calculate the constrained free energy for the Weiss model

- The order parameter is the magnetisation M (actually M/M_0)
- Evaluate the internal energy and the entropy separately.
- Since we require the constrained free energy we must be sure to keep M as an explicit variable.
- The internal energy is

F = E - TS.

$$\int B \cdot dM$$
.

Internal energy is

- In the Weiss model, B is the sum of the applied field B_0 and the local (mean) $B = B_0 + b$. field b.
- Write b in terms of T_c :

Integrate up internal energy:

4211 Statistical Mechanics

 $E = - \int B \cdot dM.$

 $b = \frac{Nk}{M_0^2} T_c M.$

 $E = -B_0 M - \frac{NkT_c}{2} \left(\frac{M}{2}\right)^2.$ M_0

- Consider the case where there is no external applied field: $B_0 = 0$.
- In terms of $m = M/M_0$ (the order parameter), E is

 $E = -\frac{NkT_{\rm c}}{2}m^2.$

- **Entropy** (Gibbs entropy in Boltzmann ensemble) S = -Nk
- Consider spin 1/2, so only two spin states

$$S = -Nk \left[p_{\uparrow} \right]$$

- In terms of *m*, the fractional magnetisation $p_{\uparrow} = \frac{1}{2}(1+m),$
- So entropy (expressed as a function of *m*) is

$$S = \frac{1}{2}Nk \left[2\ln 2 - (1+m)\ln(1+m) - (1-m)\ln(1-m) \right].$$

4211 Statistical Mechanics

$$\sum_{j} p_j \ln p_j$$

 $\ln p_{\uparrow} + p_{\downarrow} \ln p_{\downarrow} |.$

$$p_{\downarrow} = \frac{1}{2}(1-m)$$

Week 6

4

• Assemble the free energy F = E - TS:

$$F = -\frac{1}{2}Nk\left\{T_{c}m^{2} + T\left[2\ln 2 - (1+m)\ln(1+m) - (1-m)\ln(1-m)\right]\right\}$$

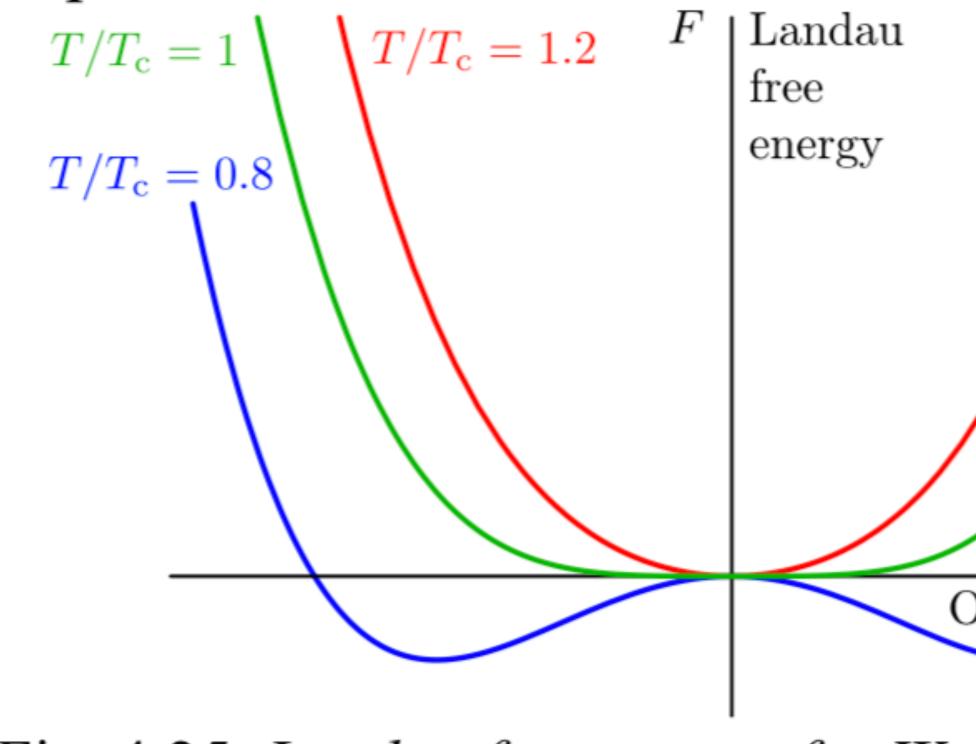


Fig. 4.25 Landau free energy for Weiss model ferromagnet

4211 Statistical Mechanics

- Above T_c the minimum is at m = 0.
- Below T_c there are minima at <u>finite</u> m.
- This is a 2nd order transition because $m \to 0$ continuously as $T \to T_c$ (from below).

Order parameter • Strictly this picture applies for a scalar order parameter.

m

• The XY model - *m* is a 2d vector

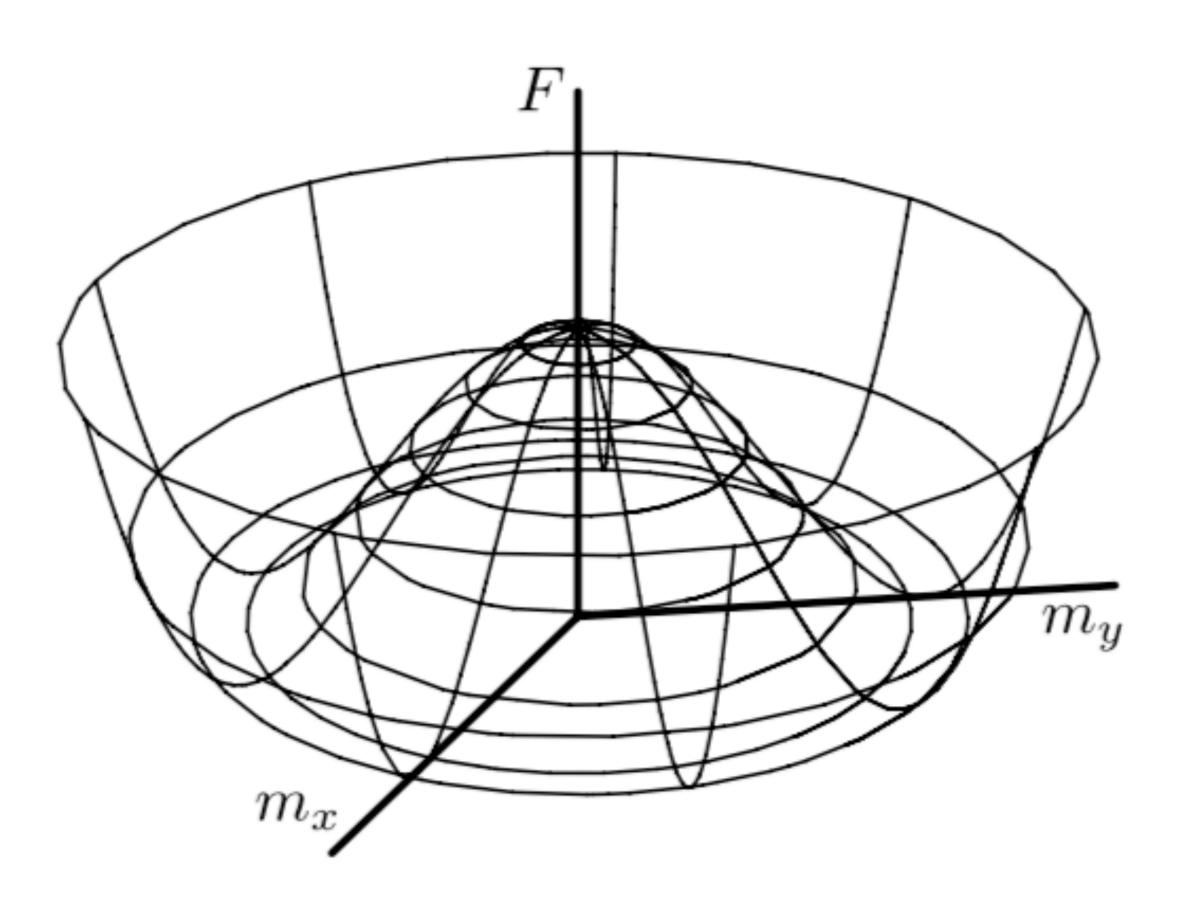


Figure 4.27: Landau free energy for XY model

4211 Statistical Mechanics

Discrete vs continuous symmetry breaking

In the vicinity of the critical point

$$F = \frac{1}{2}Nk\left\{ \left(T - T_{c}\right)m^{2} + \frac{1}{6}m^{4} \right\}$$
 Prob 4.2

plus higher order terms.

- You need just the shape of the quartic.
- important (in the vicinity of the critical point). Emergence.
- so much.

• Close to the critical point m is small so we can expand F in powers of m:

• So although we started with a "complicated" F, its precise details are not

• This is why Landau theory is so wonderful: you put in so little and you get out

4.5.3 Landau theory - 2nd order transition

- Applies in the *vicinity* of the critical point.
- I.e. order parameter (let's call it ϕ) is small and T is close to T_c .
- Assumption: F is an analytic function of φ ; i.e. can expand F in powers of φ . (!?!?)
- Landau theory is equivalent to mean field (in the vicinity of the transition).

Actual Landau theory

Landau procedure

• Expand F as a power series in φ

$$F = F_0 + F_1 \varphi + F_2 \varphi$$

- Can ignore F_0 here (to find equilibrium we differentiate wrt ϕ)
- So we have

 $F = F_2 \varphi$

ignoring higher order terms.

4211 Statistical Mechanics

 $p^2 + F_3 \varphi^3 + F_4 \varphi^4 + \dots$

• Symmetry (here) allows discarding of odd terms — only $M \cdot M$ gives a scalar.

$$\rho^2 + F_4 \varphi^4$$

This is all we need for $F \parallel$

Equilibrium state

- Minimise F set $dF/d\varphi = 0$ $\frac{dF}{d\varphi} = 2F_2\varphi + 4F_4\varphi^3 = 0.$
 - This has solutions

$$\varphi = 0$$
 and

- F_4 must be positive to ensure stability.
- If $F_2 < 0$ there are three stationary points
- If $F_2 > 0$ there is only one stationary point (φ must be real).

4211 Statistical Mechanics

$$\varphi = \pm \sqrt{\frac{-F_2}{2F_4}}$$

• The nature of the solution depends crucially on the sign of F_2

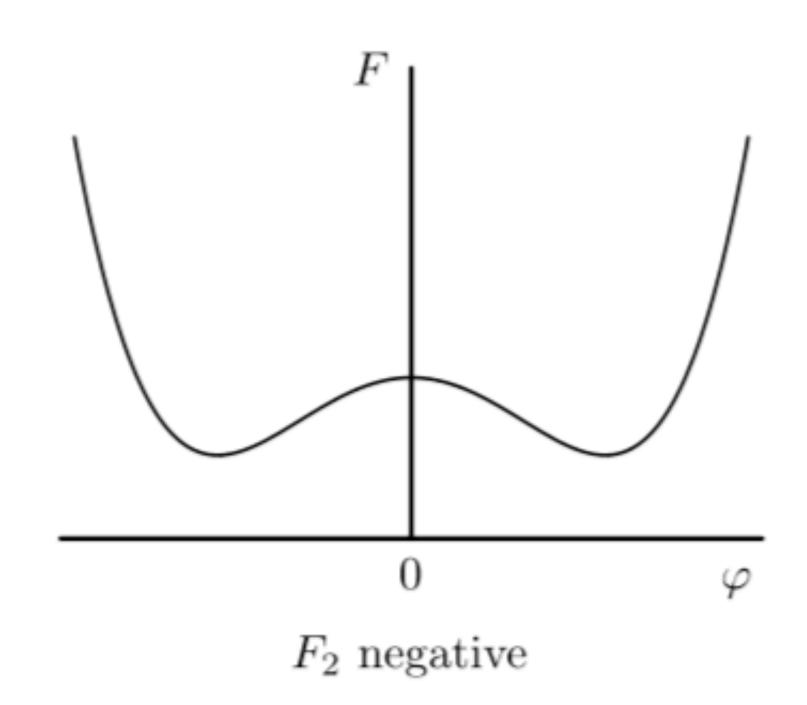
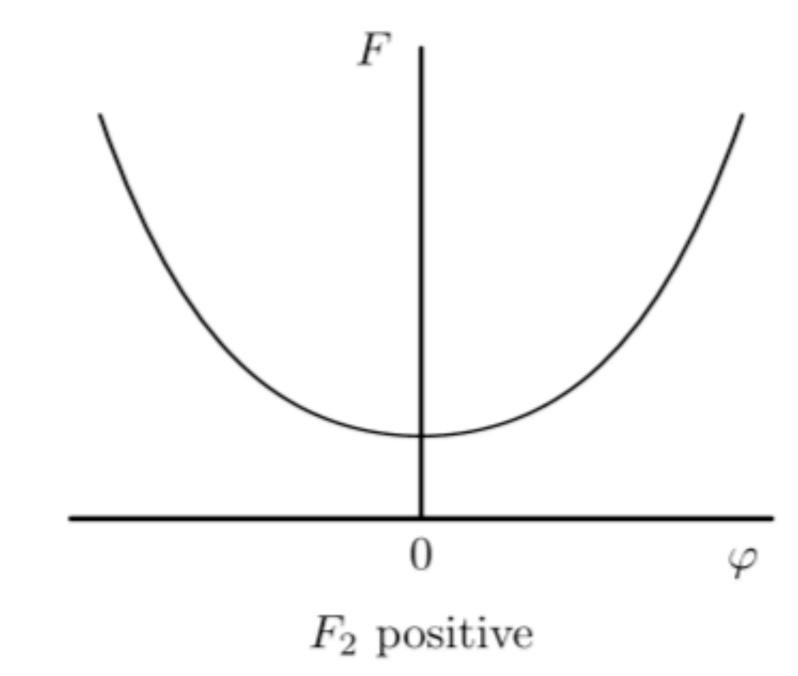


Figure 4.28: Minima in free energy for positive and negative F_2 .

• The critical point is the point where F_2 changes sign

4211 Statistical Mechanics

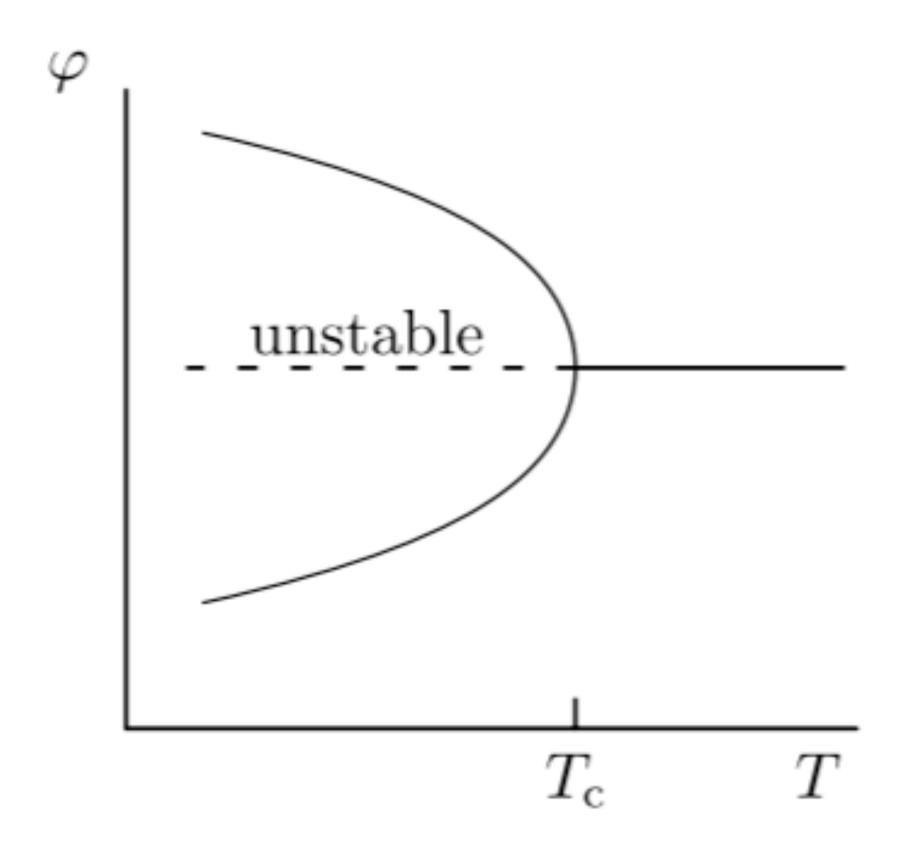


Week 6

4

- The critical point is the point where F_2 changes sign.
- Thus expand F_2 and F_4 in powers of $T T_c$ to leading order: $F_2 = a(T - T_c)$ and $F_4 = b$. (Recall expansion of the Weiss F).
- So then

$$\begin{split} \varphi &= 0 & T > T_{\rm c} \\ \varphi &= \pm \sqrt{\frac{a(T_{\rm c} - T)}{2b}} & T < T_{\rm c} \\ \\ & {\rm Gives} \ \beta = \frac{1}{2}. \end{split}$$



- Only terms up to fourth order required to give second order transition: - smooth transition from double well to single well.
- the generic properties of the transition.
- When terms above φ^4 are discarded this is known as the φ^4 model.

 Landau's key insight here was to appreciate that it is not that the higher order terms may be discarded, it is that they must be discarded in order to exhibit

4.5.4 Heat capacity in the Landau model

- Weiss model \implies discontinuity in heat capacity ($\alpha = 0$).
- Look at this in Landau theory. lacksquare
- Landau free energy:

$$F = F_0(T) + a(T - T_c)\varphi^2 + b\varphi^4.$$

- Have put in the established T-dependence of F_2 and F_4

- Have included F_0 term (indep. of φ) and allowed it to have a (weak) T dependence.

$$F = F_0(T) +$$

• Find S by differentiating F:

 $S = -\frac{\partial F}{\partial T}$

- This shows: how S drops as the ordered phase is entered - S is continuous at the transition.
- $T > T_c$, $\varphi = 0$ $T < T_c$, $\varphi = \pm \sqrt{\frac{a(T_c T_c)}{2b}}$

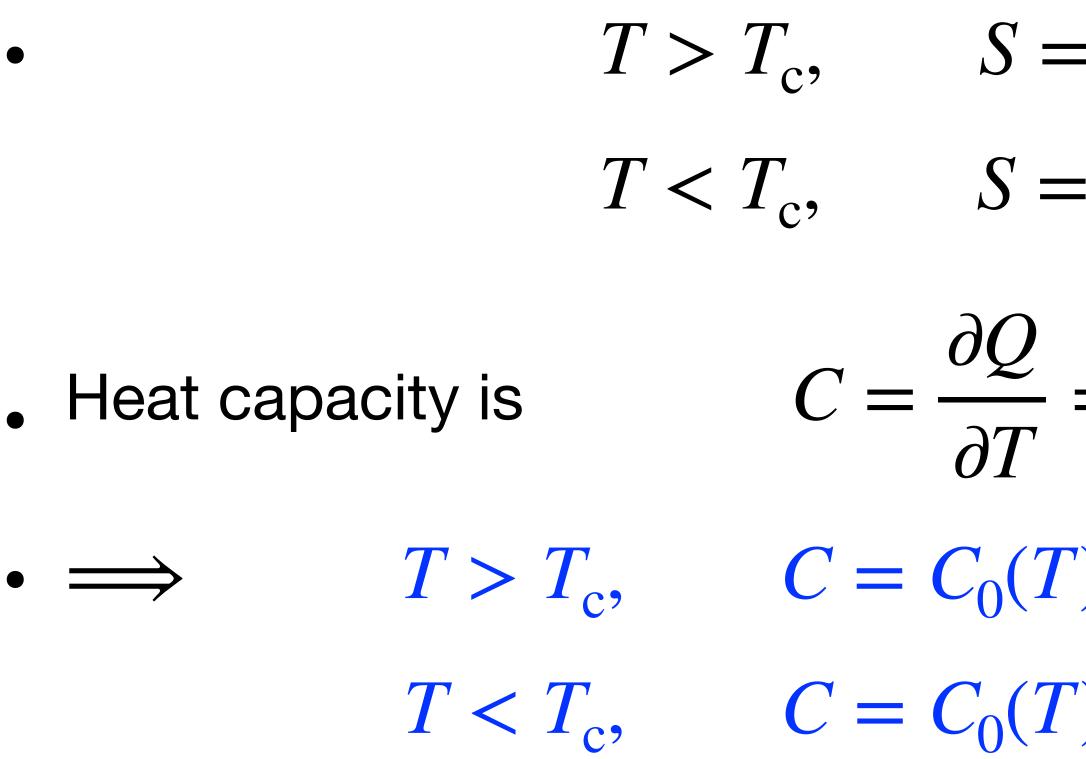
4211 Statistical Mechanics

 $-a(T-T_c)\varphi^2 + b\varphi^4$

$$= S_0 - a\varphi^2.$$

$$\frac{S}{T} = S_0(T)$$

$$S = S_0(T) + \frac{a^2}{2b}(T - T_c)$$



• At the transition there is a discontinuity in the thermal capacity ΔC $\Delta C = \frac{a^2 T_{\rm c}}{2b}$

4211 Statistical Mechanics

$$= S_0(T) + \frac{a^2}{2b}(T - T_c)$$

$$= T \frac{\partial S}{\partial T}$$

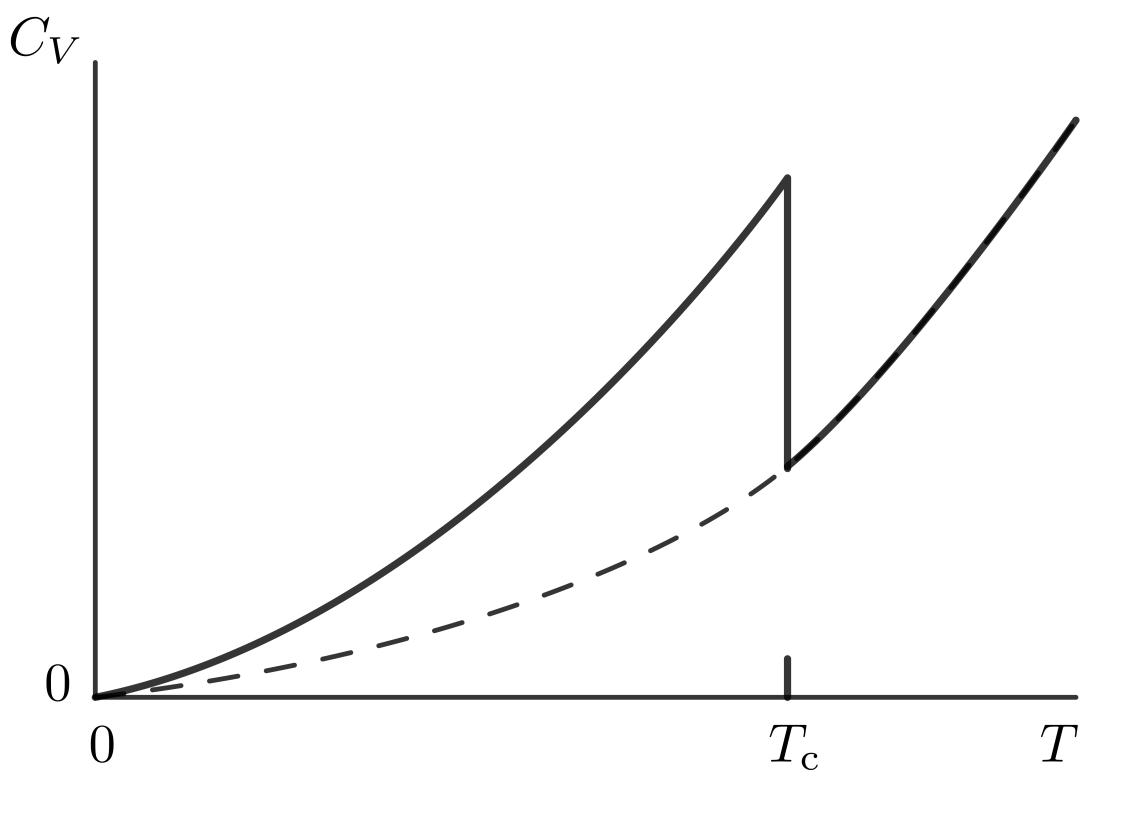
()
$$+\frac{a^2}{2b}T$$

- the Weiss model.
- Discontinuity ΔC given in terms of the Landau parameters a, b and T_c

$$\Delta C = \frac{a^2 T_{\rm c}}{2b}.$$

4211 Statistical Mechanics

• At the transition there is a discontinuity in the thermal capacity, as we saw for



4

4.5.5 Ferromagnet in a magnetic field

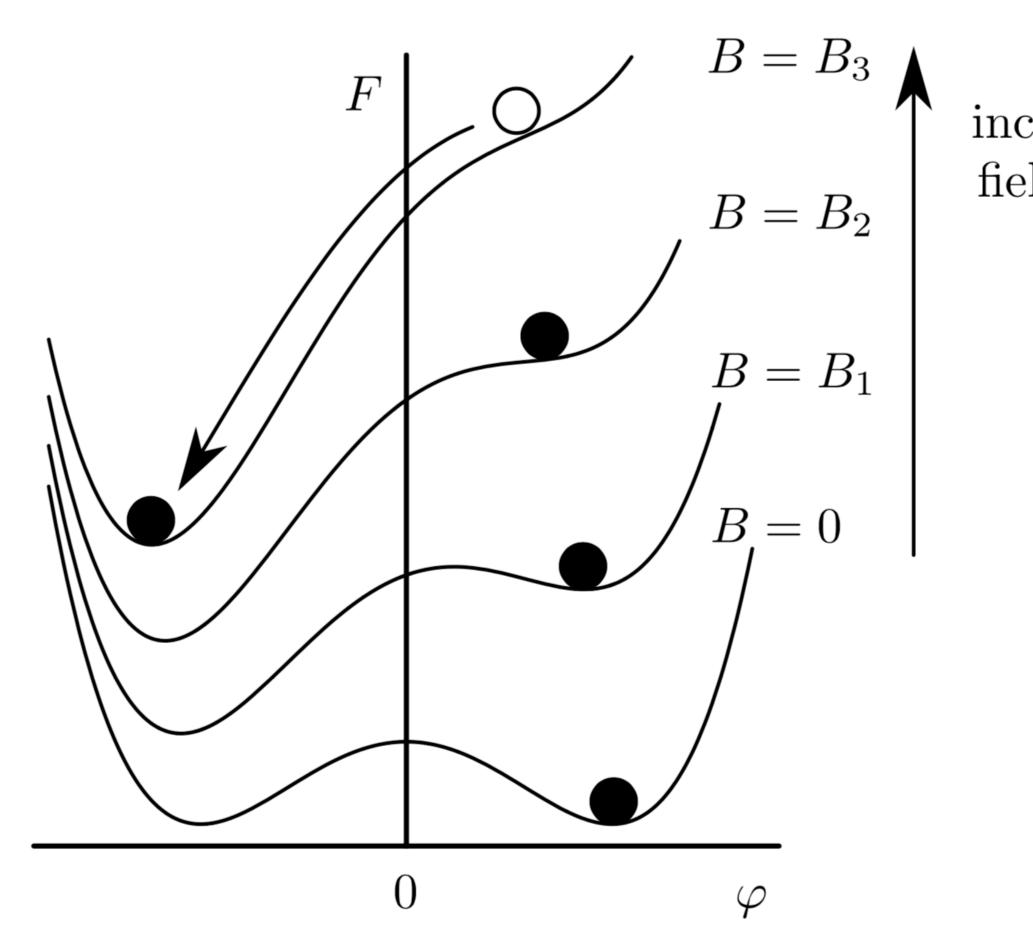
- Magnetic field adds a term -MB to the free energy.
- This now gives a term linear in ϕ .

$$F = F_1 \varphi + a(T - T_c) \varphi^2 + b \varphi^4.$$

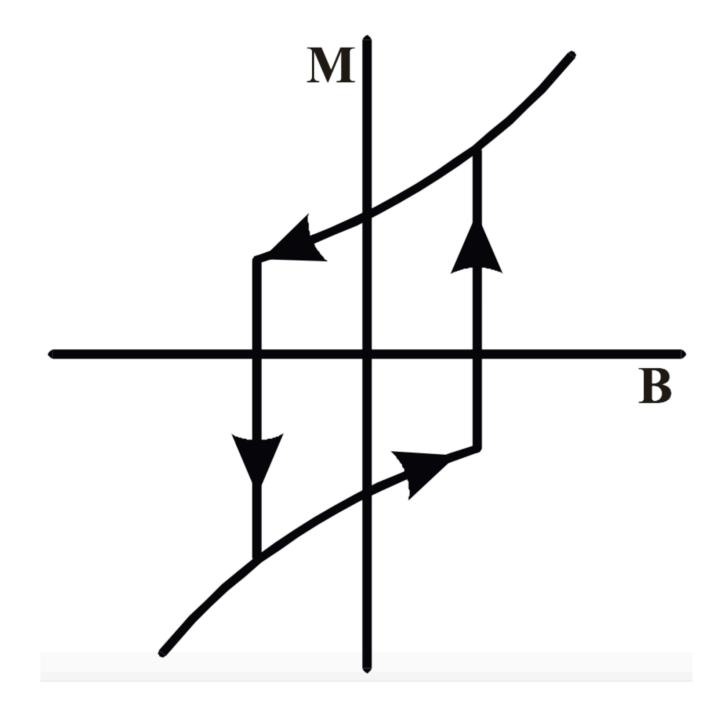
- The F_1 is a constant proportional to the applied field.
- This gives a vertical shear to the free energy curves.

Ising case

• Discrete symmetry

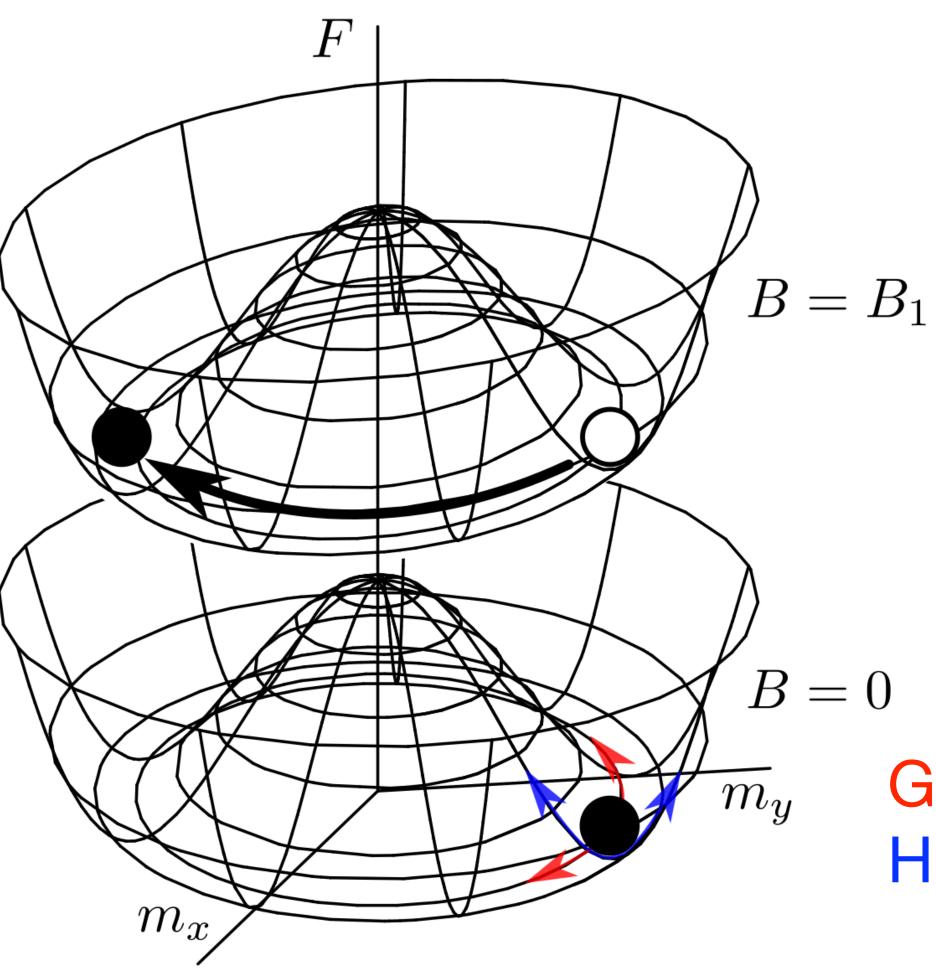


Hysteresis



XY, Heisenberg and higher cases

Continuous symmetry



4211 Statistical Mechanics

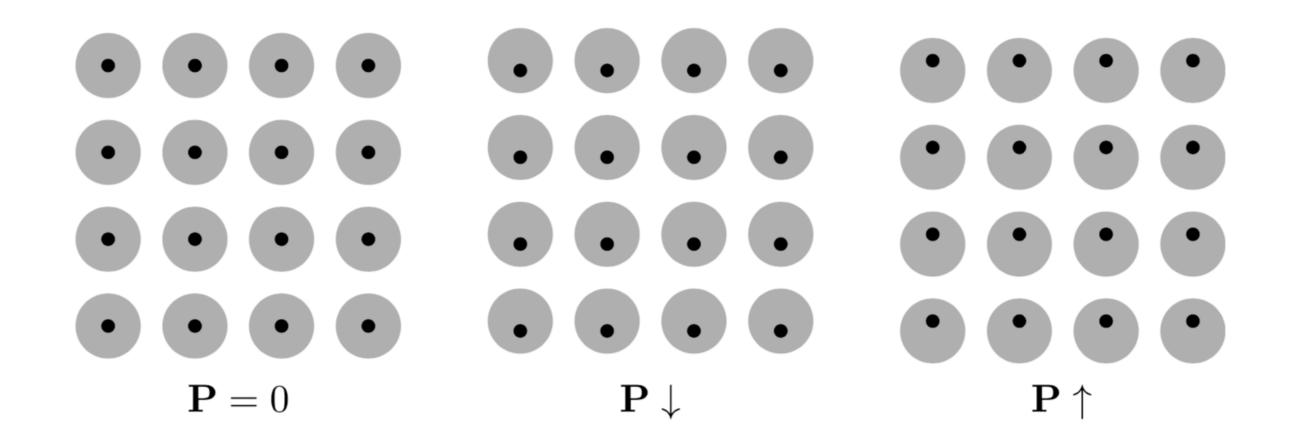
no hysteresis (for this mechanism)

Goldstone mode Higgs mode

4.6 Ferroelectricity 4.6.1 Description of the phenomenon

- In certain ionic solids a spontaneous electric polarisation can appear.
- Example: BaTiO₃, transition temperature 140°C.
- Nice discussion in Kittel Introduction to Solid State Physics.
- Ferroelectric means electrical analogue of ferromagnet — nothing to do with iron (ferrum).
- Transition can be 1st order or 2nd order.

of the negative electron cloud.



In this way an electric polarisation appears.

4211 Statistical Mechanics

The "centre of charge" of the positive ion core becomes displaced from that

- Transition associated with a structural displacement.
- So P will point parallel or antiparallel to a specific direction.
- Symmetry broken is *inversion symmetry*, a discrete symmetry.
- While polarisation is the order parameter, strictly it is the (scalar) length P.
 - I.e. the order parameter for the ferroelectric is a scalar.
- Transition has a non-conserved order parameter and can be 1st or 2nd order.
- Different approach we will start from the Landau free energy we don't invoke a microscopic model (hamiltonian).

4.6.2 Landau free energy

• Write the Landau free energy expansion (φ is the order parameter)

$$F = F_0 + F_1 \varphi + F_2 \varphi^2 + F_3 \varphi^3 + F_4 \varphi^4 + F_5 \varphi^5 + F_6 \varphi^6 + \dots$$

- \bullet

$$F = F_2 \varphi^2 + F_4 \varphi^4 + F_6 \varphi^6 + \dots$$

Inversion symmetry \implies axis of symmetry (+ $\phi \equiv -\phi$), so odd terms vanish.

• Usual argument: can ignore F_0 for determining equilibrium polarisation, so

$$F = F_2 \varphi^2 +$$

- For the ferromagnet we could terminate at ϕ^4 since F_4 was positive. (Justified from the Weiss model).
- For the ferroelectric F_4 may be negative.
- Then we cannot terminate there.
- We will assume F_6 is positive. The we can terminate at φ^6 .
- So then

$$F = F_2 \varphi^2 + F_4 \varphi^4 + F_6 \varphi^6$$

 $F_4 \varphi^4 + F_6 \varphi^6 + \dots$

- Two cases:
 - $-F_4$ positive, terminate at φ^4 , same as the ferromagnet, 2nd order transition
 - $-F_4$ negative, terminate at φ^6 . Will see this leads to a 1st order transition.
- ϕ^6 case everything follows from the simple Landau free energy

$$F = F_2 \varphi^2 + F_4 \varphi^4 + F_6 \varphi^6$$

regardless of the microscopic description.

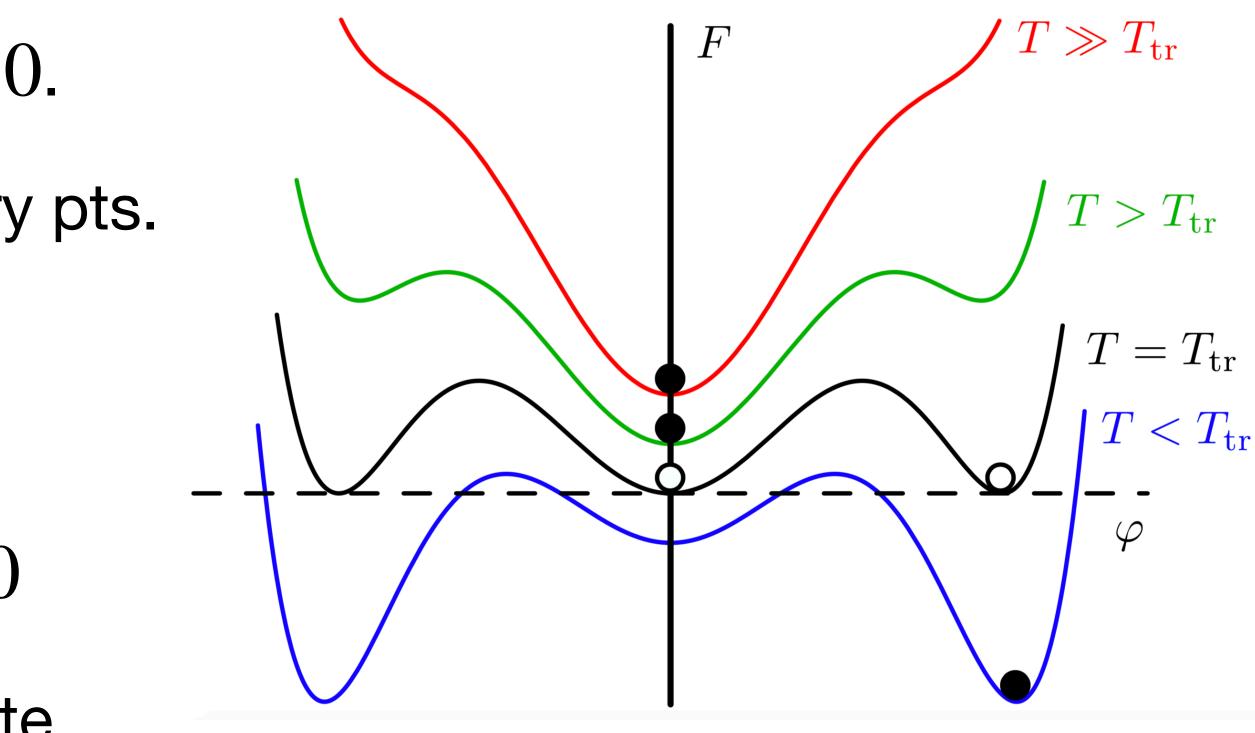
follows from the fact we have a (n even) sextic equation.

- Moreover we can see what is happening without solving any equations; all

No-math discussion – ϕ^6 case

- Blue curve shows general form for a 6th order even equation.
- Large $\pm \varphi$, *F* increases since $F_6 > 0$.
- In general, have 6 roots, 5 stationary pts.
- 3 minima. One at $\varphi = 0$, other two at $\varphi = \pm$ same.
- Red curve shows equilibrium $\varphi = 0$
- Blue curve shows equilibrium φ finite

4211 Statistical Mechanics



• Black curve shows transition: equilibrium ϕ jumps – first order transition. Possibility of hysteresis — barrier must be climbed. Week 6

Now comes the math part . . .

• We have

and note that

- At the transition the 3 minima have the same F = 0.
- So transition point specified by $F(\varphi) = 0$ and $\partial F(\varphi) / \partial \varphi = 0$.

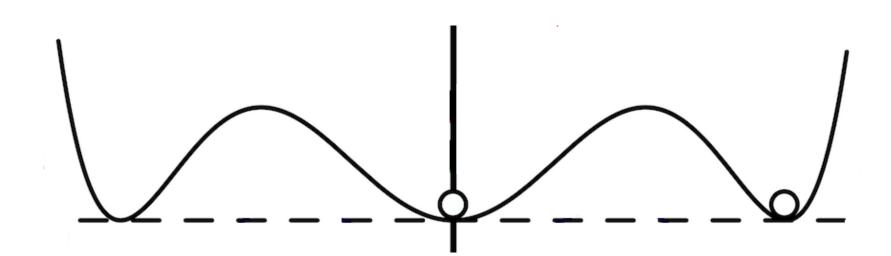
 $F_{2}\phi^{2} + F_{4}\phi^{2}$ • That is

 $2F_{2}\varphi + 4F_{A}$

4211 Statistical Mechanics

 $F = F_2 \varphi^2 + F_4 \varphi^4 + F_6 \varphi^6$

$F_4 < 0$ and $F_6 > 0$.



$$\varphi^{4} + F_{6}\varphi^{6} = 0 \qquad \Big\}$$

$$\varphi^{3} + 6F_{6}\varphi^{5} = 0 \qquad \Big\}$$

• We have the $\varphi = 0$ solution; this can be factored out, giving

$$F_{2} + F_{4}\varphi^{2} + F_{6}\varphi^{4} = 0$$

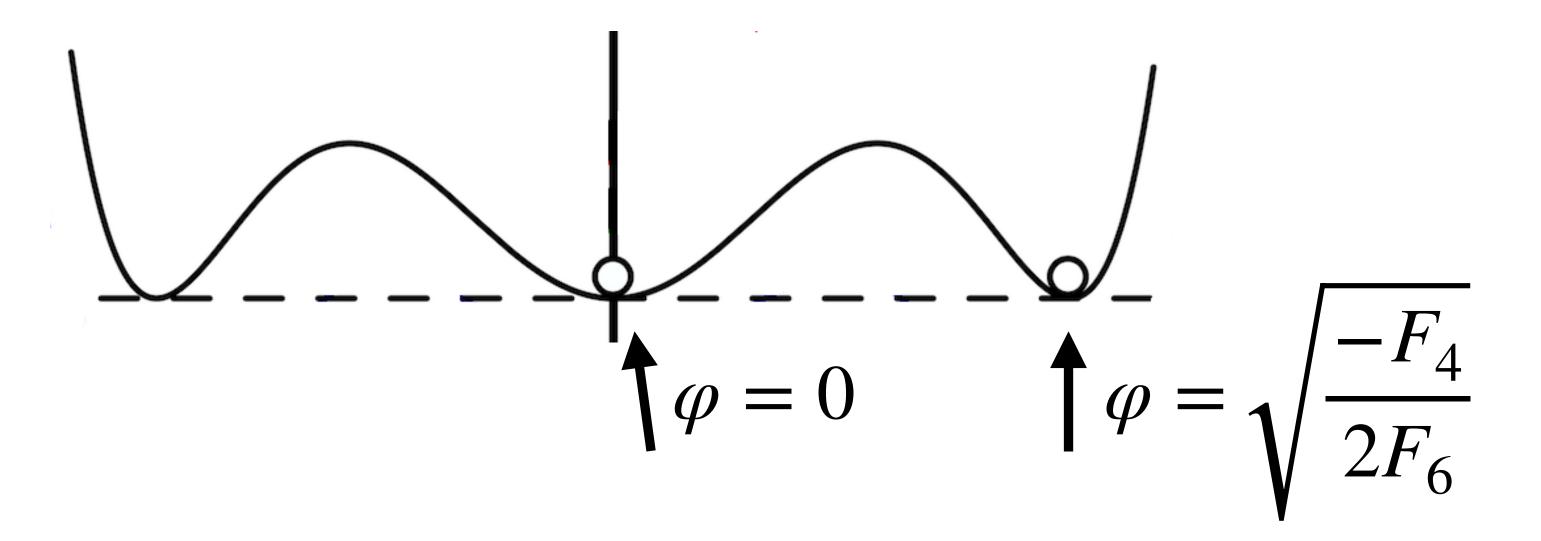
$$2F_{2} + 4F_{4}\varphi^{2} + 6F_{6}\varphi^{4} = 0$$

• Simultaneous equations — solve for φ in terms of F_4 and F_6 :

$$\varphi^2 = -\frac{F_4}{2F_6} \text{ or } \varphi = \pm \sqrt{\frac{-F_4}{2F_6}}$$

4211 Statistical Mechanics

(put – upstairs: F_4 negative, F_6 positive)



• Jump in φ at the transition

 $\Delta \varphi$ =

• $\Delta \phi \rightarrow 0$ when $F_4 \rightarrow 0$; transition becomes 2nd order

4211 Statistical Mechanics

$$= \sqrt{\frac{-F_4}{2F_6}}$$

Transition is 2^{nd} order when F_4 is positive — as seen previously (ferromagnet).



4

Order parameter jump at transition

- $\Delta \phi \rightarrow 0$ when $F_4 \rightarrow 0$; transition becomes 2nd order
- Transition is 2^{nd} order when F_4 is positive as seen previously (ferromagnet).
- As F_4 varies the transition changes order.
- Point of changeover ($F_4 = 0$) is called the *tricritical* point.

 $\Delta \varphi = \sqrt{\frac{-F_4}{2F_6}}$

Transition temperature

- At the transition we solved for φ as a function of F_4 and F_6 .
- What about F_2 ? This can be regarded as the other solution to the simultaneous equations pair

 F_{2} =

- Assume F_2 varies with T as in the 2nd order case $F_2 = a(T-T_{\rm c})$ and that F_4 and F_6 are independent of T.
 - At the transition $a(T_{\rm tr} -$

4211 Statistical Mechanics

$$= \frac{F_4^2}{4F_6}$$
. There is a reason for doing it this way.

$$T_{\rm c}) = \frac{F_4^2}{4F_6}$$

a constant.

$a(T_{\rm tr} -$ At the transition

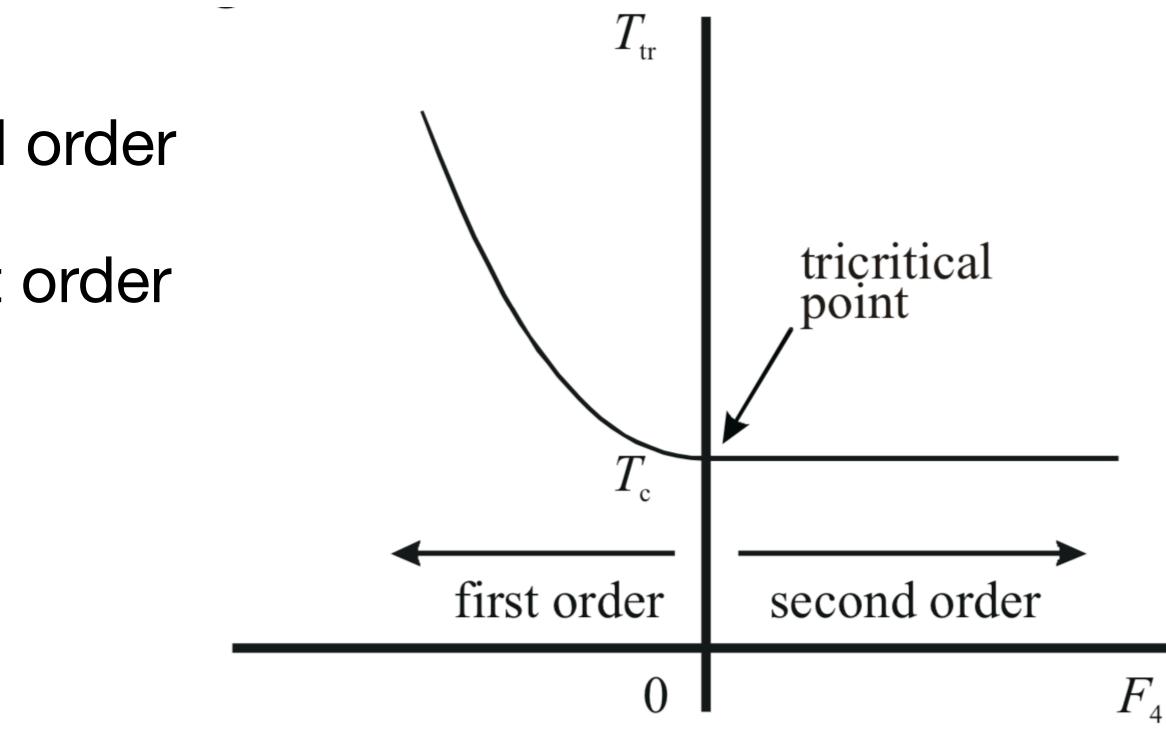
 F_2 , which, nevertheless, we continue to call the critical point.

•
$$F_4 > 0$$
, $T_{tr} = T_c$, 2nd
 $F_4 < 0$, $T_{tr} = T_c + \frac{1}{4a} \frac{F_4^2}{F_6}$, 1st

$$T_{\rm c}) = \frac{F_4^2}{4F_6}$$

a constant.

• In the first order case the transition does *not* correspond to the vanishing of

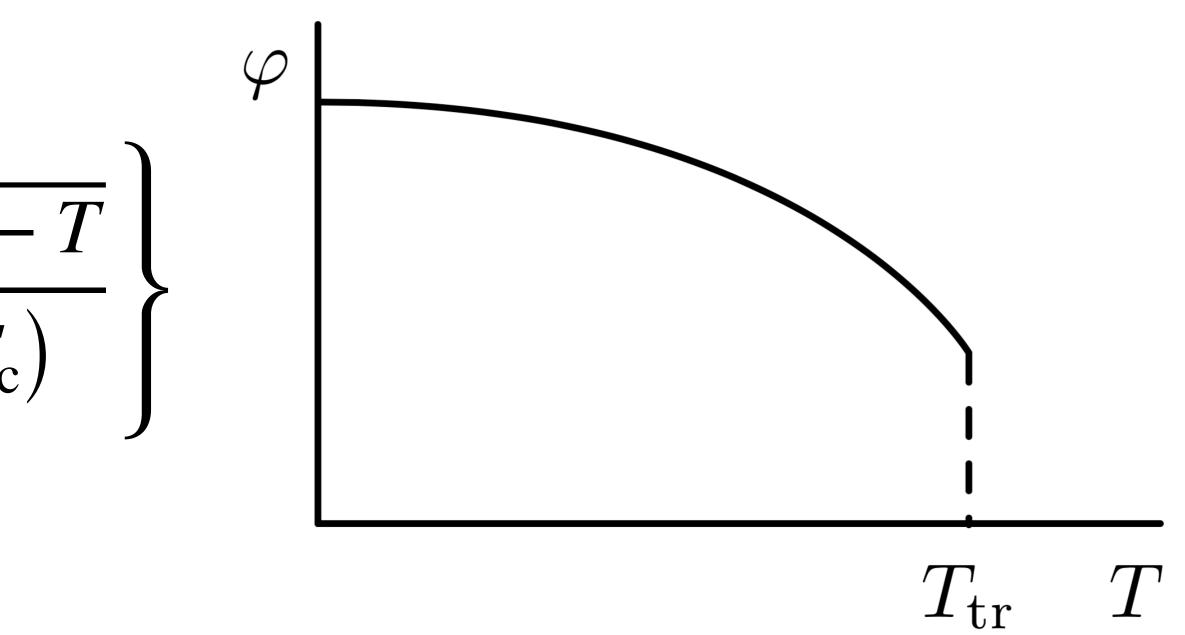


Solution for order parameter

$$\varphi^{2} = \frac{\left|F_{4}\right|}{3F_{6}} \begin{cases} 1 + \sqrt{\frac{4T_{\rm tr} - 3T_{\rm c}}{4\left(T_{\rm tr} - T_{\rm c}\right)}} \end{cases}$$

Caveat

- Landau requires φ to be small
- Cannot really accommodate jump in φ
- OK for weakly first order transitions. Nice treatment of tricritical point as F_4 goes through zero.



4.6.5 Entropy and latent heat

The Landau free energy is

$$F = F_0(T) + a(T$$

- Entropy: $S = -\partial F / \partial T$ so that just as in 2nd order case.
- But now there is a discontinuity in $\varphi \Longrightarrow$ discontinuity in S:
- Latent heat $L = T_{\rm tr} \Delta S$ so that

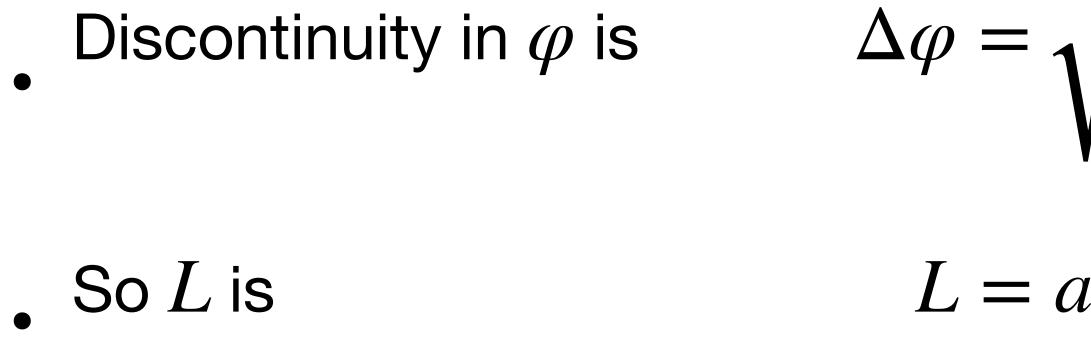
 $(-T_{c})\varphi^{2} + F_{4}\varphi^{4} + F_{6}\varphi^{6}$

 $S = S_0 - a\varphi^2$

$\Delta S = a \varphi^2.$

 $L = aT_{\rm tr}\Delta\varphi^2$

order parameter — both characteristics of a first order transition.



• This shows how L vanishes when the transition becomes 2nd order. (L vanishes at the tricritical point).

 $L = aT_{\rm tr}\Delta\varphi^2$

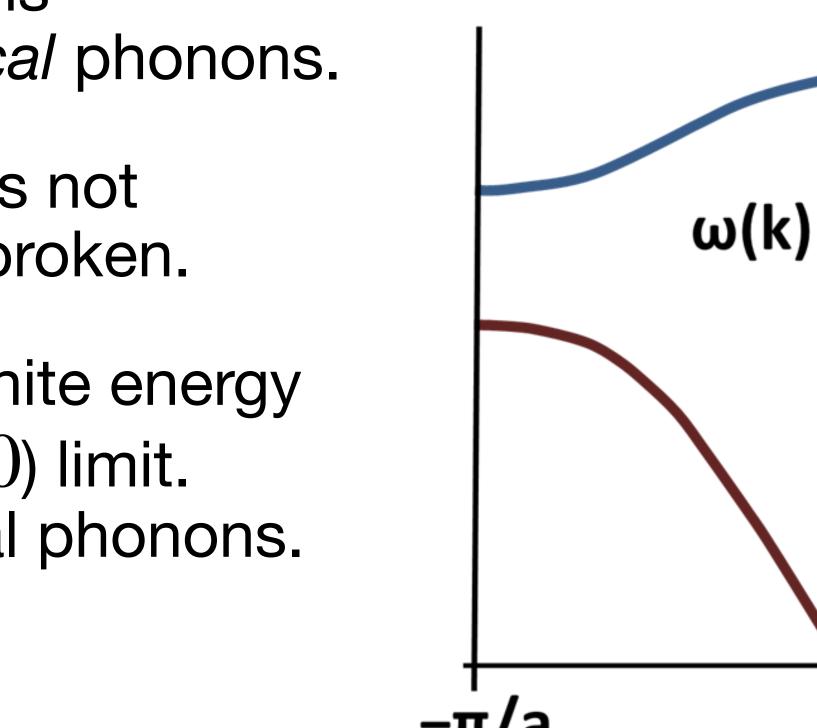
• This shows how the latent heat is directly related to the discontinuity in the

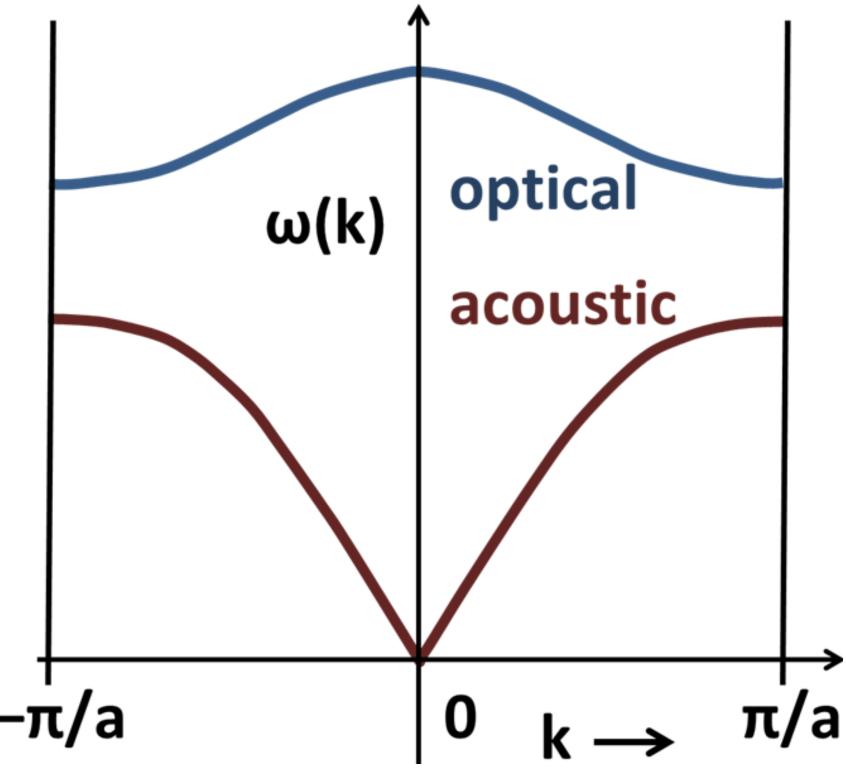
$$\sqrt{\frac{-F_4}{2F_6}}$$

$$aT_{\rm tr}\frac{|F_4|}{2F_6} \qquad (F_4 < 0 \text{ for 1st order trans.})$$

4.6.6 Soft modes

- In the ferroelectric the excitations of the order parameter are *optical* phonons.
- Not Goldstone bosons since it is not a continuous symmetry that is broken.
- Indeed the excitations have a finite energy (frequency) in the $p \rightarrow 0$ ($k \rightarrow 0$) limit. This is a characteristic of optical phonons.





- interatomic interaction and the mass of the ions.
- the restoring force vanishes and the crystal becomes unstable.

Talking about 2nd order case here

they become "soft".

(See books by Burns and by Kittel for more details)

• So as you cool down, the optical phonons go soft and the ferroelectric transition occurs.

• The frequency of the optical phonons depends on the restoring force of the

• At the critical point the Landau free energy exhibits anomalous broadening;

• At the transition the frequency of the optical phonon modes will go to zero:

