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4.3 Second order transition — an example
4.3.1  The ferromagnet

• Ferromagnetism: below a certain temperature a magnetisation will 
spontaneously appear in the absence of an applied magnetic field. 


• The interaction responsible for ferromagnetism is the exchange interaction 
between electron spins. 


• Origin of the exchange interaction is the necessity to antisymmetrise the 
electronic wavefunction, together with the Coulomb repulsion between 
electrons. 


• Then the symmetric and the antisymmetric wavefunctions have different 
energies. 
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• . . .symmetric and the antisymmetric wavefunctions have different energies. 


• This may be written as an effective spin-dependent hamiltonian:  
 

                                           . 

 
This is called the Heisenberg exchange hamiltonian. — Should be familiar 
from Atomic Physics.


• When  is positive the energy is minimised when the spins are parallel; this is 
the energetically favourable state   ferromagnetism. 
 
(When  is negative the energy is minimised when the spins are antiparallel; 
this is the energetically favourable state   antiferromagnetism).

ℋx = − ℏJ
nn

∑
ij

Si ⋅ Sj

J
⟹

J
⟹

2
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Symmetry breaking

• The exchange hamiltonian is rotationally invariant.


• The magnetisation, when it appears, points in a specific direction. 

• Thus the ferromagnetic transition breaks rotational symmetry.  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Phase diagram

•     
4

•Paramagnetism 

•Spontaneous magnetisation 

•Critical point
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•                           
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4.3.2  The Weiss model

• The behaviour of the ferromagnet is contained in its hamiltonian. 


• Apply a magnetic field (in the z direction) 
 

                            

first term is usual  Zeemain interaction. (  )


• Can write as  

                              

ℋ = − ℏγB ⋅ ∑
i

Si − ℏJ
nn

∑
ij

Si ⋅ Sj

−M ⋅ B M = ℏγ∑
i

Si

ℋ

ℋ = − ℏγ B +
J
γ

nn

∑
j

Sj ⋅ ∑
i

Si
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Weiss local field

• Each spin sees the applied  field plus an extra (exchange) field from its 
neighbours 

                                              

the sum is over all spins neighbouring .


•  The  will be different at different sites, and varying with time.


• Weiss (1907) approximated the fields to be the same and constant. 
 

                     . 

     

B

bi =
J
γ

nn

∑
j

Sj

i

bi

b =
J
γ ⟨

nn

∑
j

Sj⟩ = nJ⟨S⟩/ γ =
nJ

Nγ2ℏ
M

2
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Equation of state

• Equation of state for a paramagnet: 
 

                                                         (  and  parallel)


• Weiss recipe: wherever you had , you now put ;   


• giving 

                         .


• Implicit equation relating ,  and .

M = N
γℏ
2

tanh
γℏB
2kT

M B

B B + b b =
nJ

Nγ2ℏ
M

M = N
γℏ
2

tanh
γℏ

2kT {B +
nJ

Nγ2ℏ
M}

M B T
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4.3.3  Spontaneous magnetisation

• Spontaneous magnetisation means magnetisation that appears in the 
absence of a magnetic field, as temperature is reduced. 
 

 at which this occurs is the critical temperature .


• So put  in the equation of state: 
 

                                 . 

 
Still a nonlinear and implicit equation.  (  is what we want; it has no business being on the right hand side.) 
 
Two different ways of solution . . . . . .

T Tc

B = 0

M = N
γℏ
2

tanh { nJ
2kTNγ

M}
M

1
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Graphical solution

• Want to solve 

                                  

for  as a function of .


• Define auxiliary quantity :        

                                                 

gives simultaneous equations: 
                                              
 
                                             

M = N
γℏ
2

tanh { nJ
2kTNγ

M}
M T

X
X =

nJ
2kTNγ

M

M = N γℏ
2 tanh X

M = 2kTNγ
nJ X .

2

Solve graphically
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•  

3

• High  : solution 

• Low : solution for finite 

• “Grazing” solution at  

T M = 0
T M

T = Tc

Tc =
ℏn
4k

J
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Smart-ass solution
• Can’t solve 

                                    

for  as a function of . 
— But can solve for  as a function of .


• In terms of saturation magnetisation  
                     and critical temperature  
 

       gives                                            very neat!!

M = N
γℏ
2

tanh { nJ
2kTNγ

M}
M T

T M

M0 = Nγℏ/2
Tc = ℏnJ/4k

M
M0

= tanh { M
M0

Tc

T }
4
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•  

                                         

can be “solved” 

                        

 
so that 
 

                              .

M
M0

= tanh { M
M0

Tc

T }
M
M0

Tc

T
= tanh−1 ( M

M0 ) =
1
2

ln ( 1 + M/M0

1 − M/M0 )
T
Tc

=
2M/M0

ln [(1 + M/M0)/(1 − M/M0)]
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Spontaneous magnetisation as a function of temperature

•  

6

• Saturation magnetisation 

• Critical temperature 

• Critical point

• 2nd order transition 

M0
Tc
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4.3.4  Critical behaviour — Universality (Ising class)

•  

1
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Critical behaviour (behaviour in the vicinity of the critical point )

• Close to the CP,  is small. So from 

                                           

we can expand the tanh: 

                                 


• This can be re-arranged to give 

                                     

M
M
M0

= tanh { M
M0

Tc

T }
M
M0

=
M
M0

Tc

T
−

1
3 ( M

M0

Tc

T )
3

+ …

M
M0

= ± 3
T
Tc (1 −

T
Tc )

1/2

+ …

2

(tanh x = x − x3/3 + …)
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• From 

                                  

So close to CP we have 

                                      .


• The dominant, singular part of the behaviour is in the factor .


• The exponent  is the critical exponent  introduced in Section 4.1.7.


• The coefficient of the singular part is the critical amplitude 


• So the Weiss model gives a 2nd order transition with  and .

M
M0

= ± 3
T
Tc (1 −

T
Tc )

1/2

+ …

M
M0

∼ ± 3 (1 −
T
Tc )

1/2

(1 − T/Tc)1/2

1/2 β

b = 3

β = 1/2 a = 3
3
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4.3.5  Magnetic susceptibility

• For a non-interacting paramagnet 

                                            .


• At high  or low  (whenever  is small), can expand the tanh: 
 

                                           .


• The magnetic susceptibility  is defined 
 
                                                      .

M = M0 tanh
M0B
NkT

T B M/M0

M =
M2

0

NkT
B =

C
T

B

χ

χ =
μ0

V
M
B

1

χ =
μ0

V
C
T
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Incorporating b

• We had 

                                                             equivalently   


• Now follow the Weiss prescription , where 
 
                                            
so that 
                                              , 
or 
                                                      equivalently 

M =
C
T

B χ =
μ0

V
C
T

B → B + b

b =
NkTc

M0
M =

Tc

C
M

M =
C
T

B +
Tc

T
M

M =
C

T − Tc
B χ =

μ0

V
C

T − Tc
2
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Curie law and Curie-Weiss law

• Non-interacting spins 

                                        

 called Curie’s law.


• Interacting spins 

                                   

 called Curie-Weiss law. 
 

• Exponent : , so Weiss model gives  

χ =
μ0

V
C
T

χ ∝ 1/T

χ =
μ0

V
C

T − Tc

γ χ ∼ (T − Tc)−γ γ = 1
3
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4.3.6  The ground state and Goldstone modes

• Below a critical temperature a spontaneous magnetisation appears.


• This happens in the absence of an applied magnetic field. 

• The magnetisation appears in a completely arbitrary direction.


• The interaction responsible for the transition is the rotationally-invariant 
Heisenberg hamiltonian.


• But  must point in some direction.


• Thus the transition breaks the (rotational) symmetry of the hamiltonian. 
                                         

M

1

Ground states



4211 Statistical Mechanics                                                                                       Week 6          

• There is also the  solution — but this has higher energy.


• The ground state ( ) has many possible directions.


• I.e the ground state is highly degenerate.


• Denote the set of degenerate ground states by  where  is the direction of 
the magnetisation. 
 
 
 

M = 0

M ≠ 0

̂r⟩ ̂r

2
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• One always observes one of the  states; never a linear superposition of 
these states, even this is allowed by the laws of quantum mechanics. 
 
 
                                          ———Paradox ——— 

• This is essentially the paradox of Schrödinger’s cat.

̂r⟩

3
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Goldstone modes
• The ground state corresponds to a uniform order parameter; the 

magnetisation points in the same direction throughout the specimen. 


• It costs energy to deform the order parameter (make it non-uniform)


• So consider a sinusoidal spatially varying order parameter : 
 
                         .


• This has an energy above that of the ground state.


• This is the spatial part of a spin wave with wave vector .


• In the limit  this reduces to the ground state.

M(r)

M(r) = M0 {cos(k ⋅ r)x̂ + sin(k ⋅ r)ŷ}

k

k → 0
4
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•  
 
 
 
 
 
 
 
 

• In the limit  this reduces to the ground state.


•

k → 0

5
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• This is the physical content of Goldstone’s theorem:  
 
when a continuous symmetry is broken there will be excitations involving variations 
in the order parameter and the dispersion relation for these excitations satisfies 
                                              as  .


• These excitations are known as Goldstone modes or, when quantized, as 
Goldstone bosons. They are the low energy excitations and thus they determine 
the low temperature thermal properties of a system. 


• The fact that  goes to zero continuously means that there is no energy gap 
between the ground state and the excitations. This may also be interpreted as 
saying that the Goldstone bosons have zero mass.


• Goldstone’s theorem follows only when the interaction responsible for the symmetry breaking is of 
short range. We may contrast this with the superconducting transition. There the long range of the 
Coulomb force results in a gap in the plasmon excitation spectrum; then the bosons have mass. 
This is the condensed matter analogue of the Higgs mechanism elementary particles acquire mass. 

ε(k) → 0 k → 0

ε(k)

6
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4.4 The Ising and other models
History and motivation

• Interactions are responsible for phase transitions.


• But many interactions are complicated — so you can’t actually calculate. 
 
— Either . . System is simple/calculable — does nothing interesting 
— or . . it is complex/un-calculable — but behaves interestingly.


• Challenge: find the simplest interaction that does something interesting 
(phase transition) but is simple enough that you can calculate with it.  


• This was taken up by Wilhelm Lenz and his student Ernst Ising.

1
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• Heisenberg hamiltonian 
                                         

                                              .


• Can we simplify?  Lenz suggested to Ising: just take the z bit. 


• The interaction 
                                           
is called the Ising hamiltonian.


• Problem: Does this interaction result in a phase transition? 
               (microscopic — first principles calculation)  
 
(Think back — the Weiss arguments would apply equally to the Ising case.)

ℋx = − ℏJ∑ Si ⋅ Sj

= − ℏJ∑ (Sx
i Sx

j + Sy
i Sy

j + Sz
i Sz

j )

ℋI = − ℏJ∑ Sz
i Sz

j

2

Specifically for spin  
i.e. two states. 
m

But my non-standard notation! 

1
2



4211 Statistical Mechanics                                                                                       Week 6          

• Ising 1920 solved the problem (in 1d): 
 
                                      there was no phase transition. 
 
But he couldn’t do 2d and higher.  

• Onsager 1944 solved the 2d problem: 
 
                               there was a phase transition at finite . 
 

• No one has managed to solve the 3d case. Probably impossible. 
 
By solve one means  (at least) an analytical expression for  as a function of .

T

Tc J
3
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Ubiquity of the Ising model

• There are particles/spins arranged on a regular lattice.


• The particle/spin on each site will be in one of two possible states.


• If the states are “spin up” or “spin down” then the model describes a magnet.


• A lattice gas would have states “atom present” and “no atom present”.


• A binary alloy would have states “A atom on site” and “B atom on site”. 


• The interaction is between neighbours: it has one value if the neighbouring 
states are the same and another if the states are different. The energy 
difference is the characteristic energy of the model. 
 

4
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4.4.3  Ising model in 1d

• Remember — Ising found no transition (no spontaneous magnetisation).


• He calculated (complicated) the partition function, and from that: 
 

                                 

 
— see Plische and Bergersen.


• When  there is no magnetisation at any temperature, except . 


• But when , at low temperature, will get the saturation magnetisation. 

m =
sinh γℏB/kT

sinh γℏB/kT + e−ℏJ/kT

B = 0 T = 0

B ≠ 0

1
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Landau’s demonstration

• Chain of  spins 
 
 

• Reverse spins from one point onwards (a “kink”). 


• Energy: the kink increases energy by  (no applied field).


• Entropy: choice of  sites for kink. So the kink increases  by .


•  Kink increases free energy  by 
 
                                               .

N

ℏJ

N S k ln N

⟹ F = E − TS

ΔF = ℏJ − kT ln N
2
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•                                                


• Equilibrium state minimises . 
 
— Kink increases energy contribution by  
— but decreases entropy contribution by .


• In the thermodynamic limit ( ) the entropy term will win.


• So a kink will reduce the free energy - so it is favoured.


• So the ordered state cannot be the thermodynamically favoured state. 
 
i.e. in 1d there will not be a transition to the ordered state.  
 
                                                     Brilliant !!!!!!!

ΔF = ℏJ − kT ln N

F

ℏJ
kT ln N

N → ∞

3
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4.4.3  Ising model in 2d

• Onsager (1944) found there was a transition for the Ising model in 2d. 


• He calculated 

    

where 

                                    . 
 
Singularity in  occurs at solution to 

        or      or    .

F = − Nk ln (2 cosh ℏJ/2kT) −
Nk
2π ∫

∞

0
ln

1
2 (1 + 1 + κ2 sin2 φ) dφ

κ =
2

cosh ℏJ/2kT coth ℏJ/2kT

F
sinh ℏJ/2kTc = 1 Tc =

1

2 ln(1 + 2)
ℏJ
k

Tc = 0.567ℏJ/k

1
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• (fractional) magnetisation 

                             . 

 

M
M0

= {1 − (sinh ℏJ/2kT)
−4}

1/8

2

M
M0

= (4 2 ln(1 + 2))
1/8

( Tc − T
Tc )

1/8

+ …

,      β = 1/8 b = 1.224
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• Heat capacity                                                 Critical exponents  
 

↓ ↓

3

Mean field  Weiss model

Mean field independent of  

≡
d
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The XY model and the Spherical model

• Heisenberg              


• XY                          


• Ising                          
 
    

ℋx = − ℏJ∑ (Sx
i Sx

j + Sy
i Sy

j + Sz
i Sz

j )
ℋxy = − ℏJ∑ (Sx

i Sx
j + Sy

i Sy
j )

ℋI = − ℏJ∑ (Sz
i Sz

j )

1

4.4.6  The XY model
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• The order parameter for this model is the magnetization in the  plane;  
it is a vector of dimension . 


• Thus the order parameter is two-dimensional. 


• Since the magnetisation can point in any direction in the  plane, it can 
vary continuously; the XY transition thus breaks a continuous symmetry. 


• This model is regarded as a good description for the conventional 
superconducting transition and the superfluid transition in liquid He, since 
the order parameter in this case is a two component vector (or a complex 
scalar).


• Estimates for critical exponents for the XY model in three spatial dimensions 
are given in the table in Section 4.9.3. 


•

x − y
n = 2

x − y

4

2
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4.4.7 Spherical model

• Introduced by Marck Kac in 1952


•     as 


• It is an extension of the Heisenberg model — but unphysical.


• Model was solved by Theodore Berlin: 
 
— No transition for  
— No transition for  
—   transition  for :            
—   transition  for ,          behaviour independent of  
                                                   (behaviour is mean field)

ℋs = − ℏJ∑ (Sα
i Sα

j + Sβ
i Sβ

j + Sγ
i Sγ

j + … + SD
i SD

j ) D → ∞

d = 1
d = 2

∃ d = 3 kTc = 0.989ℏJ
∃ d ≥ 4 d

3
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Summary of “magnet” models

4
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