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Chapter 3 
Non-ideal Gases 
 
3.1  Statistical Mechanics 
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3.1.1  The partition function 
We are now considering gases where the interactions between the 
particles cannot be ignored. Our starting point is that everything can be 
found from the partition function. We will work, initially, in the 
classical framework where the energy function of the system is 

H pi ,qi( ) = pi
2

2mi
∑ + U qi ,qj( )

i< j
∑ . 

Because of the interaction term U qi ,qj( )  the partition function can no 
longer be factorised into the product of single-particle partition 
functions. The many-body partition function is  
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= ∫  
where the factor 1/N! is used to account for the particles being 
indistinguishable. 
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While the partition function cannot be factorised into the product of 
single-particle partition functions, we can factor out the partition 
function for the non-interacting case since the energy is a sum of a 
momentum-dependent term (kinetic energy) and a coordinate-dependent 
term (potential energy). The non-interacting partition function is  
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−∑
= ∫  

where the V factor comes from the integration over the qi. Thus the 
interacting partition function is 
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∑

= ∫ . 
The “correction term” is referred to as the configuration integral.  
 
We denote this by Q 
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Q = 1

V N e
− U qi ,q j( )

i< j
∑

⎛
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⎞
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⎟
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kT

∫ d3N q . 
Different authors have different pre-factors such as V or N!, but that is 
not important. The partition function for the interacting system is then 

  
Z = 1

N !
V
Λ3

⎛
⎝⎜

⎞
⎠⎟

N

Q  
and the attention now focuses on evaluation / approximation of the 
configuration integral Q. 
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Configuration integral 
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3.1.2  Cluster expansion 
 
We need a “small quantity” in terms of which to perform an expansion. 
To this end we define  

( ), 1i jU q q kT
ijf e−= −  

so that fij  is only appreciable when the particles are close together. In 
terms of this the configuration integral is 

  
Q = 1

V N 1+ fij( )d3N qi
i< j
∏∫  

where the exponential of the sum has been factored into the product of 
exponentials.  
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Next we expand the product as: 
                                                 

   

1+ fij( ) = 1+ no interactions
i< j
∏

+ f12 + f13 + f23 + f14 +… particle pairs

+ f12 f23 + f13 f34 + f12 f24 +…      particle triples

+…                                             particle quadruples
!                                                      !

 

 
                                                 particle pairs 
 
        
                                                 particle triples 
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The terms in the second line are significant whenever pairs of particles 
are close together. Terms in the third line require triples of particles to 
be close together, in the fourth line we require sets of four particles etc. 
etc. The general expansion in this way is called a “cluster expansion”.  
 
To be precise there are also terms in the third line such as  f12f34 which 
will be significant when two different pairs of particles are 
simultaneously close together. In the limit of large N these terms are a 
negligible fraction of the third line terms and they may be neglected. 
Similar arguments apply to later lines as well. 
 
A more rigorous treatment of the cluster expansion is given in the AJP 
article by W. Mullin. 
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3.1.3  Low density approximation 
 
In the case of a dilute gas, we only need to consider the effect of pair-
wise interactions –  the first two lines. Then we have 

( )1 1ij ij
i ji j

f f
<<

+ ≈ +∑∏  
so that, within this approximation, 

  

Q = 1
V N 1+ fij

i< j
∑⎧

⎨
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⎫
⎬
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d3N qi∫
= 1+ fij

i< j
∑ d3N qi∫ .  
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There are N(N – 1)/2 terms in the sum since we take all pairs without 
regard to order. Since the particles are identical, each integral in the sum 
will be the same, so that  

( ) 3
12 12

1
1 d

2
N N

Q f r
V
−

= + ∫ . 
The VN in the denominator has now become V since the integration over 
, 1,2i j ≠  gives a factor 1NV −  in the numerator. 

 
Finally, then, we have the partition function for the interacting gas: 

( ) ( ) 3
id

1
1 1 d

2
U kTN N

Z Z e r
V

−−⎧ ⎫⎡ ⎤= + −⎨ ⎬⎣ ⎦⎩ ⎭
∫ r

 
and on taking the logarithm, the free energy is the sum of the non-
interacting gas free energy and the new term 



 
4211 Statistical Mechanics            31                                          Week 2 4211 Statistical Mechanics            31                                          Week 2 

( ) ( ) 3
id

1
ln 1 1 d

2
U kTN N

F F kT e r
V

−−⎧ ⎫⎡ ⎤= − + −⎨ ⎬⎣ ⎦⎩ ⎭
∫ r

. 
In this low density approximation the second term in the logarithm, 
which accounts for pairwise intractions, is much less than the first term. 
– Otherwise the third and higher-order terms would also be important. 
But if the second term is small then the logarithm can be expanded. 
Also, obviously the (N – 1) can be approximated by N. Thus we obtain 

( )
2

3
id 1 d

2
U kTNF F kT e r

V
−⎡ ⎤= − −⎣ ⎦∫ r

. 
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3.1.4  Equation of state 
 
The pressure is found by differentiating the free energy: 

( )

,

2
3

2 1 d .
2

T N

U kT

Fp
V

NkT N kT e r
V V

−

∂= −
∂

⎡ ⎤= − −⎣ ⎦∫ r  

We see that the effect of the interaction U(r) can be regarded as 
modifying the pressure from the ideal gas value. The net effect can be 
either attractive or repulsive; decreasing or increasing the pressure. This 
will be considered, for various model interaction potentials U(r).  
 
However before that we consider a systematic way of generalising the 
gas equation of state. 
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3.2  The Virial Expansion 
3.2.1  Virial coefficients 
At low densities we know that the equation of state reduces to the ideal 
gas equation. A systematic procedure for generalising the equation of 
state would therefore be as a power series in the number density N/V. 
Thus we write 

( ) ( )
2 3

2 3
p N N NB T B T
kT V V V

⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
K . 

The B factors are called virial coefficients. And Bn is called the nth virial 
coefficient. By inspecting the equation of state derived above, we see 
that this is equivalent to an expansion up to the second virial coefficient. 
We see that the second virial coefficient is given by 

( ) ( ) 3
2

1 1 d
2

U kTB T e r−⎡ ⎤= − −⎣ ⎦∫ r
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Since U(r) is spherically symmetric we can integrate over the angular 
coordinates, giving 

( ) ( )2
2

0

2 1 dU r kTB T r e rπ
∞

−⎡ ⎤= − −⎣ ⎦∫  
which should be “relatively” easy to evaluate once the form of the 
interparticle interaction U(r) is known. It is also possible to evaluate 
higher order virial coefficients, but it becomes more difficult. 
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3.2.2  Hard core potential 
(See Reichl’s book for details of the models in the next three sections) 
The hard core potential is specified by 
 

 
( )

0 .
U r r

r
σ
σ

=∞ <
= >  

 
Here the single parameter σ is the hard 
core diameter. This is really modelling 
the particles as “billiard balls”. There is 
no interaction when the particles’ centres are separated greater than σ 
and they are prevented, by the interaction, from getting closer than σ. It 
should, however, be noted that this model interaction is somewhat 
unphysical since it only considers the repulsive part; there is no 
attraction at any separation.  
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For this potential we have 

( ) 0
1

U r kTe r
r

σ
σ

− = <
= >  

so that the expression for B2(T) is 

                                         

( ) 2
2

0

3

2 d

2 .
3

B T r r
σ

π

πσ

=

=

∫
~ the volume of a particle 

In this case we see that the second virial coefficient is independent of 
temperature, and it is always positive. The equation of state, in this case, 
is 

321
3

NpV NkT
V

πσ⎧ ⎫= +⎨ ⎬
⎩ ⎭ 



 
4211 Statistical Mechanics            37                                          Week 2 4211 Statistical Mechanics            37                                          Week 2 

which indicates that the effect of the hard core is to increase the pV 
product over the ideal gas value. 
 
It is instructive to rearrange this equation of state. Writing it as 

1
321

3
NpV NkT
V

πσ
−

⎧ ⎫+ =⎨ ⎬
⎩ ⎭ , 

we note that the correction term 
32

3 N Vπσ  is small within the validity 
of the derivation; it is the hard core volume of a particle divided by the 
total volume per particle. So performing a binomial expansion we find 
to the same leading power of density 
 

321
3

NpV NkT
V

πσ⎧ ⎫− =⎨ ⎬
⎩ ⎭  
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or 

32
3

p V N NkTπσ⎧ ⎫− =⎨ ⎬
⎩ ⎭ . 

 
In this form we see that the effect of the hard core can be interpreted as 
simply reducing the available volume of the system.    
  

Volume of space excluded by particle 1, 2 pair is 

 
4
3πσ

3
so volume per particle excluded is half of 

this. Then volume excluded by N particles is 

                        
Vex =

2
3

Nπσ 3.
 

                                   Four times the actual volume of the particles.
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3.2.3  Square-well potential 
 
The square-well potential somewhat more realistic than the hard core by 
including a region of attraction as well as the repulsive hard core. The 
potential is specified by 
 

 

( ) 0

0

U r r
r R

R r

σ
ε σ σ

σ

= ∞ < <
= − < <
= <  

 
so we see that it depends on three 
parameters: σ, ε and R. 
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For this potential we have 
 

( ) 0 0

1

U r kT

kT

e r
e r R

R

ε

σ
σ σ
σ σ

− = < <
= < <
= <  

so that the expression for B2(T) is 

( ) ( ) ( )

( )( ){ }

2 2
2

0

3 3

2 1 d 1 d

2 1 1 1 .
3

R
kT

kT

B T r r e r r

R e

σ σ
ε

σ

ε

π

πσ

⎧ ⎫
= − − + −⎨ ⎬

⎩ ⎭

= − − −

∫ ∫
 

In this case, using the more realistic potential, we see that the second 
virial coefficient depends on temperature. At low temperatures, where 
B2(T) is negative, this indicates that the attractive part of the potential is 
dominant and the pressure is reduced compared with the ideal gas case. 
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And at higher temperatures, where it is intuitive that the small attractive 
part of the potential will have negligible, B2(T) will be positive and the 
pressure will be increased, as in the hard sphere case. The temperature 
at which B2(T) goes through zero is called the Boyle temperature, 
denoted by TB. At very high temperatures we see from the expression 
for B2(T) that it will saturate at the hard core value 2πσ3/3. Thus the 
general form of the second virial coefficient is as shown in the figure. 

 
Second virial coefficient as a function of temperature 
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3.2.4  Lennard-Jones potential 
 
The Lennard-Jones potential is a very realistic representation of the 
inter-atomic interaction. It comprises an attractive 1/r6 term with a 
repulsive 1/r12 term. The form of the attractive part is well-justified as a 
description of the attraction arising from fluctuating electric dipole 
moments. The repulsive term is simply 
a power law approximation to the effect 
of the overlap of electronic orbit. We 
write the Lennard-Jones potential as 

 ( )
12 6

4U r
r r
σ σε

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞= −⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭  

which depends on the two parameters: ε 
and σ. 
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The integral for the second virial coefficient is 

( )
12 64

2
2

0

2 1 dkT r rB T r e r
ε σ σ

π
⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞∞ − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

∫  

which can be expressed as 

  
B2 T( ) = 2

3
πσ 3 2π ε

kT
⎛
⎝⎜

⎞
⎠⎟

1/4

H 1
2
− ε

kT
⎛

⎝
⎜

⎞

⎠
⎟ . 

Here H is a Hermite function. 
  
The figure below shows the second virial coefficient as calculated from 
the Lennard-Jones potential with the nitrogen data.  Observe the 
reduction from the hard core value at high temperatures: with L-J, 
energetic collisions can cause the atoms to come even closer together. 
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4211 Statistical Mechanics            46                                          Week 2 4211 Statistical Mechanics            46                                          Week 2 

3.2.5  Sutherland potential 
The Sutherland potential treats the 
short-distance repulsion as a hard 
core and the attractive tail is 
described by the conventional 
dipolar r–6 law.  
 

     

( )
6

.

U r r

r
r

σ

σε σ

=∞ <

⎛ ⎞= − >⎜ ⎟⎝ ⎠
 

 
As with the Lennard-Jones potential, this has a universal form, scaled 
with an energy parameter ε and a distance parameter σ. 
 
 

U r( )

0 r

σ

ε
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The second virial coefficient is given by 

( ) ( )( )2
2

0

2 1 dU r kTB T r e rπ
∞

−= − −∫  
so using the mathematical  form for U(r), the integral splits into two 
parts  
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2 2
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3 2

2 d 2 1 d

2 2 1 d .
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kT r
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B T r r r e r

r e r
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ε σ
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π π

πσ π

⎛ ⎞∞
⎜ ⎟⎝ ⎠

⎛ ⎞∞
⎜ ⎟⎝ ⎠

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟⎝ ⎠

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟⎝ ⎠

∫ ∫

∫  

We substitute x = r/σ  so that 

  
B2 T( ) = 2

3
πσ 3 1− 3 x2 eε kTx6

−1( )dx
1

∞

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪ . 
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It is possible to express B2(T) in terms of the imaginary error function 
Erfi, as 

  
B2 T( ) = 2

3
πσ 3 eε kT − π ε

kT
Erfi ε

kT
⎛

⎝
⎜

⎞

⎠
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The interesting point about the Sutherland potential is that it gives the 
high-temperature behaviour of the B2(T) as 

   
B2(T ) ~ 2

3
πσ 3 1− ε

kT
−…

⎛
⎝⎜

⎞
⎠⎟  ; 

the limiting value at high temperatures is the hard core 2πσ3/3, while the 
leading deviation goes as T–1.   
 
Compare with square well potential: 
 

   

B2(T ) ~ 2
3
πσ 3 1−

R3 −1( )ε
kT

−…
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ . 
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Again the limiting high temperature value is the hard core expression 
and the leading deviation goes as T–1. Note R is dimensionless, greater 
than unity. And ε is different in the two cases, i.e.  
 

( )3
S sw1Rε ε= −                                                                                                        
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Corresponding States -- Scaling
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3.4  Van der Waals Equation of State  
 
3.4.1  Approximating the Partition Function 
Rather than perform an exact calculation in powers of a small parameter 
(the density), we shall adopt a different approach by making an 
approximation to the partition function, which should be reasonably 
valid at all densities.  
 
The approximation is based on the single-particle partition function.  
 
Shall obtain an equation of state approximating behaviour of real gases. 
Originally proposed by van der Waals in his Ph. D. Thesis in 1873.  
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In the absence of interactions the single-particle partition function is 

3

Vz =
Λ . 

Recall: factor V comes from integration over the position coordinates.  
 
► How to treat inter-particle interactions – in an approximate way? 
 
Interaction U(r) comprises: 
                           i ) a strong repulsive core at short separations 
                           ii) a weak attractive tail at large separations.  
 
The key is to treat these two parts separately/differently:  
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i)  The repulsive core effectively excludes regions of space from the 
integration over position coordinates. This may be accounted for by 
replacing V by V − Vex where Vex is the volume excluded by the hard 
core.  
 
 
ii)  The attractive long tail is accounted for by including a factor in the 
expression for z of the form 

E kTe−  
where 〈E〉 is some average of the attractive part of the potential.  
 
► Thus we arrive at the approximation 

ex
3

E kTV Vz e−−=
Λ . 
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We have approximated the interaction by a mean field assumed to apply 
to individual particles.  
 
This allows us to keep the simplifying feature of the free-particle 
calculation where the many-particle partition function factorizes into a 
product of single-particle partition functions.  
 
Accordingly, this is referred to as a mean field calculation.  
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3.4.2  Van der Waals Equation 
The equation of state is found by differentiating the free energy 
expression: 

,

ln ln

T N T

Z zp kT NkT
V V

∂ ∂= =
∂ ∂ . 

Now the logarithm of z is 
( )exln ln 3lnz V V E kT= − − Λ−  

so that 

ex

dln
dT

Ez NkTp NkT N
V V V V

∂= = −
∂ −  

since we allow the average interaction energy to depend on volume 
(density). This equation may be rearranged as 

ex

d
d
E NkTp N
V V V

+ =
−  
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or 

( )ex

d
d
E

p N V V NkT
V

⎛ ⎞
+ − =⎜ ⎟

⎝ ⎠ . 

This is similar to the ideal gas equation except that the pressure is 
increased and the volume decreased from the ideal gas values. These are 
characteristic parameters. They account, respectively, for the attractive 
long tail and the repulsive hard core in the interaction. Conventionally 
we express the parameters as aN2/V2 and Nb, so that the equation of 
state is 

( )
2

2

Np a V Nb NkT
V

⎛ ⎞
+ − =⎜ ⎟

⎝ ⎠  

and this is known as the van der Waals equation of state. 
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3.4.3  Microscopic ‘estimation’ of Parameters 
In mean field, the repulsive and the attractive parts of the inter-particle 
interaction were treated separately.  
 
How are the two parameters of the van der Waals equation related to the 
parameters of the Lennard-Jones inter-particle interaction?  
 
i)  The repulsion is strong. We accounted for this by saying that there is 
zero probability of two particles being closer than σ. Then that region of 
co-ordinate space is excluded; form of the potential in the excluded 
region (U(r) very large) does not enter the discussion.  
 
Interaction → boundary condition. Thus the excluded volume will be  

3
ex

2
3

V Nπσ= , 
the total hard core volume. 
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ii) The attractive part of the potential is weak. Here there is very little 
correlation between the positions of the particles; we therefore treat 
their distribution as approximately uniform. The mean interaction for a 
single pair of particles 〈E1〉 is then 

  

E1 = 1
V

4πr 2U r( )dr
σ

∞

∫

= 1
V

4πr 2 4ε σ
r

⎛
⎝⎜

⎞
⎠⎟

12

− σ
r

⎛
⎝⎜

⎞
⎠⎟

6⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dr = − 32πσ 3

9Vσ

∞

∫ ε .  

Now there are N(N – 1)/2 pairs, each interacting through U(r), so 
neglecting the 1, the total mean energy per particle is 

  

E = E1 N 2

= −16πσ 3

9
N
V

ε . 
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In the van der Waals equation it is the derivative of this quantity we 
require. Thus we find 

  
N

d E
dV

= 16
9
πσ 3 N

V
⎛
⎝⎜

⎞
⎠⎟

2

ε . 
 
 
These results give the correct assumed N and V dependence of the 
parameters used in the previous section. So finally we identify the van 
der Waals parameters a and b as 
 

  
a = 16

9
πσ 3ε , b = 2

3
πσ 3. 
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3.4.4  Virial Expansion 
It is a straightforward matter to expand the van der Waals equation as a 
virial series. We express p/kT  as 

2

2

1 2

1 .

p N aN
kT V Nb kTV

N N a Nb
V V kT V

−

= −
−

⎛ ⎞⎛ ⎞ ⎛ ⎞= − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
 

and this may be expanded in powers of N/V to give 
2 3 4

2 3p N N a N Nb b b
kT V V kT V V

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
K . 

 
Thus we immediately identify the second virial coefficient as 

( )VW
2

aB T b
kT

= − . 



Comparison — Square well potential and van der Waals gas 
Second virial coefficient for the van der Waals gas is 

 . 

Second virial coefficient for square well potential is 

                           . 

In the limit that  and  we have 

                 or            

So identify                and      .

BVW
2 = b −

a
kT

Bsw
2 =

2
3

πσ3 {1 − (R3 − 1)(eε/kT − 1)}
R ≫ 1 ε ≪ kT

Bsw
2 =

2
3

πσ3 (1 −
R3ε
kT ) Bsw

2 =
2
3

πσ3 −
2πσ3R3ε

3kT

b =
2
3

πσ3 a =
2
3

πσ3R3ε
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