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Classical Statistical Mechanics 
•Classical Mechanics is best formulated in terms of position ( � ) and momenta ( � ) 

coordinates (inc. generalized coordinates).  

•So we would say a state is specified when we know all the position and 
momenta coordinates. 

• The �  space is called phase space.  

•So in classical mechanics a state is a point in phase space.  

•Difficulty in counting such states since �  and �  vary continuously; there would 
be an infinite number of states in any region of phase space.  

• In Statistical Mechanics it is expedient to erect a grid in phase space with cells 
� . 

q p

p − q

p q

Δqx Δqy Δqz Δpx Δpy Δpz
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• In classical statistical mechanics 
a state corresponds to a cell in 
phase space.  

• I.e. a system is in a given (micro) 
state if it is in a specified cell in 
phase space.  
 
A state in phase space.  
 
 

• What should be the size of the 
cells? 

• Dimension of �  is action (like 
in Planck’s constant � ). 

p × q
h
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• We argue that the precise size of the cells should not be important.  

• But we note that Quantum Mechanics (Uncertainly principle) tells us we cannot 
discern a state to finer than a �  cell smaller than Planck’s constant.  
 

Our Philosophy 
• We shall write the size of a �  cell as � . At this stage its size will be un-

determined. Later, by comparing results with those calculated by quantum 
statistical mechanics, we will identify this �  as Planck’s constant.  

Connection between classical/quantum statistical mechanics 
• The general rule is that sums over states in the quantum case correspond to 

integrals over phase space in the classical case.  
 
                              �  

Note the appearance of the �  factors ensures dimensionality.

Δp Δq

Δp Δq h

h

∑
single particle states

→ 1
h3 ∫ d3p d3q

h
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1.6.2 Boltzmann and Gibbs Phase Spaces 
(Transatlantic communication in latter half of 19th Century)  

Boltzmann:  
Phase space has 6 dimensions: 3 position   coordinates     
                                                  3 momentum coordinates  
State of a system comprising  particles represented by  

 points in this 6 dimensional phase space. 

Gibbs:  
Phase space has  dimensions: 3 q’s and 3 p’s for each particle. 
State of this system represented by 1 point in this  dimensional space.

qx, qy, qz .
px, py, pz .

N
N

6N
6N
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1.6.3  The Fundamental Postulate in the Classical Case 
 
 
The classical version of the Fundamental Postulate states that for an 
isolated system all available regions of phase space on the constant 
energy hypersurface are equally likely.  
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1.6.4  The classical partition function 
 
 
The classical analogue of the quantum partition function is given by  

Z = 1
h3N

e−H pi ,qi( ) kTd3N pd3Nq∫  
 
 
The function H (pi ,qi ) is the energy of the system expressed as a 
function of the position and momentum coordinates {qi} and {pi} . This 
is the Hamiltonian.
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1.6.5  The equipartition theorem 
Energy of ith degree of freedom 

  
Ei = 1

Z
Eie

−E q1...qi ...qN , p1... pi ... pN( ) kTd3N q d3N p∫
 

 

( )

[ ]
1 1... ... , ..... 3 3 1

                                                        no 
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−
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∫  

Use the beta trick: β = 1/kT…. 
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The beta trick 
Quantities like 
                                                      
we might wish to sum or integrate. 

Put  to , so we have 
                                                      . 
We can    “bring down” the  by differentiating  with respect to : 

                                           . 

This is the beta trick. 

Ee−E/kT

1/kT β
Ee−βE

E e−βE β

Ee−βE = − ∂
∂β

e−βE
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The beta trick gives 

                      

Interchange derivative and integral 

                                     

This is the derivative of the logarithm 

                                 .   - - - - - -          note this 

⟨Ei⟩ =
∫ Ei e−βEi dpi

∫ e−βEi dpi
= −

∫ ∂
∂β e−βEi dpi

∫ e−βEi dpi
.

⟨Ei⟩ = −
∂

∂β ∫ e−βEi dpi

∫ e−βEi dpi
.

⟨Ei⟩ = − ∂
∂β

ln [∫ e−βEi dpi]
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Next trick — you don’t need to do the integral; just change variables: 

Let’s just put  and substitute , so that   

                                      . 

The logarithm of this is 

                       . 

We have to differentiate with respect to  — so the integral drops out: 

                                   . 

Ei = bp2
i βp2

i = y2

∫ e−βEi dpi = β−1/2 ∫ e−by2dy

ln [∫ e−βEi dpi] = − 1
2 ln β + ln [∫ e−by2dy]

β

∂
∂β

ln [∫ e−βEi dpi] = − 1
2β
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We just found                 . 

And since we require  

                                        

Our result is that  

                                                      . 

So finally change back to , giving 

                                                      .  

(If  or  then corresponding  —  even n.) 

∂
∂β

ln [∫ e−βEi dpi] = − 1
2β

⟨Ei⟩ = − ∂
∂β

ln [∫ e−βEi dpi]

⟨Ei⟩ = 1
2β

kT = 1/β

⟨Ei⟩ = kT
2

Ei ∝ pn
i qn

i ⟨Ei⟩ = kT/n
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Equipartition theorem: 

For a classical (non-quantum) system, each degree of freedom with a 
quadratic dependence on coordinate or momentum gives a contribution to 
the internal energy of .  kT/2
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1.6.6 Consequences of equipartition 

• Each “quadratic” degree of freedom gives internal energy kT/2 

Differentiate  with respect to  to obtain : 

• Lattice vibrations (both p and q contributions):  per mol  

• Gas of particles (only p contribution):  per mol  

(  is the gas constant ).                              Constant heat capacity!! 

Equipartition breaks down when quantum effects become important – at 
low temperatures. 

E T CV

CV = 3R

CV = 3
2 R

R R = NAk
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Liouville’s Theorem and Boltzmann’s H theorem 

Can we understand the law of entropy increase from microscopic first 
principles? 
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1.6.7  Liouville’s theorem 
 
Entropy – classical analogue of 
                                S = −k Pj lnPj

j
∑ = −k lnP   

is 

                            
S = −k ρ lnρ∫ dn p dnq = −k lnρ  

where ρ(pi ,qi ,t) = density of points in phase space.    
 
Evolution of S (or ρ) with time? Should be consistent with Second Law. 
 
But… Liouville’s theorem → 

                                   
d 0
dt
ρ =  

- S appears to remain constant !!!!!!!!! 
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1.6.8  Boltzmann’s H theorem 
 
 
 
 

1 2

3

 
Evolution of a region of phase space 

 
 

ê 
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1.6.8  Boltzmann’s H theorem 
 

1 2

3

 
Evolution of a region of phase space 

 

evolves to which
appears as

 
    Apparent reduction in density in phase space 
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Chapter 2  
Practical Calculations with Ideal 
Systems 
 
2.2  Identical Particles 
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2.2.1  Indistinguishability 
 
If we had an assembly of N identical but distinguishable particles the 
resultant partition function would be the product of the (same) partition 
functions of a single particle, z 
 

NZ z= . 
 
The key question is that of indistinguishability of the atoms or 
molecules of a many-body system.  When two identical molecules are 
interchanged the system is still in the same microstate, so the 
distinguishable particle result overcounts the states in this case.   
  

Brian Cowan




Partition function of a composite system 
 
 
Proof of                                                     . 

Start with two systems: A and B with partition functions  — and the generalise  
                                 ,       . 

Denoted the energy of microstates of system A as  and those of system B as . 

In particular, note that  is the summation index for the A system states and  is the 
summation index for the B system states. 

A general microstate of the composite system has energy 

                                                              . 

Note we need two indices since we must specify the state of the A system and the 
state of the B system in order to specify the state of the composite system. 

Z = zN

za, zb
za = ∑

i
e−εa

i /kT zb = ∑
j

e−εb
j /kT

εa
i εb

j
i j

εij = εa
i + εb

j
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The partition function of the composite system is then 

                                             

which can be factorised:                               . 

The first exponential depends on  and the second exponential depends on . This 

means that the sum over  operates only on the first exponential and the sum over  
operates only on the second exponential. In other words 

                                               . 

But this is simply the product . Thus we have shown that 

                                                               . 

By extension, for  similar systems          

Z = ∑
ij

e−εij/kT = ∑
ij

e−(εa
i + εb

j )/kT

= ∑
ij

e−εa
i /kT e−εb

j /kT

i j
i j

Z = ∑
i

e−εa
i /kT ∑

j
e−εb

j /kT

zazb

Z = zazb

N Z = zN
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2.2.1  Indistinguishability 
 
If we had an assembly of N identical but distinguishable particles the 
resultant partition function would be the product of the (same) partition 
functions of a single particle, z 
 

NZ z= . 
 
The key question is that of indistinguishability of the atoms or 
molecules of a many-body system.  When two identical molecules are 
interchanged the system is still in the same microstate, so the 
distinguishable particle result overcounts the states in this case.   
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Now the number of ways of redistributing N particles when there are n1 
particles in the first state, n2 particles in the second state etc. is 
 

1 2 3

!
! ! !......
N

n n n  
 
so that for a given distribution {ni} the partition function for identical 
indistinguishable particles is 
 

1 2 3! ! !......
!

Nn n nZ z
N

= . 
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2.2.2  Classical approximation 
 
In the classical case we have then 

1
!

NZ z
N

= . 
The Helmholtz free energy 

lnF kT Z= −  
is thus 

ln ln !F NkT z kT N= − + . 
 

This is N times the Helmholtz free energy for a single particle plus an 
extra term depending on T and N.  So the second term can be ignored so 
long as we differentiate with respect to something other than T or N.  
Thus when differentiating with respect to volume to find the pressure, 
the result is N times that for a single particle. 
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2.3  Ideal Classical Gas 
2.3.2  Classical approach 
The classical partition function is given by the integral 

3 3
3

1 d dkTz e p q
h

ε−= ∫  

where for the ideal gas 2 2p mε = . Thus the q integrals are trivial, 
giving a factor V, and we have 

2

3

2
3 dp mkTVz e p
h

∞
−

−∞

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫ . 

The integral is transformed to a pure number by changing variables: 
2p x mkT=  so that 

( ) 2

3
3 2

3 2 dxV
z mkT e x
h

∞
−

−∞

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫ . 



 
4211 Statistical Mechanics            17                                          Week 2 4211 Statistical Mechanics            17                                          Week 2 

As in the quantum calculation, the physics is all outside the integral and 
the integral is just a pure number.  The value of the integral is π  so 
that 

3 2

2

2 mkTz V
h

π⎛ ⎞= ⎜ ⎟⎝ ⎠  
just as in the “quantum” calculation.  This justifies the use of h in the 
normalization factor for the classical state element of phase space.  
 
Write 

                                ( )3 23 , where .
2

V hz
mkTπ

= Λ =
Λ  

Here Λ is known as the thermal de Broglie wavelength. It has a very 
important meaning. 
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2.3.3  Thermodynamic properties 
We start from the Helmholtz free energy: 

3 2

2

2ln ln mkT VeF kT Z NkT
h N

π⎡ ⎤⎛ ⎞= − = ⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦ , 

giving 

,

ln ln

T N T

Z z NkTp kT NkT
V V V

∂ ∂= = =
∂ ∂ . 

This is the ideal gas equation, and from this we identify k as 
Boltzmann’s constant. 
 
The internal energy is 

3 2
2 2

,

ln d ln 3
d 2V N

Z TE kT NkT NkT
T T

∂= = =
∂ . 
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This is the result we obtained previously from equipartition. This gives 
another important property of an ideal gas: the internal energy depends 
only on temperature (not pressure or density).  This is known as Joule’s 
law. From the energy expression we obtain the thermal capacity 

,

3
2V

V N

EC Nk
T
∂= =
∂ . 

This is a constant, independent of temperature, in violation of the Third 
Law.  This is because of the classical approximation – ignoring multiple 
state occupancy etc.  We also find the entropy and chemical potential: 

3 2 5 2

2

3 2

2

2ln ,

2ln .

mkT kTeS Nk
h p

mkT kTkT
h p

π

πµ

⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞= − ⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
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Sackur-Tetrode equation  
 

 

3 2 5 2

2

0
5 ln ln

2

2

ln mkT kTeS N

S Nk T Nk p k

p

N

k
h

s

π⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣

= − +

⎦
⇒

 

 
•  Latter equation can be derived by thermodynamics alone.  
•  Constant s0 known as the Sakur-Tetrode constant 

 
Naïve interpretation of this equation is wrong.  



2.3.4 The  term in the partition function  
The Gibbs paradox 
Gibbs didn’t know about indistinguishable particles. So he wrote 

                                                   . 

We found 

                                         . 

So (according to Gibbs) 

            . 

The right hand expression is NOT extensive. 

1/N!

Z = zN

z = ( 2πmkT
h2 )

3/2
V

F = − kT ln Z = − NkT ln z = − NkT ln [( 2πmkT
h2 )

3/2
V]
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The square bracket must be intensive - so you must divide V by a 
dimensionless extensive quantity — like N. Gibbs chose N and so he wrote 

                             . 

We had a divisor of   in the partition function. Since by Stirling’s 
approximation, , we found   

                              . 

F = − NkT ln [( 2πmkT
h2 )

3/2
V]!?!?

F = − NkT ln [( 2πmkT
h2 )

3/2 V
N ]

N!
ln N! = N ln(N/e)

F = − NkT ln [( 2πmkT
h2 )

3/2 Ve
N ]
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