
PH4211 Statistical Mechanics.                                                                            Week 10

Bose-Einstein condensation
2.1.5 Density of  states

          

                        density of states  

• Cubic box, side  

• Standing waves  

• Momenta 

∑
j

e−Ej/kT → ∫
∞

0
g(ε) e−ε/kTdε

↑

V1/3

λnx
= 2 V1/3

nx
, λny

= 2 V1/3

ny
, λnz

= 2 V1/3

nz

px = πℏ
V1/3 nx, py = πℏ

V1/3 ny, pz = πℏ
V1/3 nz

1

nx, ny, nz = 1,2,3,…, ∞

(Section numbering of 2nd edition)



PH4211 Statistical Mechanics.                                                                            Week 10

                                

• Energy:  

• So                    where             

• No of states up to energy  is volume of 
octant of radius : 
 

.

px = πℏ
V1/3 nx, py = πℏ

V1/3 ny, pz = πℏ
V1/3 nz

ε = (p2
x + p2

y + p2
z )/2m

ε =
π2ℏ2

2mV2/3
R2 R2 = n2

x + n2
y + n2

z

ε
R

𝒩(ε) =
1
8

4
3

πR3 =
1
6

V
π2ℏ2

(2mε)3/2

2
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• Density of states              
 
 

so that                                      . 

• Differentiating  gives 

                                           

𝒩(ε) =
1
6

V
π2ℏ2

(2mε)3/2

g(ε)dε = 𝒩(ε + dε) − 𝒩(ε)

g(ε) =
d𝒩(ε)

dε
𝒩(ε)

g(ε) =
1
4

V
π2ℏ3

(2m)3/2ε1/2
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2.6.1 General procedure 

• Bose-Einstein distribution 

                                           

• Average of                                  (ignore spin degeneracy) 

• Approximate sum by integral 

                                                

 

we have                               .

n(ε) =
1

e(ε−μ)/kT − 1
f(ε) f̄ = ∑

i

f(εi) n(εi)

f̄ = ∫
∞

0
f(ε) n(ε) dε

g(ε) =
1
4

V
π2ℏ3

(2m)3/2ε1/2

4

Need to determine 
 first (from )μ N
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2.6.2 Ground state occupation — chemical potential

• At  all bosons will be in the ground state.  
 

                             in thermodynamic limit. 

• When  is significant,  will be small (and negative), so expand exponential: 
 
                                                     
 
                                 so  

• Macroscopic occupation of ground state associated with zero chemical potential

T = 0

N0 =
1

e(ε0−μ)/kT − 1
=

1
e−μ/kT − 1

N0 μ/kT

μ ∼ − kT/N0

μ = 0 when N0 is macroscopic
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2.6.3 Number of  particles

Add up number of particles   ?? 

• The  in  gives the ground state zero weight !!  

• Failure of the continuum approximation; discounts the ground state. 

• But for bosons at low temperature this is problematic. 

• So, since  neglects the ground state occupation, let’s add this “by hand” 
 

                     

N = ∑
i

ni → ∫
∞

0
g(ε) n(ε) dε

ε1/2 g(ε)

g(ε)

N = N0 +
V

4π2ℏ3
(2m)3/2 ∫

∞

0

ε1/2

e(ε−μ)/kT−1
dε
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2.6.4 Low temperature behaviour — Bose-Einstein condensation

• Macroscopic occupation of ground state  put . So 
 

                            . 

• Change variable of integration:  gives 
 

                        

• Physics comes outside of integral, the integral is just a number. 

⟹ μ = 0

N = N0 +
V

4π2ℏ3
(2m)3/2 ∫

∞

0

ε1/2

eε/kT−1
dε

x = ε/kT

N = N0 + V ( mkT
2πℏ2 )

3/2 2

π ∫
∞

0

x1/2

ex − 1
dx
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Integral is                             (details in book/problems)  

 
where  is Riemann’s zeta function, and  

• So  is 

                                      . 

• As  increases above  the ground state becomes depleted.  
 

                                     .

∫
∞

0

x1/2

ex − 1
dx =

π
2

ζ( 3
2 )

ζ() ζ( 3
2 ) = 2.612...

N

N = N0 + V ( mkT
2πℏ2 )

3/2

ζ( 3
2 )

T T = 0

N0 = N − V ( mkT
2πℏ2 )

3/2

ζ( 3
2 )

8
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• Ground state fraction 
 

                . 

• Ground state fraction goes to zero at 
 

 

• Thermodynamic limit ? 

• Phase transition at  called Bose-Einstein condensation. 

• Roughly, transition is where  is comparable with inter-particle spacing.

N0

N
= 1 −

V
N ( mkT

2πℏ2 )
3/2

ζ( 3
2 )

TB =
2πℏ2

mK { 1

ζ( 3
2 )

N
V }

2/3

= 3.313
ℏ2

mK { N
V }

2/3

T = TB

Λ
9

N0

N
= 1 − ( T

TB )
3/2
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2.6.6 Comparison with superfluid He4

• Superfluid transition in liquid He observed at  K. 

• Calculated  at liquid He density is  K. — similar?? 

• Suggestion by F. London and by L. Tisza that the superfluid transition was BEC. 

• Andronikashvili experiment: 

4 T = 2.17

TB
4 TB = 3.13

10

Particles are not free.

Not free-particle excitations.

Experiment consistent with 
phonon and “roton” excitations.
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2.6.5 Heat capacity of  Bose gas

• Start from internal energy  

                                           . 

Don’t need to worry about ground state — it doesn’t contribute to . 

• We’ll just look at , so we take . 
 

                               

Change variables: 
                          

                             .

E = ∫
∞

0
ε g(ε) n(ε) dε

E

T ≤ TB μ = 0

E =
V

4π2ℏ3
(2m)3/2 ∫

∞

0

ε3/2

eε/kT − 1
dε

E =
V

4π2ℏ3
(2m)3/2(kT)5/2 ∫

∞

0

x3/2

ex − 1
dx
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Integral is                           ,           

 
express  in terms of  

                                               . 

Differentiate to get heat capacity 

E =
V

4π2ℏ3
(2m)3/2(kT)5/2 ∫

∞

0

x3/2

ex − 1
dx

∫
∞

0

x3/2

ex − 1
dx =

3 π
4

ζ( 5
2 ) ζ( 5

2 ) = 1.342...

E TB

E =
3
2

Nk
ζ( 5

2 )

ζ( 3
2 )

T5/2

T3/2
B

CV =
15
4

Nk
ζ( 5

2 )

ζ( 3
2 ) ( T

TB )
3/2

=
15
4

Nk ( T
TB )

3/2

×
1.342
2.612

= 1.926Nk ( T
TB )

3/2
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• Classical value: . 
High temp value approaches this. 

• Low temp BEC . 

• Low temp experiment . 
Phonons - collective excitations.  

CV = 1.926Nk ( T
TB )

3/2

CV = 3
2 Nk

CV ∼ T3/2

CV ∼ T3

13
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2.8 BEC of a gas in a harmonic trap
• Helium is a liquid — interactions — so is superfluidity true BEC? 

• Would like to study a low density gas — negligible interactions. 

• But , so if you go to lower densities, you must go to lower . 

• Laser cooling of trapped gases can do it. (really atomic physics, - not low temp)!  

• We will study a gas trapped in a harmonic potential.

TB ∼ (N/V)2/3 T

14
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2.8.1 Enumeration and counting of  states

• Energy of a 1d harmonic oscillator        

• where  is angular frequency, and quantum number  is integer:   

• For convenience, let’s ignore ground state energy.  

• In 3d need 3 quantum numbers:      

• Triple  defines a point on a cubic grid. 

• Energy:   where .

ε = (n+ 1
2 )ℏω

ω n n = 0,1,2…

ε = (nx + ny + nz)ℏω

{nx, ny, nz}

ε = nℏω n = nx + ny + nz

15
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•                                     . 

• No of states up to energy , denoted by  is the number of grid 
points  satisfying 
                                                 

• In 3d  is the volume of the 
oblique pyramid  

    
Differentiate to get  

:    

ε = (nx + ny + nz)ℏω = nℏω

ε = nℏω 𝒩(ε)
{nx, ny, nz}

nx + ny + nz < n

𝒩(ε)
= 1

3 base × height

𝒩(ε) = 1
6 n3 = 1

6 ( ε
ℏω )

3

g(ε)

g(ε) =
d𝒩(ε)

dε
g(ε) =

1
2

ε2

(ℏω)3

16
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Chemical potential

• Bosons: low temperatures  macroscopic occupation of the ground state. 

• As before, when  is large  
 
                               so  

• Macroscopic occupation of ground state associated with zero chemical potential

⟹

N0 μ ∼ − kT/N0

μ = 0 when N0 is macroscopic

17
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Number of  particles

• The  (now ) gives zero weight to the ground state occupation. 

• So must put this in “by hand”: 

                                  

Put  (below transition), and change variables , gives 
 

, integral is a number:  

• Below transition                   .

g(ε) ∝ ε2

N = N0 +
1
2

1
(ℏω)3 ∫

∞

0

ε2 dε
e(ε−μ)/kT + 1

μ → 0 x = ε/kT

N = N0 +
1
2 ( kT

ℏω )
3

∫
∞

0

x2 dx
ex + 1 ∫

∞

0

x2 dx
ex + 1

= 2ζ(3)

N = N0 + ( kT
ℏω )

3

ζ(3)
18
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• As  increases above  the ground state becomes depleted 
 

                                

• Ground state fraction goes to zero at  
 

      .

N = N0 + ( kT
ℏω )

3

ζ(3)

T T = 0

N0 = N − ( kT
ℏω )

3

ζ(3)

TB =
ℏω
k ( N

ζ(3) )
1/3

= 0.940
ℏω
k

N1/3

19

N0

N
= 1 − ( T

TB )
3
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Particle density
• Gas sits in a harmonic potential. 

• Density decreases with increasing temperature. Mean square displacement:  
 

                                                   . 

• Corresponds to an effective volume  

• Effective density , effective particle separation : 

                                              .

⟨x2⟩T =
kT

mω2

V = (⟨x2⟩T)3 = ( kT
m )

3/2
ω−3

N
V = ( m

kT )
3/2

Nω2 l = (N/V)1/3

l = ( kT
m )

1/2 1
ωN1/3

20



PH4211 Statistical Mechanics.                                                                            Week 10

                                               

• Recall argument that at transition thermal de Broglie wavelength  should be 
comparable with mean particle spacing : 
 

                                     , 

 
about 2.4 times the exact expression for . 
 
Exact result gives 
                                        .

l = ( kT
m )

1/2 1
ωN1/3

Λ
l

2πℏ2

mkTc
≈ ( kTB

m )
1/2 1

ωN1/3

TB

Λ = 2π ζ(3)1/3l = 2.67 l
21
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Spatial extent

• We had, for particles at temperature : 

                                                  . 
This is the mean square spatial extent of (a normal) confined gas. 

• For the particles in the SHO ground state (condensate), the probability of being 
found a distance  from the minimum is 

                                      

a mean square displacement  

                                                                 (typo in book!)

T
⟨x2⟩T =

kT
mω2

x

|Ψ(x) |2 = ( mω
πℏ )

1/2

e−mωx2/ℏ

⟨x2⟩0 =
ℏ

2mω
22
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We found                        and          . 

• Ratio: 

                                                 

better to use  instead of , then  
 

                        

• This indicates that as one cools through the transition a much narrower (ground 
state) peak will appear in the particle density.  

⟨x2⟩T =
kT

mω2
⟨x2⟩0 =

ℏ
2mω

⟨x2⟩T

⟨x2⟩0
= 2

kT
ℏω

TB ω

⟨x2⟩T

⟨x2⟩0
= 2ζ(3)−1/3N1/3 T

TB
= 1.88 N1/3 T

TB

23
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Experimental observation

• First observation in 1995. Rubidium vapour  
E. Cornell, W. Ketterle, C.Wieman  
— Nobel prize 2001 

• Left image: velocity distribution at 400 nK, just 
before the appearance of the BEC. 

• Centre image: at 200 nK, just after the  
appearance of the BEC 

• Right image: at 50 nK, after further evaporation  
leaves a sample of nearly pure condensate. 

• Rubidium has a small repulsive interaction. Interest in effect of repulsion on BEC.

24

Bose-Einstein condensation in rubidium vapour. Velocity 
distributions of the atoms at three different temperatures. 


