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IV  ELECTROSTATICS II

4.1  Summary of properties of E
In Chapter 2 we derived a number of properties of the E field, which ultimately we expressed
in terms of the vector calculus operators div, grad and curl. To recap, recall that Gauss’s law,
in Equation (2.9):
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gave us the div relation for E expressed in Equation (3.16):

                                                                    0div ερ=E .                                                    (4.1)

It is important to realise that in understanding the physical content of this equation, the E
field is that due to all charges and not only the charge at the particular point, while ρ is the
charge density at the given point.

The second property of E was found from consideration of the work done in moving a charge
in an electric field.  This led us to the line integral property of E expressed in Equation (2.13):
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which we were able to write as the curl property:

                                                                    curlE  =  0 .                                                       (4.2)

Finally, we also saw that the E field could be found from the electric potential V by taking the
gradient, in Equation (2.19):
                                                                  E  =  −grad V .                                                     (4.3)

These properties are not independent.  Obviously not; they are three aspects distilled
from Coulomb’s law. Thus far, that has been our only physical input.  In fact Equation (4.3)
leads directly to Equation (4.2).  Equation (4.3) tells us that E may be expressed as the
gradient of a scalar function. But we have an important identity of vector calculus, written in
Equation (3.31), namely that
                                                                 curl grad  =  0.

Therefore, since
                                                            curl E  =  − curl grad V,

this must be zero.  And so curl E has to be zero.

Recall that this is the property of E that we said ceased to be strictly true when time
variation is considered. In that case we will see that E can no longer be expressed entirely as
the gradient of the scalar potential. And in that case the curl of E is not required to vanish.
The phenomenon responsible for this is electromagnetic induction, as we shall see.
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4.2  The equations of Poisson and Laplace
In a region that may have a distribution of electric charge, there will be an electric field that
can be described in terms of the electric potential.  How does the charge distribution
determine the potential?  This is a fundamental question, which will lead to what is probably
the most important equation of (classical) physics.

As our starting point we shall take the two equations which, by now, should be very
familiar:

0,div gradVρ ε= = −E E .

Combining these two equations we have:

0div gradV ρ ε= − .

But now we recall one of the important identities of vector calculus, namely that

2div grad = ∇
so that we obtain, finally,
                                                                2

0V ρ ε∇ = −                                                        (4.4)

This is known as Poisson’s Equation, which in rectangular Cartesian co-ordinates is:

2 2 2

02 2 2

V V V

x y z
ρ ε∂ ∂ ∂+ + = −

∂ ∂ ∂

Poisson’s equation is very important.  It is telling us that the second spatial derivative
of the electric potential is proportional to the source strength, which here is the electric charge
density.  In the next section we shall consider the physical interpretation of the ∇2 operator,
but here we must examine one special case of Poisson’s equation.

In regions of space where there is no electric charge there still can be an electric field,
and therefore an electric potential – in the vicinity of an electric charge, for example.  If there
is no charge in a region, then ρ in this region is zero, and then Poisson’s equation reduces to

                                                                   2 0V∇ = .                                                            (4.5)

This is known as Laplace’s Equation.  Poisson’s equation is observed to be inhomogeneous,
while Laplace’s equation is seen to be homogeneous. They are both second order, linear,
partial differential equations.

Recall that there are two stages in solving partial differential equations such as these.
Firstly one must find solutions to the mathematical equation, and then one must ensure that
the actual solution also satisfies the boundary conditions. A number of mathematical results
come to our assistance here.
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Both Poisson’s equation and Laplace’s equation, are subject to the Uniqueness
theorem:  If a function V is found which is a solution of 2

0V ρ ε∇ = − , (or the special case
2 0V∇ = ) and if the solution also satisfies the boundary conditions, then it is the only

solution.

Solutions of Laplace’s equation are known as harmonic functions.  The general
procedure for solving Laplace’s equation is to construct a linear combination of harmonic
functions so as to satisfy the boundary conditions of the given problem.

Turning now to Poisson’s equation, once we have any solution of the equation, then
other solutions (including the one which obeys the boundary conditions) can be obtained by
adding to it solutions to the corresponding Laplace equation.  The procedure for finding the
correct solution to Poisson’s equation is thus to obtain an initial solution to the equation,
which will most likely not satisfy the boundary conditions.  Next one adds to this solutions of
the corresponding Laplace equation until the final result does satisfy the boundary conditions.

A formal solution to Poisson’s equation for a localised distribution of charge may be
found in the following way.  The potential at a point P due to a charge qi is given by

04
i

i

q
V

rπε
=

where ri is the displacement from the charge to P.  If there is a continuous distribution of
charge of density ρ then the charge in the volume dv is ρdv so that the potential due to this
volume element is
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Integrating this over the volume of the charge distribution gives the potential as
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                                                      (4.6)

where ( )ρ r  is the charge density at the point r.

4.3  Physical meaning of  ∇2

Laplace’s equation and Poisson’s equation appear in so many areas of physics that it can’t be
simple accident.  There is something very special contained in the laplacian operator ∇2; it is
even there in Schrödinger’s equation.  We shall see that the requirement that a function obey
Laplace’s equation is equivalent to saying that the function must be as smooth as possible.

The laplacian is closely related to the difference between the value of a function at the
given position and its mean value at neighbouring points.  Let us examine this for the one-
dimensional case.  At coordinate x the value of V is V(x).  A little to the left of this we may
express the value of V in terms of a Taylor expansion:
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while correspondingly to the right of the given point V is given by
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On taking the average of these two we see that the first derivative term cancels; the average
value of V surrounding the point is
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and thus the deviation from the value of V at a point and its mean value in the neighbourhood
is proportional to the second spatial derivative.  Extending this argument to three dimensions,
we see that there the deviation from the value of V at a point and its mean value in the
surrounding region is proportional to the laplacian 2V∇ . In other words, the laplacian gives a
measure of the distortion of the field.

This is equivalent to the requirement that a function obeying Laplace’s equation must
have the minimum curvature.  From this we see that a harmonic function can not have a
maximum or a minimum in free space. This is called the extreme value theorem or
Earnshaw’s theorem. The extreme values must occur on the boundaries – very important
practically for fusion reactors!

Proof of Earnshaw’s theorem:  If V has a maximum (minimum) then at that point V x∂ ∂ ,

V y∂ ∂  and V z∂ ∂  will be zero and 2 2V x∂ ∂ , 2 2V y∂ ∂  and 2 2V z∂ ∂  must be negative
(positive). However if the second derivatives are all negative (positive) then their sum cannot
be zero as asserted by Laplace’s equation. Thus extrema in V cannot occur in a region where
Laplace’s equation applies.                                                                                                         

4.4  Properties of conductors
An electric conductor is an object that contains many charges which can move freely around
within the body, but which cannot leave the surface.  Positive and negative charges cancel in
a neutral conductor.  In the following subsections we shall discuss a number of properties of
conductors which apply when no currents are flowing.

4.4.1  Property 1:  There is no E field inside a conductor
Let us assume that there is an E field inside the conductor.  This could happen in one of two
ways.

(i)  If the conductor is electrically neutral, then the E field
exists because of an uneven distribution of charges.  In this
case, since we are dealing with a conductor, the charges will
flow until the inhomogeneity is eliminated and the E field
will become zero.

(ii)  If there is a distribution of, say, positive charge in the
conductor then there will be an E field inside, following
from 0div ρ ε=E .  But the E field will cause the charge to

flow.  The equilibrium state, when no current is flowing,
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must be when there is no E field inside; all the charge must therefore be on the surface.

Either way, we see that inside a conductor the electric field must be zero.

4.4.2  Property 2:  Excess charges reside only on the surface
This follows from the above discussion.

4.4.3  Property 3:  The potential V is constant in a conductor

From Property 1 we know that the E field inside the conductor is zero.
Thus grad 0V = , from which it follows immediately that

                                      V  =  constant.

4.4.4  Property 4:  The external E field is normal to the surface

Suppose that there is a component of the electric field tangential to
the surface.  Then charge would flow along the surface.  The
equilibrium state is when no current flows; thus there is no
tangential component and E must therefore be normal to the
surface.

4.4.5  Property 5:  At the surface En  =  σ/ε0.

This follows from considering the Gaussian “pill-box”.  The
total charge contained in the pill-box is /aσ .  So applying
Gauss’s law we have
                                    0� �nE a aσ ε=

And from this we conclude that the electric field normal to the
surface is related to the surface charge density σ by:

                                                              n 0E σ ε=                                                                (4.7)

4.4.6  Property 6:  In a hole the electric field is zero

By a hole we mean a totally enclosed empty chamber
within the body of the conductor.

We know that the entire conductor is at a uniform potential
– Property 3.  Thus, in particular, V is constant on the
interior surface.  Now in the hole V is given by the solution

of Laplace’s equation subject to the boundary conditions.  And the boundary condition is that
V is constant on the closed surface.  But by the extreme value theorem we know that V can
have neither maxima nor minima in the volume – only at the surface.  So V must be constant
within the volume of the hole, and then E must be zero in the hole.
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4.5  Validity of the inverse square law
The experiments of Coulomb investigated the validity of the inverse square law by direct
measurement.  Such experiments are not capable of very high precision (compare the
difficulty in measuring G accurately).  Whenever possible, a null experiment has a much
greater sensitivity.  Now the vanishing of the E field in a cavity within a conductor is a direct
consequence of the inverse square law.  Thus testing for an E field in a hole provides a means
of checking Coulomb’s law.

Cavendish, in 1772, looked for a static E
field inside a spherical conductor, and in
1936 Plimpton and Lawton enhanced the
sensitivity of this type of experiment by
looking for an induced alternating E field
using a resonant detector.  Further
refinements were made by Williams,
Faller and Hill in 1971.

The basic idea of the experiment is that
the high voltage generator charges and
discharges the outer cylindrical
conductor at a frequency that is on

resonance with the mechanism of the galvanometer.  No motion of the galvanometer was
detected when the salt solution completed the conducting sphere at the top.

The results of such experiments may be interpreted by writing the E field of a point
charge as

( )2~E r ε− + .

Then the results of the various measurements may be summarised as:

Cavendish (1772) 0.02ε ≤

Maxwell (1870) 55 10ε −≤ ×

Plimpton & Lawton (1936) 92 10ε −≤ ×

Williams, Faller & Hill (1971) 165 10ε −≤ ×

An important reason for wanting to test the inverse square law is that it can be regarded as a
test that the mass of the photon is zero.  The photon is the “messenger particle” which
mediates the electromagnetic force.  If the mass of the photon were m then the electric
potential of a charge Q would vary with distance as
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where c is the speed of light and � is Planck’s constant.  Thus only when 0m =  does the

potential vary as 1/ r .

Looked at in this way, the measurements of Williams, Faller & Hill can be interpreted
as setting the mass of the photon at be less than 1.6×10−50 kg.                                                  
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4.6  Summary of electrostatics results
The relations between the three quantities E, V and ρ are summarised in the following
diagram, borrowed from Introduction to Electrodynamics by D. J. Griffiths.  While E may be
calculated directly from ρ, it is usually easier to calculate V first and then to calculate E
from V.
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When you have completed this chapter you should:

• be able to write down the expressions for divE and curlE and know what these mean in
physical terms;

• know how to calculate E from V;

• understand the meaning and usage of the Laplace and Poisson equation for V;

• be competent in working in terms of continuous charge distributions ρ(r);

• appreciate that solutions of the Laplace equation obey the uniqueness theorem and the
extreme value theorem, and understand the physical meaning of these;

• be familiar with the various electrostatic properties of conductors;

• understand why the electric field in a cavity within a conductor is zero and appreciate that
this can be used as a test of the inverse square law;

• appreciate that deviations from the inverse square law can be interpreted in terms of mass
of the photon;

• understand the various relationships between the quantities E, V and ρ.


