PH2130

Questions for contemplation

Week 1 Why differential equations?

Week 2 Why usually *linear* diff eqⁿs?

Week 3 Why usually 2nd order?

Aims of Wk 3 Lect 1

- •Recognise diffusion eqⁿ and wave eqⁿ.
- Know the type of phenomena they describe
- •Know the meaning and use of the ∇^2 symbol
- Understand the physical meaning of the laplacian operator

2.3.1 One dimension: *x* and *t* independent variables

 $\frac{\partial^2 \Psi}{\partial x^2} - \frac{1}{D} \frac{\partial \Psi}{\partial t} = 0$ Diffusion eqⁿ describes diffusion, heat flow etc. *D* is the *diffusion coefficient*.

 $\frac{\partial^2 \Psi}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2} = 0 \quad \text{Wave eq}^n$ describes vibrating string. v is the speed of propagation.

Note different orders of time

Connection with relativity.

2.3.2 Two dimensions: *x, y* and *t* independent variables

 $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} - \frac{1}{D} \frac{\partial \Psi}{\partial t} = 0$ Diffⁿ eqⁿ describes diffusion, heat flow etc. in two dimensions *D* is the *diffusion coefficient*.

 $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} - \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2} = 0$ Wave eqⁿ describes vibrating sheet -- a drum for

example.

v is the speed of propagation.

2.3.3 Three dimensions: *x*, *y*, *z* and *t* independent variables

 $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} - \frac{1}{D} \frac{\partial \Psi}{\partial t} = 0 \text{ Diff}^n \text{ eq}^n$ describes diffusion, heat flow etc. in three dimensions *D* is the *diffusion coefficient*.

 $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} - \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2} = 0 \quad \text{Wave}$ eqⁿ

describes vibrations in 3d -- sound waves for example.

v is the speed of propagation.

2.3.4 The laplacian

Have seen

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

before.

Recall vector calculus in PH1120 and the formula div grad = $\nabla^2 \rfloor$

The *laplacian* operator, denoted by ∇^2 , is given (in cartesian coordinates) by $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$.

Some books denote ∇^2 by Δ ; we don't

Ubiquity of the laplacian

The laplacian appears in many differential equations:

Diffusion equation $\nabla^2 \Psi - \frac{1}{D} \frac{\partial \Psi}{\partial t}.$

Wave equation $\nabla^2 \Psi - \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2}.$

Even the Schrödinger equation $-\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi = i\hbar\frac{\partial\Psi}{\partial t}$ [recall from PH1530]

Why is ∇^2 so common?

2.3.5 Physical meaning of ∇^2

The laplacian gives the 'smoothness' of a function. It measures the difference between the value of Ψ at a point and its mean value at surrounding points.

A little to the left of x

$$\Psi(x-a) = \Psi(x) - a \frac{\partial \Psi}{\partial x} + \frac{a^2}{2} \frac{\partial^2 \Psi}{\partial x^2} + \dots$$

while a little to the right $\Psi(x-a) = \Psi(x) + a \frac{\partial \Psi}{\partial x} + \frac{a^2}{2} \frac{\partial^2 \Psi}{\partial x^2} + \dots$

On taking the average $\overline{\Psi} = \frac{1}{2} \left[\Psi(x - a) + \Psi(x + a) \right]$ $= \Psi(x) + \frac{a^2}{2} \frac{\partial^2 \Psi}{\partial x^2}$

or

$$\overline{\Psi} - \Psi(x) = \frac{a^2}{2} \frac{\partial^2 \Psi}{\partial x^2}$$

The argument can be extended to 2d and 3d. Thus we conclude:

The deviation from the value of Ψ at a point and its mean value in the surrounding region is proportional to $\nabla^2 \Psi$.

In the Schrödinger equation bending Ψ costs kinetic energy.

2.3.6 Laplace's equation

In the *steady state* i.e. $\partial/\partial t$, $\partial^2/\partial t^2$ etc. = 0. Then both the wave equation and the diffusion equation reduce to (another equation to spot) $\nabla^2 \Psi = 0$. Laplace's equation

[Will see this in Electromagnetism PH2420.] Physical interpretation of ∇^2 implies:

In a region where Laplace's eq^n holds, there can be no maxima or minima in Ψ .

2.3.7 The d'alembertian kjhkjhkjhk

Aims of Wk 3 Lect 2

- Understand separation of variables method for solving PDEs
- Use separation of variables to convert PDEs into ODEs
- Boundary conds and Initial conds in solving real problems
- Solve simple (2 indep. vars) PDEs, given BCs and ICs

3 Separation of Variables

Look for solutions of PDEs which are a product of the independent variables.

Converts PDEs into a number of ODEs.

- So in 1d case : *x*, *t* indep. vars., look for solutions like

$$\Psi(x,t) = X(x)T(t)$$

3.1 1-d wave equation

$$\frac{\partial^2 \Psi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2}$$

Writing $\Psi(x,t) = X(x)T(t)$

Then

$$\frac{\partial^2 \Psi(x,t)}{\partial x^2} = \frac{\mathrm{d}^2 X(x)}{\mathrm{d}x^2} T(t)$$

and

$$\frac{\partial^2 \Psi(x,t)}{\partial t^2} = X(x) \frac{\mathrm{d}^2 T(t)}{\mathrm{d}t^2}$$

has total derivatives.

Put in wave equation \Rightarrow

$$\frac{d^{2}X(x)}{dx^{2}}T(t) = \frac{1}{v^{2}}\frac{d^{2}T(t)}{dt^{2}}$$

Divide by X(x)T(t), gives

1	$d^2 X$	 1	1	d^2T
\overline{X}	dx^2	$\overline{v^2}$	\overline{T}	dt^2

LHS depends on *x* only RHS depends on *t* only

But *x* and *t* are independent!

So both sides must be constant

Put const = $-k^2$. Called separation constant.

Have 2 ODEs:

$$\frac{d^{2}X}{dx^{2}} + k^{2}X = 0$$

$$\frac{d^{2}T}{dt^{2}} + v^{2}k^{2}T = 0$$

- Have turned 1 PDE into 2 ODEs
- Assuming k^2 is positive, these are both SHO equations.

3.1.1 Boundary conditions & Initial conditions

Need some physical information to solve real problems.

E.g. Piano string, length *L*, where $\Psi(x,t)$ is displacement of string.

Fixed at both ends: Ψ(0,t) = Ψ(L,t) = 0 for all t. Restriction on Ψ by the boundary, so called *boundary condition*.

• Initial shape: $\Psi(x,0) = f(x)$, Restriction on Ψ by the initial state called initial condition.

The *Boundary Condition* helps solve the *X* equation.

BC is
$$X(0) = X(L) = 0$$
.

Gen. Solⁿ of

$$\frac{d^2 X}{dx^2} + k^2 X = 0$$

is

$$X(x) = A\sin(kx) + B\cos(kx).$$
[Recall from PH1110]

BC $X(0) = 0 \implies B = 0$

BC X(L) = 0 restricts allowed values of k since sin kL must = 0; i.e $kL = n\pi$ for integer n. (See why k^2 must be +ve now)

PICTURE of Piano string

Recall *particle in a box* in PH2530. There we saw you needed an integer n° of $\frac{1}{2}$ waves to fill *L*. – Same thing.

We label the allowed values of *k*:

$$k_n = \frac{\pi}{L}n$$

Then X solutions are:

$$X_n(x) = A_n \sin(k_n x)$$

 \uparrow underermined as yet

See that

Boundary conditions \Rightarrow Quantisation

The *Initial Condition* helps solve the *T* equation

$$\frac{\mathrm{d}^2 T(t)}{\mathrm{d}t^2} + k^2 v^2 T = 0$$

another SHO equation – since we know k^2 is positive.

Solution is $T_n(t) = P_n \cos(k_n v t) + Q_n \sin(k_n v t).$

Solution for $\Psi(x, t)$ for given *n* is then

$$\Psi_n(x,t) = X_n(x)T_n(t)$$

= $\sin k_n x \{P_n \cos(k_n vt) + Q_n \sin(k_n vt)\}$

(have subsumed the A_n into the P_n , Q_n)

Linearity allows us to write the *general solution* as a linear superposition

$$\Psi(x,t) = \sum_{n} \sin k_n x \{P_n \cos(k_n vt) + Q_n \sin(k_n vt)\}$$

again have subsumed coeffs into the P_n and Q_n .

Satisfying the *initial condition* will determine the P_n and Q_n .

$$\Psi(x,0) = f(x)$$

SO

$$\sum_{n} P_n \sin k_n x = f(x).$$

This is a Fourier sine series.

[Remember from PH1120]

The Fourier components P_n are found from f(x) using the *inversion formula*: $P_n = \frac{2}{L} \int_0^L f(x) \sin k_n x \, dx$

So: Solution to vibrating string obeying $\frac{\partial^2 \Psi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2}$ and subject to:

BC:
$$\Psi(0,t) = \Psi(L,t) = 0$$
 for all t
(fixed at both ends)

and

IC:
$$\Psi(x,0) = f(x)$$
 (shape at $t = 0$)
Is

$$\Psi(x,t) = \sum_{n} P_n \sin(k_n x) \cos(k_n v t)$$

where

$$k_n = \frac{\pi}{L}n$$

and

$$P_n = \frac{2}{L} \int_0^L f(x) \sin k_n x \, \mathrm{d}x.$$

Summary of S.V method:

- 1 Express Ψ as a product \Rightarrow ODEs plus separation constant
- 2 Solve ODEs
- 3 Boundary conditions determine allowed spatial solutions, values of separation constant
- 4 Make linear superposition of $X_n T_n$ solutions.
- 5 Initial conditions allow determination of superposition coefficients.