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PH2130
Questions for contemplation

Week 1
Why differential equations?

Week 2
Why usually linear diff eqns?

Week 3
Why usually 2nd order?
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Aims of Wk 3  Lect 1

•  Recognise diffusion eqn

and wave eqn.

•  Know the type of
phenomena they describe

•  Know the meaning and
use of the ∇ 2 symbol

•  Understand the physical
meaning of the laplacian
operator



PH2130  week 3, page 3

2.3.1 One dimension:  x and t
independent variables
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 Diffusion eqn

describes diffusion, heat flow etc.
D is the diffusion coefficient.
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Wave eqn

describes vibrating string.
v  is the speed of propagation.

Note different orders of time

Connection with relativity.
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2.3.2 Two dimensions:  x, y
and t independent variables
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   Diffn eqn

describes diffusion, heat flow etc. in
two dimensions
D is the diffusion coefficient.
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  Wave eqn

describes vibrating sheet  -- a drum for
example.
v  is the speed of propagation.
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2.3.3 Three dimensions: x, y,
z and t independent variables
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 Diffn eqn

describes diffusion, heat flow etc. in
three dimensions
D is the diffusion coefficient.
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  Wave

eqn

describes vibrations in 3d  -- sound
waves for example.
v  is the speed of propagation.
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2.3.4 The laplacian
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 Recall vector calculus in PH1120 and
the formula  div grad  =  ∇ 2 

The laplacian operator, denoted by ∇ 2,
is given (in cartesian coordinates) by
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 Some books denote ∇ 2 by ∆; we don’t
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Ubiquity of the laplacian
The laplacian appears in many
differential equations:

Diffusion equation
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Wave equation
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Even the Schrödinger equation
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 recall from PH1530

Why is ∇ 2 so common?
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2.3.5  Physical meaning of ∇ 2

The laplacian gives the ‘smoothness’ of
a function.  It measures the difference
between the value of Ψ at a point and
its mean value at surrounding points.
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On taking the average
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The argument can be extended to 2d
and 3d.  Thus we conclude:
The deviation from the value of Ψ at a
point and its mean value in the
surrounding region is proportional to
∇ 2Ψ.

In the Schrödinger equation bending Ψ
costs kinetic energy.
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2.3.6  Laplace’s equation

In the steady state i.e. ∂/∂t, ∂2/∂t2 etc. =
0.  Then both the wave equation and the
diffusion equation reduce to
               (another equation to spot)
∇ =2 0Ψ .      Laplace’s equation

 Will see this in Electromagnetism
PH2420.
Physical interpretation of ∇ 2 implies:

In a region where Laplace’s eqn holds,
there can be no maxima or minima in
Ψ.
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2.3.7  The d’alembertian
kjhkjhkjhk
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Aims of Wk 3  Lect 2

•  Understand separation of
variables  method for
solving PDEs

•  Use separation of
variables to convert PDEs
into ODEs

•  Boundary conds and Initial
conds in solving real
problems

•  Solve simple (2 indep.
vars) PDEs, given BCs and
ICs
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3  Separation of
Variables

Look for solutions of PDEs which are a
product of the independent variables.

Converts PDEs into a number of ODEs.

- So in 1d case : x, t indep. vars., look
for solutions like

Ψ x t X x T t,� � � � � �=
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3.1  1-d wave equation
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has total derivatives.

Put in wave equation ⇒
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LHS  depends on x only
RHS  depends on t only

But x and t are independent!

So both sides must be constant

Put const =  − k2.
Called separation constant.
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Have 2 ODEs:
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- Have turned 1 PDE into 2 ODEs

- Assuming k2 is positive, these are both
SHO equations.
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3.1.1  Boundary conditions &
Initial conditions
Need some physical information to
solve real problems.

E.g.  Piano string, length L, where
Ψ x t,� � is displacement of string.

•  Fixed at both ends:
Ψ Ψ0 0, ,t L t� � � �= =  for all t.
Restriction on Ψ by the boundary, so
called boundary condition.

•  Initial shape: Ψ x f x,0� � � �= ,
Restriction on Ψ by the initial state
called initial condition.
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The Boundary Condition helps solve the
X equation.

BC is  X X L0 0� � � �= = .

Gen. Soln of
d
d

2

2
2 0

X

x
k X+ =

is
X x A kx B kx� � � � � �= +sin cos .

 Recall from PH1110

BC  X B0 0 0� � = ⇒ =

BC  X L� � = 0  restricts allowed values
of k since sin kL must = 0; i.e kL n= π
for integer n.
(See why k2 must be +ve now)



PH2130  week 3, page 19

PICTURE of Piano string
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Recall particle in a box in PH2530.
There we saw you needed an integer no

of ½ waves to fill L.  – Same thing.

    n  =  1          n  =  2           n  =  3

We label the allowed values of k:

k
L

nn = π

Then X solutions are:
X x A k xn n n� � � �= sin

                               ↑  underermined as yet
See that
Boundary conditions ⇒  Quantisation
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The Initial Condition helps solve the
T equation

d
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another SHO equation – since we know
k2 is positive.

Solution is
T t P k vt Q k vtn n n n n� � � � � �= +cos sin .

Solution for Ψ(x, t) for given n is then

Ψn n n

n n n n n

x t X x T t

k x P k vt Q k vt

,

sin cos sin

� � � � � �

� � � �� �

=
= +

(have subsumed the An into the Pn, Qn)
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Linearity allows us to write the general
solution as a linear superposition

Ψ x t k x P k vt Q k vtn n n n n
n

, sin cos sin� � � � � �� �= +∑
again have subsumed coeffs into
the Pn and Qn.

Satisfying the initial condition will
determine the Pn and Qn.

Ψ x f x,0� � � �=
so

P k x f xn n
n

sin =∑ � �.

This is a Fourier sine series.

 Remember from PH1120
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The Fourier components Pn are found
from f x� � using the inversion formula:

P
L

f x k x xn n
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So:
Solution to vibrating string obeying
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and subject to:
BC:    Ψ Ψ0 0, ,t L t� � � �= =  for all t
                 (fixed at both ends)
and
IC:      Ψ x f x,0� � � �=   (shape at t  =  0)
Is

Ψ x t P k x k vtn n n
n

, sin cos� � � � � �= ∑
where

k
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and
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Summary of S.V method:

1 Express Ψ as a product ⇒  ODEs plus
separation constant

2 Solve ODEs

3 Boundary conditions determine
allowed spatial solutions, values of
separation constant

4 Make linear superposition of XnTn

solutions.

5 Initial conditions allow determination
of superposition coefficients.


