PH2130

Questions for contemplation

Week 1

Why differential equations?

Week 2

Why usually linear diff eqns?

Week 3
Why usually $2^{\text {nd }}$ order?

Aims of Wk 3 Lect 1

-Recognise diffusion eq ${ }^{\text {n }}$ and wave eq. ${ }^{\text {n }}$.
-Know the type of phenomena they describe
-Know the meaning and use of the ∇^{2} symbol

- Understand the physical meaning of the laplacian operator

2.3.1 One dimension: x and t independent variables

$\partial^{2} \Psi \quad 1 \partial \Psi$
$\frac{\partial^{2} \Psi}{\partial x^{2}}-\frac{1}{D} \frac{\partial \Psi}{\partial t}=0 \quad$ Diffusion eq ${ }^{\mathbf{n}}$ describes diffusion, heat flow etc.
D is the diffusion coefficient.
$\frac{\partial^{2} \Psi}{\partial x^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} \Psi}{\partial t^{2}}=0 \quad$ Wave eq ${ }^{\mathbf{n}}$ describes vibrating string.
v is the speed of propagation.
Note different orders of time

Connection with relativity.

2.3.2 Two dimensions: x, y and t independent variables

$\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}-\frac{1}{D} \frac{\partial \Psi}{\partial t}=0 \quad$ Diff $^{\mathbf{n}} \mathbf{e q}^{\mathbf{n}}$
describes diffusion, heat flow etc. in two dimensions
D is the diffusion coefficient.
$\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} \Psi}{\partial t^{2}}=0 \quad$ Wave eq ${ }^{\text {n }}$
describes vibrating sheet -- a drum for example.
v is the speed of propagation.

2.3.3 Three dimensions: x, y, z and t independent variables

$\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}-\frac{1}{D} \frac{\partial \Psi}{\partial t}=0$ Diff $^{\mathbf{n}} \mathbf{e q}{ }^{\mathbf{n}}$ describes diffusion, heat flow etc. in three dimensions
D is the diffusion coefficient.
$\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} \Psi}{\partial t^{2}}=0 \quad$ Wave eq ${ }^{n}$
describes vibrations in 3d -- sound waves for example.
v is the speed of propagation.

2.3.4 The laplacian

Have seen

$$
\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

before.
「Recall vector calculus in PH1120 and the formula div grad $\left.=\nabla^{2}\right\rfloor$

The laplacian operator, denoted by ∇^{2}, is given (in cartesian coordinates) by

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

$\left\lceil\right.$ Some books denote ∇^{2} by Δ; we don't \rfloor

Ubiquity of the laplacian

The laplacian appears in many differential equations:

Diffusion equation

$$
\nabla^{2} \Psi-\frac{1}{D} \frac{\partial \Psi}{\partial t}
$$

Wave equation

$$
\nabla^{2} \Psi-\frac{1}{v^{2}} \frac{\partial^{2} \Psi}{\partial t^{2}}
$$

Even the Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi=i \hbar \frac{\partial \Psi}{\partial t}
$$

「recall from PH1530」
Why is ∇^{2} so common?

2.3.5 Physical meaning of ∇^{2}

The laplacian gives the 'smoothness' of a function. It measures the difference between the value of Ψ at a point and its mean value at surrounding points.

A little to the left of x
$\Psi(x-a)=\Psi(x)-a \frac{\partial \Psi}{\partial x}+\frac{a^{2}}{2} \frac{\partial^{2} \Psi}{\partial x^{2}}+\ldots$
while a little to the right
$\Psi(x-a)=\Psi(x)+a \frac{\partial \Psi}{\partial x}+\frac{a^{2}}{2} \frac{\partial^{2} \Psi}{\partial x^{2}}+\ldots$

On taking the average

$$
\begin{aligned}
\Psi & =\frac{1}{2}[\Psi(x-a)+\Psi(x+a)] \\
& =\Psi(x)+\frac{a^{2}}{2} \frac{\partial^{2} \Psi}{\partial x^{2}}
\end{aligned}
$$

Or

$$
\Psi-\Psi(x)=\frac{a^{2}}{2} \frac{\partial^{2} \Psi}{\partial x^{2}}
$$

The argument can be extended to 2 d and 3d. Thus we conclude:
The deviation from the value of Ψ at a point and its mean value in the surrounding region is proportional to $\nabla^{2} \Psi$.

In the Schrödinger equation bending Ψ costs kinetic energy.

2.3.6 Laplace's equation

In the steady state i.e. $\partial / \partial t, \partial^{2} / \partial t^{2}$ etc. $=$ 0 . Then both the wave equation and the diffusion equation reduce to
(another equation to spot)
$\nabla^{2} \Psi=0$. Laplace's equation
「Will see this in Electromagnetism PH2420.」 Physical interpretation of ∇^{2} implies:

In a region where Laplace's eq ${ }^{\mathrm{n}}$ holds, there can be no maxima or minima in Ψ.

2.3.7 The d'alembertian

 kjhkjhkjhk
Aims of Wk 3 Lect 2

- Understand separation of variables method for solving PDEs
- Use separation of variables to convert PDEs into ODEs
- Boundary conds and Initial conds in solving real problems
- Solve simple (2 indep. vars) PDEs, given BCs and ICs

3 Separation of Variables

Look for solutions of PDEs which are a product of the independent variables.

Converts PDEs into a number of ODEs.

- So in 1d case : x, t indep. vars., look for solutions like

$$
\Psi(x, t)=X(x) T(t)
$$

3.1 1-d wave equation

$$
\frac{\partial^{2} \Psi}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \Psi}{\partial t^{2}}
$$

Writing $\Psi(x, t)=X(x) T(t)$
Then

$$
\frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}=\frac{\mathrm{d}^{2} X(x)}{\mathrm{d} x^{2}} T(t)
$$

and

$$
\frac{\partial^{2} \Psi(x, t)}{\partial t^{2}}=X(x) \frac{\mathrm{d}^{2} T(t)}{\mathrm{dt}^{2}}
$$

has total derivatives.

Put in wave equation \Rightarrow

$$
\frac{\mathrm{d}^{2} X(x)}{\mathrm{d} x^{2}} T(t)=\frac{1}{v^{2}} \frac{\mathrm{~d}^{2} T(t)}{\mathrm{d} t^{2}}
$$

Divide by $X(x) T(t)$, gives

$$
\frac{1}{X} \frac{\mathrm{~d}^{2} X}{\mathrm{~d} x^{2}}=\frac{1}{v^{2}} \frac{1}{T} \frac{\mathrm{~d}^{2} T}{\mathrm{~d} t^{2}}
$$

LHS depends on x only
RHS depends on t only
But x and t are independent!

So both sides must be constant

Put const $=-k^{2}$.
 Called separation constant.

Have 2 ODEs:

$$
\left.\begin{array}{l}
\frac{\mathrm{d}^{2} X}{\mathrm{~d} x^{2}}+k^{2} X=0 \\
\frac{\mathrm{~d}^{2} T}{\mathrm{~d} t^{2}}+v^{2} k^{2} T=0
\end{array}\right\}
$$

- Have turned 1 PDE into 2 ODEs
- Assuming k^{2} is positive, these are both SHO equations.

3.1.1 Boundary conditions \& Initial conditions
 Need some physical information to solve real problems.

E.g. Piano string, length L, where $\Psi(x, t)$ is displacement of string.

- Fixed at both ends:
$\Psi(0, t)=\Psi(L, t)=0$ for all t.
Restriction on Ψ by the boundary, so called boundary condition.
- Initial shape: $\Psi(x, 0)=f(x)$,

Restriction on Ψ by the initial state called initial condition.

The Boundary Condition helps solve the X equation.

BC is $X(0)=X(L)=0$.
Gen. Sol ${ }^{\mathrm{n}}$ of

$$
\frac{\mathrm{d}^{2} X}{\mathrm{~d} x^{2}}+k^{2} X=0
$$

is

$$
X(x)=A \sin (k x)+B \cos (k x) .
$$

\lceil Recall from PH1110」
BC $X(0)=0 \Rightarrow B=0$
BC $X(L)=0$ restricts allowed values of k since $\sin k L$ must $=0$; i.e $k L=n \pi$ for integer n.
(See why k^{2} must be + ve now)

PICTURE of Piano string

Recall particle in a box in PH2530. There we saw you needed an integer n° of $1 / 2$ waves to fill L. - Same thing.

$$
n=1
$$

$n=2$
$n=3$
We label the allowed values of k :

$$
k_{n}=\frac{\pi}{L} n
$$

Then X solutions are:

$$
\begin{aligned}
X_{n}(x)= & A_{n} \sin \left(k_{n} x\right) \\
& \uparrow \text { underermined as yet }
\end{aligned}
$$

See that
Boundary conditions \Rightarrow Quantisation

The Initial Condition helps solve the T equation

$$
\frac{\mathrm{d}^{2} T(t)}{\mathrm{d} t^{2}}+k^{2} v^{2} T=0
$$

another SHO equation - since we know k^{2} is positive.

Solution is

$$
T_{n}(t)=P_{n} \cos \left(k_{n} v t\right)+Q_{n} \sin \left(k_{n} v t\right) .
$$

Solution for $\Psi(x, t)$ for given n is then

$$
\begin{aligned}
\Psi_{n}(x, t) & =X_{n}(x) T_{n}(t) \\
& =\sin k_{n} x\left\{P_{n} \cos \left(k_{n} v t\right)+Q_{n} \sin \left(k_{n} v t\right)\right\}
\end{aligned}
$$

(have subsumed the A_{n} into the P_{n}, Q_{n})

Linearity allows us to write the general solution as a linear superposition
$\Psi(x, t)=\sum_{n} \sin k_{n} x\left\{P_{n} \cos \left(k_{n} v t\right)+Q_{n} \sin \left(k_{n} v t\right)\right\}$
again have subsumed coeffs into the P_{n} and Q_{n}.

Satisfying the initial condition will determine the P_{n} and Q_{n}.

$$
\Psi(x, 0)=f(x)
$$

SO

$$
\sum_{n} P_{n} \sin k_{n} x=f(x) .
$$

This is a Fourier sine series.
〔Remember from PH1120」

The Fourier components P_{n} are found from $f(x)$ using the inversion formula: $P_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin k_{n} x \mathrm{~d} x$

So:

Solution to vibrating string obeying

$$
\frac{\partial^{2} \Psi}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \Psi}{\partial t^{2}}
$$

and subject to:
BC: $\quad \Psi(0, t)=\Psi(L, t)=0$ for all t
(fixed at both ends)
and
IC: $\quad \Psi(x, 0)=f(x)$ (shape at $t=0)$
Is

$$
\Psi(x, t)=\sum_{n} P_{n} \sin \left(k_{n} x\right) \cos \left(k_{n} \nu t\right)
$$

where

$$
k_{n}=\frac{\pi}{L} n
$$

and

$$
P_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin k_{n} x \mathrm{~d} x .
$$

Summary of S.V method:
1 Express Ψ as a product \Rightarrow ODEs plus separation constant

2 Solve ODEs

3 Boundary conditions determine allowed spatial solutions, values of separation constant

4 Make linear superposition of $X_{n} T_{n}$ solutions.

5 Initial conditions allow determination of superposition coefficients.

