PH2130 Mathematical Methods

Problem Sheet 1

The problems on this sheet relate to the introductory handout First and Second Order Ordinary Differential Equations with Constant Coefficients.

1 Derive the equation analogous to eq.(1.7) or eq.(1.8), for a parallel LCR circuit.
2 By making the substitution $t \rightarrow t+\tau$ show that eq.(2.3) does satisfy time translation invariance. (The idea is to show that you end up with a similar equation, but with a different constant A.)

3 Does the time evolution $x(t)=A e^{-b t^{2}}$ obey time translation invariance? Explain.

4 Show that the particular integral given in eq.(2.5) does indeed satisfy eq.(2.4).
5 Derive the expressions for C and φ of eq.(2.10) in terms of the constants A and B of eq.(2.9). In other words, show that $C=\sqrt{A^{2}+B^{2}}, \varphi=-\tan ^{-1} B / A$.

6 Prove the first of the two properties of Q enunciated in section 2.2.5.
7 Derive the steady state solution given in eq.(2.27).
8 Prove the three properties of Q enunciated in section 2.3.4.
9 Derive eq.(2.35). That is, given that $x(t)=f_{0} C(\omega) \cos (\omega t+\varphi)$ is the response to $f(t)=f_{0} \cos \omega t$, show that $x(t)=f_{0} C(\omega) \sin (\omega t+\varphi)$ is the response to $f(t)=f_{0} \sin \omega t$. You can do this through a change of time variable such that $\omega t \rightarrow \omega t-\pi / 2$.

10 By considering a complex voltage $V(t)=V_{0} e^{-\mathrm{i} \omega t}$ and the defining properties of the inductor, resistor and capacitor in eqs.(1.6), show that the complex impedance of these components is $\mathrm{i} \omega L, R$ and $1 / \mathrm{i} \omega C$ respectively. It is up to you to adopt a suitable definition of complex impedance.

11 By using Mathematica, make plots of the response functions $A(\omega), B(\omega), C(\omega)$ and $\varphi(\omega)$. Investigate graphically and analytically the hypothesis that $B(\omega)$ might be the derivative of $A(\omega)$.

