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Schrödinger’s Equation – 2
The Simple Harmonic Oscillator

Example:  The simple harmonic oscillator
Recall our rule for setting up the quantum mechanical problem: “take the classical
potential energy function and insert it into the Schrödinger equation.”  We are now
interested in the time independent Schrödinger equation.

We write the classical potential energy as

V x m x� � = 1

2
2 2ω ,

where the classical solutions are
x t A t B t� � = +cos sinω ω .

This indicates that the ω we have used in the potential energy corresponds to the classical
angular frequency of the oscillator.  You should understand why the mass m has appeared
in the potential energy in this description.  The time independent Schrödinger equation
that we wish to solve is thus:
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Preliminary to solution
The first step in attempting a solution of this equation is to “tidy up” the variables by
removing all unnecessary quantities, possibly by transforming to new variables.  Let’s
first write the equation in “normal form”:
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Now m2 2 2ω / � has the dimensions of length-4 and 2 2mE / � has the dimensions of
length-2.  We thus introduce a length parameter a defined by

a
m

= �

ω
which facilitates the definition of a dimensionless length y and a dimensionless energy ε
through

x ya

E

=
= ε ω� / ,2

This enables us to write the Schrödinger equation in the simplified form
d

dy
y

2

2
2 0

ψ ε ψ+ − =	 
 .

This equation cannot be solved in terms of the standard functions.  It would be possible to
proceed from here by looking for a power series solution, using the techniques we have
learned.  However it proves beneficial to stop and think and examine requirements which
physically allowed solutions to the equation must satisfy.
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Limiting behaviour
When considering the quantum mechanical particle in a box you will recall that the
confining potential of the box walls ensured that the wave function vanished outside the
box and on its walls.  Now a particle in a harmonic oscillator potential is not subject to
such constraints.  But it is confined by the oscillator potential; it becomes increasingly
difficult to move the particle further and further from the centre of the well.  So far as the
wave function is concerned, and the interpretation of its modulus squared as a
probability, it is clear that ψ must decrease as y becomes larger and larger.

In the limit of large y, that is, when

y >> ε
it is clear that ε may be ignored in the above equation.  This is saying that when y is very
large the form of the wave function is independent of its energy eigenvalue.  In this limit
the equation simplifies to
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This equation also cannot be solved in terms of the standard functions.  However what we
are interested in is the limiting behaviour of the solution at large y.  It is easy to check

that the function e y− 2 2/  satisfies the equation in this limit.

 In fact you can show quite easily that
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which vanishes as y → ∞ .                                                                                                  

Our conclusion is that the physically allowed solutions must satisfy the requirement

ψ y e yy� � ~ /− → ∞
2 2 as .

This is a form of boundary condition; you should appreciate how this is an extension of
the idea of the boundary condition on a particle in a box.

Exploiting the boundary condition
We incorporate this boundary condition into our solution by writing a full solution as

ψ y H y e y� � � �= − 2 2/ .

The clever thing about this is that the function H y� �  must not overwhelm the

e y− 2 2/ behaviour at large y, so H y� �must only be a polynomial in y; its power series must

terminate.

By substituting this product solution into the equation for ψ y� �we obtain the equation

obeyed by the new function H(y):
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This is Hermite’s equation.

Solutions of Hermite’s equation
Hermite’s equation cannot be solved in terms of elementary functions.  We shall look for
series solutions.  We assume a simple series of the form
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We substitute these into Hermite’s equation, to give

i i a y y ia y a yi
i
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− − + − =− −∑ ∑ ∑1 2 1 02 1� � � �ε .

The next step is to incorporate the y factor in the second term into the sum and increase
the index i by 2 in the first term so that the equation simplifies to

i i a i a yi i
i

i

+ + + − + − =+∑ 2 1 2 1 02� �� � � �� �ε .

As we have argued previously, for the expression on the left hand side to be identically
zero, each power of y must be zero.  In other words

i i a i ai i+ + + − + − =+2 1 2 1 02� �� � � �ε
or
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,

a recurrence relation for the coefficients.

Since the series has been defined to start at i  =  0 it follows that a-1 and a-2 are zero, so
that the lowest order non-vanishing coefficients are a0 and a1.  These will be independent
constants since the recurrence relation connects alternate terms.

We now proceed to build up the coefficients of the power series in the usual way.

Even powers
We start with i  =  0 which we substitute into the recurrence relation:

a a2 0

1

2
= −ε

.

Next set i  =  2
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Next set i  =  6
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The general term, for even i is given by

a
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!
.

Odd powers
Now we start with i  =  1 which we substitute into the recurrence relation

a a3 1
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!
.

Next set i  =  3
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The general term, for odd i is given by
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!
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Termination of the series – energy quantisation
We have argued that the boundary condition requirement on the wave function

ψ y H y e y� � � �= − 2 2/  is that for sufficiently large y the exponential term dominates.  The

function H y� �  must not overwhelm the exponential so it can be, at most, a polynomial –

a terminating power series.  The nth term of the series will vanish if
2 1 0n + − =ε

and this holds whether N is odd or even.

Here n is a positive integer (or zero).  It is clear that the series will only terminate for
specific values of ε. These are the allowed energy values for the system – the energy
eigenvalues.  We may write this condition (on the dimensionless energy) as

ε = + =2 1 0 1 2 3n n , , , , ...
For the actual energy E this gives the result

E n= +2 1
2

� � �
ω

or
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E nn = +��
�
��

1

2
�ω.

We see that the energy eigenvalues are equally spaced; this is a special property of the
simple harmonic oscillator.

Hermite polynomials
The series solutions corresponding to the eigenvalues, that is the eigenfunctions, are
polynomials.  The polynomials H y� �  corresponding to the different n are called Hermite

polynomials, denoted by H yn� � .  The first few Hermite polynomials (conventionally

normalised) are
H y H y y

H y y H y y y
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The figure shows these

Hermite polynomials

The harmonic oscillator wave functions are then given by

ψ n n
yy H y e� � � �= − 2 2/ .

In terms of real distance x ya= , this is

ψ n n
x ax H x a e� � � �= −/ /2 22 .

The first four wave functions, corresponding to the Hermite polynomials above are
plotted below.
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Harmonic oscillator wave functions

Orthogonality
The Hermite polynomials are orthogonal.  In considering orthogonality there are three
important things to know:

1 the orthogonality interval

2 the weight finction (if any)

3 the norm.

The orthogonality interval is the range over which orthogonal function expansions
“work” before repeating or something.  Recall what happens to Fourier series outside
their range.  The orthogonality integral is evaluated between the limits specified by the
orthogonality inteval.  For Hermite polynomials the interval is −∞ ∞to .

The weight function for the Hermite polynomials is e y− 2

.  Thus the orthogonality integral
is written

e H y H y y m ny
n m

−

−∞

∞

� = ≠
2

0� � � �d when .

You should see that the weight function in this integral indicates that the harmonic

oscillator wave functions ψ n n
yy H y e� � � �= − 2 2/ are orthogonal with a unit weight function.

The norm is the value of this integral when m n= .  It is a non-trivial matter to show that
the norm integral is given by

e H y y ny
n

n−

−∞

∞

� =
2 2 1 22� �d π / !

Normalisation of the harmonic oscillator wave functions
Thus far we have not considered the normalisation of the wave functions.  The square of
the modulus of the wave function is a probability:

ψ x x p x x� � � �
2
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is the probability of finding the particle in the range x to x + dx.  Since the probability of
finding the particle somewhere must be unity, this gives the normalisation condition

ψ x x� �
2

1d
−∞

∞

� = .

So if we write the normalised harmonic oscillator wave function as

ψ n n
x ax AH x a e� � � �= −/ /2 22

then normalisation requires

A H x a e xn
x a2 2 2 2

1/ /� � −

−∞

∞

� =d .

The integral is essentially the norm integral for the Hermite polynomial orthogonality:
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π
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A ann=
−

2 1 2 1 2
π / /

!	 

and the normalised harmonic oscillator wave functions are thus

ψ πn
n

n
x ax an H x a e� � 	 
 � �=

− −2 1 2 1 2 22 2/ / /! / .

In fact the SHO wave functions shown in the figure above have been normalised in this
way.

Classical limit of the quantum oscillator
A particle in a quantum harmonic oscillator in the ground state has a gaussian wave
function.  That means it is more likely to be found at the centre of the well.  By contrast a
particle in a classical harmonic oscillator will be more likely to be found at the extremes
of its trajectory, where its velocity is smallest, and it spends least time at the centre where
it is moving fastest.  The Correspondence Principle says that in the limit of large quantum
numbers the behaviour of a quantum system should approach that of the corresponding
classical system.  We can investigate this.

Classical Probabilities
A classical particle has a well-defined trajectory x t� � .  This function can be

differentiated, giving the velocity as a function of time.  In quantum mechanics one
cannot know both position and velocity simultaneously.  In other words in quantum
mechanics one cannot talk of a particle’s trajectory.  In quantum mechanics all one has is
the wave function ψ x� � .

We want to compare the classical and the quantum harmonic oscillator.  We shall do this
by considering the classical analogue of the wave function; actually we will consider the

analogue of ψ x� �
2
.
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In the quantum case we know that ψ x� �
2
 is the probability of finding the particle in the

range x to x  +  dx.  In the classical case, where we know the trajectory function x t� �  we

can calculate the corresponding probability in the following way.

The probability of finding the particle in the range x to x  +  dx is proportional to the time
dt the particle spends in the range x to x  +  dx.  And to normalise this probability we
must divide by the time it takes to traverse all x values: that is, half the period.  Since the
velocity v is the time derivative of x

v
x

t
= d

d
we can write dt as

d
d

t
x

v
= .

We wish to obtain dt as a function of x so all we require is to express the velocity in terms
of the displacement:

d
d

t
x

v x
=
� �

.

Then we divide by π ω/ to obtain a correctly normalised probability.

p x
v x

� �
� �

= ω
π

.

We can write the trajectory of the classical oscillator as
x t x t� � = 0 sinω

where x0  is the amplitude of the oscillations.  Then the velocity is

v
x

t
x t

x x

= =

= −

d

d 0

0
2 2

ω ω

ω

cos

.

From this we can express the classical SHO probability function as

p x
x x

� � =
−

1

0
2 2π

.

Probability function for the classical harmonic oscillator
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(You should check the classical probability function is correctly normalised.)

Observe this is greatest at the extremities of the motion where the velocity goes to zero
and it is smallest at the centre where the particle is moving fastest.

Now the classical oscillator has a well-defined amplitude; the displacement x can never
be greater than the amplitude x0 .  By contrast the wave function of quantum harmonic
oscillator has (gaussian) tails which extend (in principle) off to infinity.

Quantum – classical connection
The quantum wave function for the harmonic oscillator has been shown to be

ψ πn
n

n
x ax an H x a e� � 	 
 � �=

− −2 1 2 1 2 22 2/ / /! /

so the quantum probability function (in the state n) is then

p x x

an H x a e

n n

n
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To make connection with the classical probability function it makes sense to express the
amplitude x0 of the classical oscillator in terms of its energy.

Now

E mv m x= +1

2

1

2
2 2 2ω .

And if we write the displacement as
x t x t� � � �= 0 sin ω

then

v t
x

t
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d 0ω ωcos .

Thus the energy is given by
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Then the amplitude is related to the oscillator energy

x
E

m0
2

2

2=
ω

.

But since the energy of the oscillator is related to the quantum number n by
E n= +1 2/� ��ω  we can express the amplitude in terms of n as
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ω

where a is the SHO length parameter introduced previously.  The classical probability is
then



Royal Holloway University of London                                                                                                                      Department of Physics

PH2130 Mathematical Methods                                                                                                                 10

p x
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,

while the quantum probability function is

p x an H x a en
n

n
x a� � 	 
 � �=

− −2 1 2 1 2 2 2

π / /! / .

To compare these two, first let’s plot the quantum ground state ( )n = 0 and the classical
analogue.  As expected the two look completely different.

Quantum oscillator in the ground state compared with classical behaviour

This tells us that quantum mechanics gives behaviour very different from that expected
from classical mechanics.  But we know that the correspondence principle implies that
one should get good agreement when n is large.

Now let’s consider the case where the oscillator is in its 10th excited state: n = 10 .

Quantum oscillator in n = 10  state compared with classical behaviour

The quantum probability oscillates, but its does seem to peak at the extremities.  And the
mean of the oscillations seems to agree fairly well with the classical curve.

Now let us consider the behaviour when n is very large, when the correspondence
principle should really be operating.  We take n = 50  (we can’t take n too large or the
oscillations in the quantum probability will not be resolved by the printer).
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Quantum oscillator in n = 10  state compared with classical behaviour

Now it is quite clear that the mean behaviour of the quantum oscillator is tending towards
the classical limit.
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