Royal Holloway University of London Department of Physics

Orthogonal Functions

Motivation — Analogy with vectors

Y ou are probably familiar with the concept of orthogonality from vectors; two vectors are
orthogonal when they make an angle of 90° with each other. We will explore the utility
of this property of (basis) vectors, before applying the ideas by analogy to functions.

A vector v in 3d space can be expressed in terms of its components

V=V V] +VK .
Here 1, ], k are unit vectors (basis vectors) in the x, y, and z directions, and v, v, and v,
are the components of the vector in these directions.

The physical vector v is specified when we have @) the basis set of unit vectors i, j, k and

b) the coefficients vy, \, and v,. Y ou can change the basis set (changing the orientation
of the coordinate frame). Then the coefficients vy, v, and v, will change, but they
describe the same physical vector.

(It is an important property of the dot product that it takes two vectors and gives a scalar
from them.Od

Deter mining the coefficients
Given avector v and abasis set {i, ], k}, the orthogonality of the basis set allows usto

determine the coefficients {v IR, }

x1 Vyr Yz

Tofind the {v,,v,,v,} wetakethe dot product of v with the 7, j, k . Recall that the dot

x1 Yy1 Yz

product of v with avector i gives the component of v alongi: v.i =vicosf .

Taking the dot product we find
Vi =(vi 4y, ] v k)
=y, f ey vk
Orthogonality causes the last two terms to vanish, and i.i =1, so that
vizv,.
Applying the same procedure to the y and the z components we obtain
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M or e compact notation
We can simplify the equations by using the symbol a (or any other Greek character) to
denote the directions x, y, z. Thusif we denote
Vs Vs V, by v, where a =X, y, z
i,j,k by i, wheea=xy,z
then we may express v in terms of its components as
v= Svi
a=x,y,z
Here
Vv isthe vector
{Va} represent the coefficients

{i_} represent the basis vectors.

The orthogonality of the basis vectorsis expressed by
ig.1;=0 if a#p
=1if a=p8
And this may be written in an even more compact form by the use of the Kroneker delta
symbol 3 which has the defining property
0, =0 if azp
=1if a=p8
In terms of the Kroneker delta symbol the orthogonality of the basis vectorsis simply

~ ~

lgelg =Ogp -

Deter mining the coefficients (again)
Using the more compact notation together with the Kroneker delta symbol, we shall see
how to obtain the vector’s coefficients in a more straightforward manner.

The vector iswritten, in terms of its coefficients and basis vectors as
V=) Vi, .
azz,y,z

We take the dot product of this with a basis vector iAﬁ. (Since a was used as the dummy
variablein the sum, we use adifferent variable 3 here.) Taking the dot product gives

V., = ZV(,la.lﬂ.
a=x,y,z

But

lg-lg =04
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so that
Vg = z V,Oop
a=x,y,z
Now a ranges over X, y, z. But o,z makes each term zero except when a = L. |.e. the
effect of the Kroneker deltaisto pick out just the 8 term from the sum over a. Thuswe
conclude that

Vg =V,.
So this has determined the coefficients
vV, =V.i,.

[Remember that a isadummy variable, = x,y, z.0

The important concepts of this section are:

* Orthogonality

e Basisset of unit vectors

e Coefficients/coordinates

* Vg fa notation, where a ranges over x, y, z
* Kroneker delta symbol

» Determine coefficients, using orthogonality of basis vectors, by taking dot product
with each basis vector.
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Orthogonal functions — Fourier series
Remember the Fourier series (on theinterval —L<x<L):

f(x)= % +Z{am co{%-[x)+bmsin(m—l_nx)} :

[Outsidetheinterval —L <x< L, f(X) repeatsitself —an infinite, spatially periodic
function. We might exploit this, or we might just be considering x within the specified
interval. [

Theay/2 termisreally them = 0 term of the cos series. The factor Y2 is convenient as
then the same formula (when we find it) holds for all the an,.

The Fourier seriesisabit like writing a vector v as alinear sum of basis vectors with
appropriate coefficients. Here we have a function f(x) written as alinear sum of basis
functions cos(mrx/L), sin(mr/L) (integer m) with appropriate coefficients am, bm.
The question is. How to find the coefficients am, bm?

am isthe “amount” of cos(mr/L) in f(X)
b, isthe “amount” of sin(mrw/L) in f(X).

We could do with something like a dot product and the concept of orthogonality.

We will introduce the idea of an “inner product” as the generalization of the dot product.
Thiswill take two functions and give a scalar from them.

Consider the following integrals for positive integers m, n.

L N7t mit

J cos(— xj cos(— xjdx =0 unless m=n
-L L L
L . (nm \. (mm

_[ sm(—x)sm(—x)dxzo unless m=n.
-L L L

_[L co{ﬂxjsin(mxjdx =0 evenif m=n
-L L L

We can regard the integrals as giving the inner products of the basis functions cos(mrx/L)
and sin(mr/L).

When m =n theintegrals are

J LL cos’

_[L sinz(ijdx =L
-L L

This gives us the orthogonality relations

7N\

ijdxz L
L
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_[L co nn X cos(—nxjdx = Lo
-L L L

sm(n—n X sin(%Tx)dx =Lo,,

J cos( sin(m—l_n xjdx =0

[INote that this aspect of orthogonality has nothing to do with angles; it relates solely to
the Kroneker delta properties of the inner products of the basis functions — just as the
orthogonality of vectors relates to the Kroneker delta properties of the basis unit vectors(]

mn

We can use the orthogonality properties of the basis functions cos(mrx/L) and sin(mrx/L)
to find the Fourier components a,, and b,,, We use the basic rule:

RULE Take the inner product of the function f(x) and one of the basis functions. In
other words, multiply f(x) by one of the basis functions, say cos(mrx/L), and integrate

over theinterval —L<x<L.
Since
l mrt . (mrT
+ cod — X [+b.sinl — X
;{a’“ S(L ) . (L )}

_,,
—_~
N—

I

N |

we then have

m=1
Solongas n# 0, thefirst lineiszero. The sin cosintegral ensures the third line
vanishes. The second line is a sum over integer m and the orthogonality relation picks out
them =ntermonly. Thusthe expression reducesto

J_LL f(x) co{%-[ x)dx =a, J_LL cos’ (n_Ln x)dx

=a, L
This gives the expression for the cos coefficients of the Fourier series. We can perform
the same process using the sin basis functions. That is, multiplying f(x) by sin(mrx/L)
and integrating over theinterval —L < x < L. Thisgives, in exactly the same way, thesin
coefficients of the Fourier series. Thuswe find

a, = 1 I_LL f(x) cos(%-[ x)dx

——J sm(— xjdx-
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These are known as the Euler formulae for the Fourier coefficients. Y ou can see that the
formulafor a, givesthe correct result for then = 0 term of the series:

G f (x)dx.
2 2L7-t

Thisisthe mean value of f(x) over the interval.

Example1 sawtooth wave

0.5¢

-0.5¢

o1l

Sawtooth wave

Thisfunction is specified by f ( )—% -L<xs<L.

The Euler formulae for the Fourier coefficients are

= —J {— x)dx
== _[ X)si n(— xjdx
10 nrt
a, = FL xcos(T x)dx
b, = % _[_LL XS n(%T xjdx

Theintegra for a, vanishes. Thisisbecause f(x) isan odd function. The expression for
a, indicates that an odd function has no cos terms.

So in this case we have

If we evaluate the b, integral using Mathematica then it gives the result
b = 2

"o

Thisisnot in its ssimplest form since Mathematica does not know that we are only

interested in integral n.

(sinnfr—nrosn 7§.
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[Treating quantitieslikesinnmt

The easiest way of working with quantities like sinnfrand cosnrtwhen nis restricted to
integer valuesis to write these quantities as the imaginary part and the rea part of €,
and to use de Moivre' s theorem.

in7T

cosnrt+isinnmr=¢

=(e")"
Now €™ = -1, so that
cosnmr+isinnm=(-1)"
and upon taking the real and imaginary parts of thiswe obtain, for integer n
cosnmr=(-1)"
snnT=0

The sin Fourier component of the sawtooth wave

2 .
b =——(sinnr—nrcosn
" nznz( N
isthen simply

b, = —2(-1)".

n

N7t
The Fourier series for the sawtooth function

f(x):blsin(l—-[xj+bzsin(gx)+b3$in(yx)+...
L L L
isthus given by
2.(7‘[) 1.(27‘[) 2 .(37‘[) 1 .(47‘[)
f(x)==sin =x |-=sin =——x |+——sin[ =X [-——sin| —X | +...
m L m L 3 L 21 L
Recall that there are no cos terms because f(x) is an odd function of x.

Convergence of the Fourier series
Using just the first term of the series gives the “fundamental” component of the series.

0.6¢
0.4+

0.2}

First term of the Fourier series
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Thisreflects the periodicity of the sawtooth function. Adding the second term of the
series gives aslight improvement (doesit?)

0.75¢
0.5}

0.5}

First two terms of the Fourier series

We can see how the terms gradually build up to the required function by looking at the

partial sums of the first one, two, three and four terms.
1,

0.5¢

-1t
Sums of one, two, three and four terms

For twenty terms the sawtooth islooking pretty realistic. Observe the “wiggles’ in the
vicinity of the sharp corners. Thisisknown as the Gibbs phenomenon and it is afeature
of Fourier series when there are discontinuitiesin the function.

1t

0.5¢

The first 20 terms of the Fourier series
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Adding more terms gives an improvement to the problematic parts:

1t

0.5¢

-0.5¢

Thefirst 50 terms of the Fourier series

The Gibbs phenomenon is still there, but on afiner scale.

Example 2 triangular wave

-0.5¢

-1t
Triangular wave

This function must be specified in a piecewise fashion. The function is defined on the
interval —L < x < L. And thetriangular profile may be expressed as

f(x):%(%+xj for —L<x<0

:E(E—x) for O<x<L
L\2

We want to find the Fourier series

f(x)= % + Z{am cos(% x) +b sin(m—l_nx)}

for this function, and we have the Euler expression for the coefficients:

1. nrt
a, ‘Ij_Lf(X)COS(TX)dX

bn:1 ] f(x)sin(ijdx
L--t L
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The integrals must be done in two parts since the expression for f(x) is different for
positive and for negative x

1 nrt
a, —I_[_Lf(x)co{ijdx
=1 f(x)co{—xjdx+ J {Mx)dx
L--t L
2 (L nit
—2 (—+x)cos(—x dx +— (——xjco — X [dX
L L2702 L

with asimilar expron for the by:

2 (L nm
an:— ( )cos(—x dx+— (——xjco — X |dx
L2 2 L

2 0 (L 2 (L (N
b,=— ]| [=*+Xx]|sin M ax+-= [ [ = =x|sinf 2 x |ox
L°-t\2 L L2700\ 2 L

These integrals may be evaluated (using Mathematica or by hand), giving

a, = #(l—cosnrr) -

b,=0
In this case there are no sin terms, because this function isevenin x. You can see this
general property from the Euler expression for the b, coefficients. We can simplify the

cosnrrterm aswe did in the previous case. There we saw that cosnrt=(-1)", so that

_ 4 n
a, = 22 (1_(_1) )
Observe that thisistelling usthat al the even terms vanish (including he constantn = 0
term).

The values of a, are

1 1 1 1
0 ’ 101_!0!_!0!_10!---
nz{L k3 52 70797 112 }

and these may be represented in the bar chart:
0.8}

0.6¢
0.4}

0.2t

"1 2 3 4 5 6 7 8 9 10 11 12

Fourier cos coefficients of triangular wave
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Convergence of the Fourier series
Using just the first term of the series gives the “fundamental” component of the series

0.
0.5}

0.25}

-0.25¢
-0.5¢

_0. 75 L
First term of the Fourier series

Thisreflects the periodicity of the triangular function. Adding the next term of the series
gives asignificant improvement.

-0.25¢
-0.5¢f
-0.75F

First two nonzero terms of the Fourier series

We can see how the terms gradually build up to the required function by looking at the
partial sums of thefirst, third, fifth and seventh.

\./

-0.25

-0.5¢
-0.75¢

Sums of thefirst, third, fifth and seventh terms

For 20 terms the triangle wave looks very good
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-0.5¢

-1t

Sum of thefirst twenty terms
There is no Gibbs phenomenon since the function is not discontinuous.

Example 3 sgquarewave

0.5¢

-0.5¢

1
=+

Square wave

The sguare wave function shown is specified by
f(x)=-1 for -L<x<0
=+1 for Osxs<L
We want to find the Fourier series for this function. We note that as represented here,

thisisan odd function. Thusthere are no cos termsin the expansion. The coefficients if
the sin terms, the by, are given by

——_[ sm(—xjdx |
———J ( )dx+ J sn(mx)dx

We can simplify this expression alittle by substituting x — —xin thefirst term. This

gives
= —J sm(— x)dx

which, upon integration is
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n

b, = i(1— cosn )
nm

2 n
=—(1-(—1
~(1-(-1)")
Asin the case of the triangular wave, the even terms vanish. The values of by, are
bn:f{l,o,i,o,i,o,l,o,l,o,i,o,...}
m 3 5 7 9 1

and these may be represented in the bar chart:

"1 2 3 4 5 6 7 8 9 10 11 12

Fourier sin coefficients of square wave

Convergence of the Fourier series
Using just the first term of the series gives the “fundamental” component of the series

1t

0.5¢

First term of the Fourier series

Thisreflects the periodicity of the square wave. Adding the next term looks alittle better
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Fundamental and next (3'%) harmonic of square wave

We can see how the terms gradually build up to the required function by looking at the
partial sums of thefirst, third, fifth and seventh

1t

0.5

Gradual build-up of square wave

The sum up to the 20" harmonic looks quite good.

1

0.5

-0.5}

Fourier series for square wave up to 20™ harmonic

The Gibbs phenomenon is apparent in the vicinity of the discontinuities. This may be
seen most clearly in the expanded region
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0.0 01 015 02
0.8

0.6}

0.4}

Vicinity of x = 0 showing the Gibbs phenomenon

The sum to the 50" harmonic looks much improved, but the Gibbs phenomenon is still
present.

0.5

-0.5}

Sum to 50" harmonic

Example4 Full waverectified sinecurve

In full wave rectification positive regions of asignal remain positive, and negative
regions of asignal areinverted to that they, also, appear positive. We shall consider a
full wave rectifies sin curve(actually afull wave rectified cos curve).

2 1 1 2

Full wave rectified (co)sine wave
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The function is specified in theinterval —L < x< L. Inthisinterval f(x) isgiven, simply,

by
f(x)= co{z—nl_ x) :

Thisis an even function so we know that there will only be cos terms in the Fourier
series. The Euler formula gives the Fourier cos coefficients

—EJL co{l xj CO{M x) dx
& L/t 2L L
_ 4 cosnrmt '

T ml-4n?
Using the trick for cosnrtwe write this as

The values of a, are

_i{}_ii_ii_l 1 _1 }
m|3" 15°35 6399 143'195° 255° "

and these may be represented in the bar chart:

Fourier coefficients of full wave rectified cos wave

In this casethereisann = 0 (constant) term, since the mean of the function is not zero.
Thisisgivenby ag = 4/1t
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Convergence of the Fourier series
Using the constant ag together with just the first term of the series gives the
“fundamental” component of the series

2 1 1 2
Fundamental of full rectified sine wave

Adding the second harmonic flattens the top and sharpens the bottom.
1,

) 1 1 2
Terms up to the second harmonic

The first few partial sums show how the Fourier series approaches the function

-2 1 1 2
Gradual build-up of full wave rectified sine wave

With the sum to 20 terms the function is looking pretty good.
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2 1 1 2
Sum to 20 terms

Finally we plot the difference between the 20 term series and the original function.

0,015
.01
0.005/

‘/‘\f\/\f\ A ‘ /\ﬂ‘

-1 VY s 05 U\/\Jl
-0.005¢

Error in 20 term Fourier series

The important concepts of this section are:

» Expression of afunction as a Fourier series

» Orthogonality integrals for sines and cosines

» Euler formulae for Fourier coefficients

» For piecewise defined functions do Euler integrals in separate bits

» Odd functions use only sines; even functions use only cosines

» Constant ag term, needed when mean of function is not zero

»  Gibbs phenomenon when function is discontinuous.

* Terminology: fundamental, harmonics.

* Small number of terms needed when the coefficients decrease rapidly
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