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Orthogonal Functions

Motivation – Analogy with vectors
You are probably familiar with the concept of orthogonality from vectors; two vectors are
orthogonal when they make an angle of 90º with each other.  We will explore the utility
of this property of (basis) vectors, before applying the ideas by analogy to functions.

A vector v in 3d space can be expressed in terms of its components

v i j k= + +v v vx y x
� � � .

Here �, �, �i j k are unit vectors (basis vectors) in the x, y, and z directions, and vx, vy, and vz

are the components of the vector in these directions.

The physical vector v is specified when we have a) the basis set of unit vectors �, �, �i j k and
b) the coefficients vx, vy, and vz.  You can change the basis set (changing the orientation
of the coordinate frame).  Then the coefficients vx, vy, and vz will change, but they
describe the same physical vector.

The orthogonality of �, �, �i j k  is expressed in terms of the dot product relations
�.� �. � � .�

�.� �.� � . �

i j j k k i

i i j j k k

= = =

= = =

0

1
.

 It is an important property of the dot product that it takes two vectors and gives a scalar
from them.

Determining the coefficients

Given a vector v and a basis set �, �, �i j k� � , the orthogonality of the basis set allows us to

determine the coefficients v v vx y z, ,� � .

To find the v v vx y z, ,� �  we take the dot product of v with the �, �, �i j k .  Recall that the dot

product of v with a vector i gives the component of v along i:  v i. cos= vi θ .

Taking the dot product we find

v i i j k i

i i j i k i

. � � � � . �

�. � �.� � .�

= + +

= + +

v v v

v v v

x y x

x y x

� �
 .

Orthogonality causes the last two terms to vanish, and i i. = 1, so that

v i. � = vx .
Applying the same procedure to the y and the z components we obtain
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v

v

v

x

y

z

=

=

=

v i

v j

v k

.�

.�

. �

.

More compact notation
We can simplify the equations by using the symbol α (or any other Greek character) to
denote the directions x, y, z.  Thus if we denote

v v vx y z, ,   by vα  where α = x y z, ,

�, �, �i j k     by  �iα  where α = x y z, ,

then we may express v in terms of its components as

v i=
=
∑v

x y z
α α

α

�

, ,

.

Here
v is the vector
{vα} represent the coefficients

{� }iα represent the basis vectors.

The orthogonality of the basis vectors is expressed by
� . �i iα β α β

α β
= ≠

= =

0

1

if

if
.

And this may be written in an even more compact form by the use of the Kroneker delta
symbol δαβ which has the defining property

δ α β
α β

αβ = ≠

= =

0

1

if

if
.

In terms of the Kroneker delta symbol the orthogonality of the basis vectors is simply
� . �i iα β αβδ= .

Determining the coefficients (again)
Using the more compact notation together with the Kroneker delta symbol, we shall see
how to obtain the vector’s coefficients in a more straightforward manner.

The vector is written, in terms of its coefficients and basis vectors as

v i=
=
∑v

x y z
α α

α

�

, ,

.

We take the dot product of this with a basis vector � .iβ   (Since α was used as the dummy

variable in the sum, we use a different variable β here.)  Taking the dot product gives

v i i i. � � . �
, ,

β α α
α

β=
=
∑v

x y z

.

But
� . �i iα β αβδ=
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so that

v i. �
, ,

β α αβ
α

δ=
=
∑v

x y z

.

Now α ranges over x, y, z.  But δαβ makes each term zero except when α  =  β.  I.e. the
effect of the Kroneker delta is to pick out just the β term from the sum over α.  Thus we
conclude that

v i. �β β= v .

So this has determined the coefficients

vα α= v i. � .

Remember that α is a dummy variable,  =  x, y, z.

The important concepts of this section are:

•  Orthogonality
•  Basis set of unit vectors
•  Coefficients/coordinates

•  vα, �iα notation, where α ranges over x, y, z.

•  Kroneker delta symbol
•  Determine coefficients, using orthogonality of basis vectors, by taking dot product

with each basis vector.
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Orthogonal functions – Fourier series
Remember the Fourier series (on the interval − ≤ ≤L x L ):

f x
a

a
m

L
x b

m

L
xm m

m

� � = + �
�	



�� + �

�	


��



�
�

�
�
�=

∞

∑0

12
cos sin

π π
.

Outside the interval − ≤ ≤L x L ,  f(x) repeats itself – an infinite, spatially periodic
function.  We might exploit this, or we might just be considering x within the specified
interval.                                                                                                                                

The a0/2 term is really the m  =  0  term of the cos series.  The factor ½ is convenient as
then the same formula (when we find it) holds for all the am.

The Fourier series is a bit like writing a vector v as a linear sum of basis vectors with
appropriate coefficients.  Here we have a function f(x) written as a linear sum of basis
functions cos(mπx/L), sin(mπx/L) (integer m) with appropriate coefficients am, bm.

The question is:  How to find the coefficients am, bm?

am is the “amount” of cos(mπx/L) in f(x)
bm is the “amount” of sin(mπx/L) in f(x).

We could do with something like a dot product and the concept of orthogonality.

We will introduce the idea of an “inner product” as the generalization of the dot product.
This will take two functions and give a scalar from them.

Consider the following integrals for positive integers m, n.

cos cos

sin sin

cos sin

n

L
x

m

L
x x m n

n

L
x

m

L
x x m n

n

L
x

m

L
x x m n

L

L

L

L

L

L

π π

π π

π π

�
�	



��
�
�	



�� = =

�
�	



��
�
�	



�� = =

�
�	



��
�
�	



�� = =

−

−

−

�
�
�

d unless 

d unless 

d even if

0

0

0

.

We can regard the integrals as giving the inner products of the basis functions cos(mπx/L)
and sin(mπx/L).

When m  = n  the integrals are

cos

sin

2

2

n

L
x x L

n

L
x x L

L

L

L

L

π

π

�
�	



�� =

�
�	



�� =

−

−

�
�

d

d

.

This gives us the orthogonality relations
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cos cos

sin sin

cos sin

n

L
x

m

L
x x L

n

L
x

m

L
x x L

n

L
x

m

L
x x

L

L

mn

L

L

mn

L

L

π π δ

π π δ

π π

�
�	



��
�
�	



�� =

�
�	



��
�
�	



�� =

�
�	



��
�
�	



�� =

−

−

−

�
�
�

d

d

d 0

.

Note that this aspect of orthogonality has nothing to do with angles; it relates solely to
the Kroneker delta properties of the inner products of the basis functions – just as the
orthogonality of vectors relates to the Kroneker delta properties of the basis unit vectors

We can use the orthogonality properties of the basis functions cos(mπx/L) and sin(mπx/L)
to find the Fourier components am and bm.  We use the basic rule:

RULE  Take the inner product of the function f(x) and one of the basis functions.  In
other words, multiply f(x) by one of the basis functions, say cos(mπx/L), and integrate
over the interval − ≤ ≤L x L .

Since

f x
a

a
m

L
x b

m

L
xm m

m

� � = + �
�	



�� + �

�	


��



�
�

�
�
�=

∞

∑0

12
cos sin

π π

we then have

f x
n

L
x x

a n

L
x x

a
m

L
x

n

L
x x

b
m

L
x

n

L
x x

L

L

L

L

m L

L

m

m L

L

m

� �cos cos

cos cos

sin cos

π π

π π

π π

�
�	



�� = �

�	


��

+ �
�	



��
�
�	



��

+ �
�	



��
�
�	



��

− −

−
=

∞

−
=

∞

� �
�∑

�∑

d d

d

d

0

1

1

2

.

So long as n ≠ 0 , the first line is zero.  The sin cos integral ensures the third line
vanishes. The second line is a sum over integer m and the orthogonality relation picks out
the m  = n term only.  Thus the expression reduces to

f x
n

L
x x a

n

L
x x

a L

L

L

n L

L

n

� �cos cos
π π�

�	


�� = �

�	


��

=

− −� �d d2

   .

This gives the expression for the cos coefficients of the Fourier series.  We can perform
the same process using the sin basis functions.  That is, multiplying f(x) by sin(mπx/L)
and integrating over the interval − ≤ ≤L x L .  This gives, in exactly the same way, the sin
coefficients of the Fourier series.  Thus we find

a
L

f x
n

L
x x

b
L

f x
n

L
x x

n L

L

n L

L

= �
�	



��

= �
�	



��

−

−

�
�

1

1

� �

� �

cos

sin

π

π

d

d

.
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These are known as the Euler formulae for the Fourier coefficients.  You can see that the
formula for an gives the correct result for the n  =  0 term of the series:

a

L
f x x

L

L
0

2

1

2
=

−� � �d .

This is the mean value of f(x) over the interval.

Example 1  sawtooth wave

Sawtooth wave

This function is specified by  f x
x

L
L x L� � = − ≤ ≤, .

The Euler formulae for the Fourier coefficients are

a
L

f x
n

L
x x

b
L

f x
n

L
x x

n L

L

n L

L

= �
�	



��

= �
�	



��

−

−

�
�

1

1

� �

� �

cos

sin

π

π

d

d

.

So in this case we have

a
L

x
n

L
x x

b
L

x
n

L
x x

n L

L

n L

L

= �
�	



��

= �
�	



��

−

−

�
�

1

1

2

2

cos

sin

π

π

d

d

.

The integral for an vanishes.  This is because f(x) is an odd function.  The expression for
an indicates that an odd function has no cos terms.

If we evaluate the bn integral using Mathematica then it gives the result

b
n

n n nn = −2
2 2π

π π πsin cos� � .
This is not in its simplest form since Mathematica does not know that we are only
interested in integral n.

-2 -1 1 2

-1

-0.5

0.5

1
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Treating quantities like sinnπ
The easiest way of working with quantities like sinnπ and cosnπ when n is restricted to
integer values is to write these quantities as the imaginary part and the real part of einπ,
and to use de Moivre’s theorem.

cos sinn i n e

e

in

i n

π π π

π

+ =

= � �
.

Now eiπ  =  −1, so that

cos sinn i n
nπ π+ = −1� �

and upon taking the real and imaginary parts of this we obtain, for integer n

cos

sin

n

n

nπ
π

= −
=

1

0

� � .

                                                                                                                                           

The sin Fourier component of the sawtooth wave

b
n

n n nn = −2
2 2π

π π πsin cos� �
is then simply

b
nn

n= − −2
1

π
� � .

The Fourier series for the sawtooth function

f x b
L

x b
L

x b
L

x� � = �
�	


�� + �

�	


�� + �

�	


�� +1 2 3

2 3
sin sin sin ...

π π π

is thus given by

f x
L

x
L

x
L

x
L

x� � = �
�	


�� − �

�	


�� + �

�	


�� − �

�	


�� +2 1 2 2

3

3 1

2

4

π
π

π
π

π
π

π
π

sin sin sin sin ...

Recall that there are no cos terms because f(x) is an odd function of x.

Convergence of the Fourier series
Using just the first term of the series gives the “fundamental” component of the series.

First term of the Fourier series

-2 -1 1 2

-0.6

-0.4

-0.2

0.2

0.4

0.6
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This reflects the periodicity of the sawtooth function. Adding the second term of the
series gives a slight improvement (does it?)

First two terms of the Fourier series

We can see how the terms gradually build up to the required function by looking at the
partial sums of the first one, two, three and four terms.

Sums of one, two, three and four terms

For twenty terms the sawtooth is looking pretty realistic.  Observe the “wiggles” in the
vicinity of the sharp corners.  This is known as the Gibbs phenomenon and it is a feature
of Fourier series when there are discontinuities in the function.

The first 20 terms of the Fourier series

-2 -1 1 2
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Adding more terms gives an improvement to the problematic parts:

The first 50 terms of the Fourier series

The Gibbs phenomenon is still there, but on a finer scale.

Example 2  triangular wave

Triangular wave

This function must be specified in a piecewise fashion.  The function is defined on the
interval − ≤ ≤L x L .  And the triangular profile may be expressed as

f x
L

L
x L x

L

L
x x L

� � = +�
�	



�� − ≤ ≤

= −�
�	



�� ≤ ≤

2

2
0

2

2
0

for

for

.

 We want to find the Fourier series

f x
a

a
m

L
x b

m

L
xm m

m

� � = + �
�	



�� + �

�	


��



�
�

�
�
�=

∞

∑0

12
cos sin

π π

for this function, and we have the Euler expression for the coefficients:

a
L

f x
n

L
x x

b
L

f x
n

L
x x

n L

L

n L

L

= �
�	



��

= �
�	



��

−

−

�
�

1

1

� �

� �

cos

sin

π

π

d

d

.

-2 -1 1 2
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-0.5

0.5

1

-2 -1 1 2

-1

-0.5

0.5

1
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The integrals must be done in two parts since the expression for f(x) is different for
positive and for negative x

a
L

f x
n

L
x x

L
f x

n

L
x x

L
f x

n

L
x x

L

L
x

n

L
x x

L

L
x

n

L
x x

n L

L

L

L

L

L

= �
�	



��

= �
�	



�� + �

�	


��

= +�
�	



��
�
�	



�� + −�

�	


��
�
�	



��

−

−

−

�
� �
� �

1

1 1

2

2

2

2 2

0

0

2

0

0

� �

� � � �

cos

cos cos

cos cos

π

π π

π π

d

d d

d d

with a similar expression for the bn:

a
L

L
x

n

L
x x

L

L
x

n

L
x x

b
L

L
x

n

L
x x

L

L
x

n

L
x x

n L

L

n L

L

= +�
�	



��
�
�	



�� + −�

�	


��
�
�	



��

= +�
�	



��
�
�	



�� + −�

�	


��
�
�	



��

−

−

� �
� �

2

2

2

2 2

2

2

2

2 2

2

0

0

2

0

0

cos cos

sin sin

π π

π π

d d

d d

These integrals may be evaluated (using Mathematica or by hand), giving

a
n

n

b

n

n

= −

=

4
1

0

2 2π
πcos� �

.

In this case there are no sin terms, because this function is even in x.  You can see this
general property from the Euler expression for the bn  coefficients.  We can simplify the

cosnπ term  as we did in the previous case.  There we saw that cosn
nπ = −1� � , so that

a
nn

n= − −4
1 12 2π
� �� � .

Observe that this is telling us that all the even terms vanish (including he constant n  =  0
term).

The values of an are

an = 
��
���

8
1 0

1

3
0

1

5
0

1

7
0

1

9
0

1

11
02 2 2 2 2 2π

, , , , , , , , , , , , ...

and these may be represented in the bar chart:

Fourier cos coefficients of triangular wave

1 2 3 4 5 6 7 8 9 10 11 12

0.2

0.4

0.6

0.8
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Convergence of the Fourier series
Using just the first term of the series gives the “fundamental” component of the series

First term of the Fourier series

This reflects the periodicity of the triangular function. Adding the next term of the series
gives a significant improvement.

First two nonzero terms of the Fourier series

We can see how the terms gradually build up to the required function by looking at the
partial sums of the first, third, fifth and seventh.

Sums of the first, third, fifth and seventh terms

For 20 terms the triangle wave looks very good

-2 -1 1 2
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0.25
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0.75

-2 -1 1 2

-0.75
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-0.25
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-2 -1 1 2

-0.75
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Sum of the first twenty terms

There is no Gibbs phenomenon since the function is not discontinuous.

Example 3  square wave

Square wave

The square wave function shown is specified by
f x L x

x L

� � = − − ≤ ≤
= + ≤ ≤

1 0

1 0

for

for
.

We want to find the Fourier series for this function.  We note that as represented here,
this is an odd function.  Thus there are no cos terms in the expansion.  The coefficients if
the sin terms, the bn, are given by

b
L

f x
n

L
x x

L

n

L
x x

L

n

L
x x

n L

L

L

L

= �
�	



��

= − �
�	



�� + �

�	


��

−

−

�
� �

1

1 10

0

� �sin

sin sin

π

π π

d

d d

.

We can simplify this expression a little by substituting x x→ − in the first term.  This
gives

b
L

n

L
x xn

L
= �

�	


���2

0
sin

π
d

which, upon integration is

-2 -1 1 2

-1

-0.5

0.5

1

-2 -1 1 2

-1

-0.5

0.5

1
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b
n

n

n

n

n

= −

= − −

2
1

2
1 1

π
π

π

cos� �

� �� �
.

As in the case of the triangular wave, the even terms vanish.  The values of bn are

bn = 
��
���

4
1 0

1

3
0

1

5
0

1

7
0

1

9
0

1

11
0

π
, , , , , , , , , , , , ...

and these may be represented in the bar chart:

Fourier sin coefficients of square wave

Convergence of the Fourier series
Using just the first term of the series gives the “fundamental” component of the series

First term of the Fourier series

This reflects the periodicity of the square wave.  Adding the next term looks a little better

1 2 3 4 5 6 7 8 9 10 11 12

0.2

0.4

0.6

0.8

1

1.2

-2 -1 1 2

-1

-0.5

0.5

1
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Fundamental and next (3rd) harmonic of square wave

We can see how the terms gradually build up to the required function by looking at the
partial sums of the first, third, fifth and seventh

Gradual build-up of square wave

The sum up to the 20th harmonic looks quite good.

Fourier series for square wave up to 20th harmonic

The Gibbs phenomenon is apparent in the vicinity of the discontinuities.  This may be
seen most clearly in the expanded region

-2 -1 1 2
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1

-2 -1 1 2
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-0.5

0.5

1

-2 -1 1 2

-1

-0.5

0.5

1
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Vicinity of x  =  0  showing the Gibbs phenomenon

The sum to the 50th harmonic looks much improved, but the Gibbs phenomenon is still
present.

Sum to 50th harmonic

Example 4  Full wave rectified sine curve
In full wave rectification positive regions of a signal remain positive, and negative
regions of a signal are inverted to that they, also, appear positive.  We shall consider a
full wave rectifies sin curve(actually a full wave rectified cos curve).

Full wave rectified (co)sine wave

0.05 0.1 0.15 0.2

0.4

0.6

0.8

-2 -1 1 2
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1

-2 -1 1 2
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The function is specified in the interval − ≤ ≤L x L .  In this interval f(x) is given, simply,
by

f x
L

x� � = �
�	



��cos

π
2

.

This is an even function so we know that there will only be cos terms in the Fourier
series.  The Euler formula gives the Fourier cos coefficients

a
L L

x
n

L
x x

n

n

n L

L
= �

�	


��
�
�	



��

=
−

−�
1

2

4

1 4 2

cos cos

cos

π π

π
π

d
.

Using the trick for cosnπ we write this as

a
nn

n

=
−
−

4 1

1 4 2π
� �

.

The values of an are

an = − − − −
��
���

4 1

3

1

15

1

35

1

63

1

99

1

143

1

195

1

255π
, , , , , , , , ...

and these may be represented in the bar chart:

Fourier coefficients of full wave rectified cos wave

In this case there is an n  =  0 (constant) term, since the mean of the function is not zero.
This is given by a0  =  4/π.

1 2 3 4 5 6 7 8 9 10 11 12
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Convergence of the Fourier series
Using the constant a0 together with just the first term of the series gives the
“fundamental” component of the series

Fundamental of full rectified sine wave

Adding the second harmonic flattens the top and sharpens the bottom.

Terms up to the second harmonic

The first few partial sums show how the Fourier series approaches the function

Gradual build-up of full wave rectified sine wave

With the sum to 20 terms the function is looking pretty good.
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Sum to 20 terms

Finally we plot the difference between the 20 term series and the original function.

Error in 20 term Fourier series

The important concepts of this section are:

•  Expression of a function as a Fourier series
•  Orthogonality integrals for sines and cosines
•  Euler formulae for Fourier coefficients
•  For piecewise defined functions do Euler integrals in separate bits
•  Odd functions use only sines; even functions use only cosines
•  Constant a0 term, needed when mean of function is not zero
•  Gibbs phenomenon when function is discontinuous.
•  Terminology:  fundamental, harmonics.
•  Small number of terms needed when the coefficients decrease rapidly
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