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Orthogonal Function Solution of
Differential Equations

Introduction
A given ordinary differential equation will have solutions in terms of “its own” functions.
Thus, for example, the solution of the SHO Schrödinger equation is expressed in terms of
Hermite polynomials multiplying a gausian:

SHO Schrödinger equation    → −H x en
x� � 2 2/ .

We are talking here about the eigenfunctions of the equation and their eigenvalues (n in
this case).

Now we are going to look into using the wrong functions to solve a differential equation.
Why might we want to do this?  There are a number of reasons.

• We could use the set of H x en
x� � − 2 2/ to see how much the behaviour of the system was

“like” a quantum SHO.

• Similarly, we could use the set ei kx t−ω� �  to see how much the behaviour was “like” that
of free traveling waves.

These procedures could be important in their own right, or as part of a perturbation or
approximation scheme.

• The practical consequence of this procedure is that differential equations are
transformed into matrix equations.  (And of course this is at the heart of the
equivalence of the Schrödinger and the Heisenberg approaches to quantum
mechanics.

The fundamental ideas
The functions which arise from the solution of a differential equation “often” have some
important properties.  The equations which arise in physical problems can be assumed to
comprise a complete orthogonal set of functions.  (Formally, this result follows from the
Sturm-Liouville theorem.)

Orthogonal
We know what orthogonal means.  For the set of functions ϕ n x� �� �  there is an

orthogonality integral

ϕ ϕn mx x x� � � �d�
(it might also have a weight function.).
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The integral must be evaluated over the correct interval and it is zero unless n m= .  If the
functions are normalised then the integral is unity when n m= .

Complete
If the set of functions is complete, this means that any function f x� � can be expressed as

a linear sum of the functions
f x x fn n

n

� � � �= ∑ϕ .

This expression for f x� �will be valid over the orthogonality interval.

You should remember how to find the coefficients fn:

f
f x x x

x x
n

n

n

= �
�
� � � �
� �
ϕ

ϕ

d

d2
.

The denominator is needed when the functions are not normalised.

Differentiation
An important and highly relevant example of the completeness property is the
differentiation of a function.

Starting from a function f x� � , if we differentiate it we obtain a new function d df x/ .

Now “completeness” tells us that any function f x� �  can be expressed as a linear sum of

the basis functions ϕ n x� � .  But since d df x/  is just another function, this too can be

expressed as a linear sum of the basis functions.

We have
f x x fn n

n

� � � �= ∑ϕ

and we similarly expect that
d

d

f

x
x gn n

n

= ∑ϕ � � .

The question, then, is how to find the coefficients gn for the derivative.

Given the basis set ϕ n x� �� � the function f x� �  is specified by the coefficients fn.  We

want to find the coefficients gn which correspondingly specify the derivative d df x/ .
Let’s proceed in the following way.

Start from f x� � :
f x x fn n

n

� � � �= ∑ϕ

and differentiate it
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d

d
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d
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x
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fn

n
n

= ∑ ϕ � �
.

Completeness assures us that each of the d dϕ n x x� � / will be a linear function of the basis

functions.

For example, the derivative of Hermite polynomials is expressed as
d

dx
H x nH xn n� � � �= −2 1 .

In general we will have
d

dx
x x Dn m mn

m

ϕ ϕ� � � �= ∑ .

The coefficients Dmn need two indices, one to indicate which basis function we are
differentiating (n), and the other to indicate how much of each of the basis functions we
need in the derivative (m).

For the Hermite polynomial case we then have
D nmn n n= +2 1δ , .

Check that you understand this.                                                                                          

Using the above result we can return to the task of differentiating our function f x� � .
d

d

d

d

f

x

x

x
f

x D f

x D f

n
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n

m mn n
mn

m mn n
nm

=

=

= �
	


�
�

∑
∑∑

∑∑

ϕ

ϕ

ϕ

� �

� �

� � .

We framed our question by saying that if we write the derivative as the expansion
d

d

f

x
x gm m

m

= ∑ϕ � �

then what are the coefficients gm?  We now have the answer:
g D fm mn n

n

= ∑ .

You should observe that this has the form of a matrix product.  If we represent gm and fn

as column matrices then
g
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Notation and 3d vector analogy

With 3d vectors, once one has a given basis set �, �, �i j k� �  then any vector can be expressed

as a linear sum of these

v i j k= + +v v vi j k
� � � .

Once the basis set is decided upon then any physical vector v is specified by giving its
coefficients vi, vj, and vk and these coefficients can be assembled into a column matrix

v

v

v

i

j

k

�

	





�

�

  .

Mathematicians might call such a column of numbers a vector.  We may even
occasionally succumb to this inexactitude.  Strictly speaking, this column of numbers is a

particular representation of the physical vector v – if we change the basis set �, �, �i j k� �
then we need a different column of coefficients to represent the same old vector v.

Now consider functions.  With a given basis set ϕ n x� �� � any function f x� �  can be

expressed as a linear sum of these
f x x fn n

n

� � � �= ∑ϕ .

Once the basis set is decided upon then any function f x� �  is specified by giving its

coefficients fn� � and these numbers can be assembled into a column matrix

f

f

f

1

2

3

:

�

	









�

�





.

This column of coefficients (a mathematician’s vector) is a particular representation of
the function f x� � .  If we changed the basis set ϕ n x� �� �we were using then we would

need a different column of coefficients to represent the same old function.

Taking the notational analogy further we could denote the column of coefficients by a
“vector” symbol f.  That is, we could make the association

f x� � ~ f .

As an example of using this notational analogy consider the differentiation result of
before.

g D fm mn n
n

= ∑
Here the fn are the coefficients of the function f x� � and the gm are the coefficients of its

derivative.  If we denote these columns of coefficients by the vectors f and ′f  then the
differentiation result becomes the vector-matrix equation

′ =f Df
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where D represents the matrix whose elements are Dmn.

This shows us that multiplying with the matrix D has the effect of differentiation.

Matrix representation of differential equations
The above analogies suggest that differential equations may be represented by matrix
equations.  This may be done formally in the following way.

Starting from the simple example

g x
x

f x� � � �= d

d
,

in terms of the basis set ϕ n x� �� � this may be expressed as

ϕ ϕn n
n

m mn n
nm

x g x D f� � � �∑ ∑∑= �
	


�
� .

(Remember that the summation indices are completely arbitrary.) The “trick” to turn this
into a matrix equation is to multiply both sides by one of the basis functions and then
perform an orthogonality integral.  Let’s multiply by ϕ p x� � and integrate.  On the left

hand side as n varies through its range of values the orthogonality integral of ϕ n x� �with

ϕ p x� �will always be zero except when n  =  p.  Thus we pick out just the p term from the

sum.  On the right hand side, as m varies through its range we will similarly pick out the
p term.  We then end up with the equation

g D fp pn n
n

= ∑ ,

or
g D f=

which is the matrix representation of the original equation.

Differential equations with constant coefficients

Homogeneous equations
Let’s consider a second order (homogeneous) differential equation with constant
coefficients

A
f x

x
B

f x

x
Cf x

d

d

d

d

2

2 0
� � � � � �+ + = .

This is transformed into a matrix equation in four steps:

1 Express f as a linear sum of the basis functions:
                                                f x x fn n

n

� � � �= ∑ϕ .
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2 Substitute this into the differential equation:

                        A
x

x
f B

x

x
f C x fn

n
n

n
n

n
n n

n

d

d

d

d

2ϕ ϕ
ϕ� � � � � �2 0∑ ∑ ∑+ + = .

3 Multiply by ϕ p x� � and do the orthogonality integral:

A x
x

x
x f B x

x

x
x f C x x x fp

n
n

n
p

n
n

n
p n n

n

ϕ
ϕ

ϕ
ϕ

ϕ ϕ� � � � � � � � � � � �� �
d

d
d

d

d
d d

2 2

2 2 0�∑ �∑ �∑�
�
�

�
�
�

+
�
�
�

�
�
�

+ =

4 Identify the matrix form of each term.  By comparison with the derivation of the
differentiation matrix D above, the differential equation may be written in matrix
form as
                                              A BD f Df 1f2 0+ + =
or

                                               A BD D 1 f2 0+ + =� �
where 1 is the unit matrix.

Now A BD D 12 + +  is just another matrix, which we can denote by M.  Thus our
differential equation has been transformed, with the basis function set ϕ n x� �� � , into the

matrix equation
M f = 0.

The homogeneous differential equation has been transformed into a homogeneous matrix
equation.  This would then be solved by the usual procedures for solving homogeneous
matrix equations.

Inhomogeneous equations
Let us now consider an inhomogeneous equation such as

A
f x

x
B

f x

x
Cf x s x

d

d

d

d

2

2

� � � � � � � �+ + =

where s x� � is the source term, making the equation inhomogeneous. Now both  f and s

must be expressed as linear sums of the basis functions:

                                                

f x x f

s x x s

n n
n

n n
n

� � � �

� � � �

=

=

∑
∑

ϕ

ϕ .

We use the vector notation analogy to denote the column of coefficients of f x� �  by the

vector symbol f and similarly the coefficients of s x� � by s.

f x

s x

� �
� �

~

~ .

f

s
Then, using the same procedure as in the previous case, we arrive at the inhomogeneous
matrix equation
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M f s= .

The inhomogeneous differential equation has been transformed into an inhomogeneous
matrix equation.  This would then be solved by the usual procedures for solving
inhomogeneous matrix equations.  The formal solution is particularly straightforward: we
multiply both equations, from the left, by the inverse of M.  Then we have

M M f M s− −=1 1

or
f M s= −1 .

This solves the problem; f x� � is given in terms of s x� � .

Differential equations with variable coefficients

When the coefficients of the differential equation are variable, that is when we have an
equation of the form

A x
f x

x
B x

f x

x
C x f x� � � � � � � � � � � �d

d

d

d

2

2 0+ + =

things are slightly more complicated.

We proceed to transform this into a matrix equation using the same four steps as before:

1 Express f as a linear sum of the basis functions:
                                                f x x fn n

n

� � � �= ∑ϕ .

2 Substitute this into the differential equation:

                        A x
x

x
f B x

x

x
f C x x fn

n
n

n
n

n
n n

n

� � � � � � � � � � � �d

d

d

d

2ϕ ϕ
ϕ

2 0∑ ∑ ∑+ + = .

3 Multiply by ϕ p x� � and do the orthogonality integral:

         
ϕ

ϕ
ϕ

ϕ

ϕ ϕ

p
n

n
n

p
n

n
n

p n n
n

x A x
x

x
x f x B x

x

x
x f

x C x x x f

� � � � � � � � � � � �

� � � � � �� �

d

d
d

d

d
d

d

2 2

2 2

0

�∑ �∑

�∑

�
�
�

�
�
�

+
�
�
�

�
�
�

+

+ =

4 Identify the matrix form of each term.  In this case the we don’t have a direct
connection with the differentiation matrix D we had before.  Nevertheless this still
has the form of a matrix equation
                                                        M f = 0
where the elements of the matrix M are now.

M x A x
x

x
x x B x

x

x
x x C x x xpn p

n
p

n
p n= + +� � �ϕ

ϕ
ϕ

ϕ
ϕ ϕ� � � � � � � � � � � � � � � � � �d

d
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d
d d
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