Legendre's equation

Series solutions

1  Defining the general terms of the series

We define the general term of the power series solution together with a few terms either side.

[Graphics:Images/legendre_gr_1.gif]
[Graphics:Images/legendre_gr_2.gif]

Next we evaluate the derivative of the series

[Graphics:Images/legendre_gr_3.gif]
[Graphics:Images/legendre_gr_4.gif]

and the second derivative

[Graphics:Images/legendre_gr_5.gif]
[Graphics:Images/legendre_gr_6.gif]

Now we substitute these into the left hand side of the differential equation.

[Graphics:Images/legendre_gr_7.gif]
[Graphics:Images/legendre_gr_8.gif]

Next we expand this to examine the coefficient of [Graphics:Images/legendre_gr_9.gif].

[Graphics:Images/legendre_gr_10.gif]
[Graphics:Images/legendre_gr_11.gif]

We try and pull out the coefficient of [Graphics:Images/legendre_gr_12.gif], but the result is not quite correct.

[Graphics:Images/legendre_gr_13.gif]
[Graphics:Images/legendre_gr_14.gif]

There are still some explicit powers of x, so we remove these with the next command.

[Graphics:Images/legendre_gr_15.gif]
[Graphics:Images/legendre_gr_16.gif]

2  Obtaining the recurrence relation

This gives the recurrence relation for a[s+2] in terms of a[s].  We solve for a[s+2]:

[Graphics:Images/legendre_gr_17.gif]
[Graphics:Images/legendre_gr_18.gif]

and use cut and paste to describe the recurrence relation.

[Graphics:Images/legendre_gr_19.gif]
[Graphics:Images/legendre_gr_20.gif]

This factorises/simplifies as

[Graphics:Images/legendre_gr_21.gif]
[Graphics:Images/legendre_gr_22.gif]

We want to define the function for the coefficients.

[Graphics:Images/legendre_gr_23.gif]
[Graphics:Images/legendre_gr_24.gif]

We use cut and paste to define a[p]

[Graphics:Images/legendre_gr_25.gif]

3  Obtaining the series coefficients

Since the series starts at a[0] the coefficients of any "lower" powers of x are zero.  Thus we set:

[Graphics:Images/legendre_gr_26.gif]
[Graphics:Images/legendre_gr_27.gif]
[Graphics:Images/legendre_gr_28.gif]
[Graphics:Images/legendre_gr_29.gif]

We pull out the factor of [Graphics:Images/legendre_gr_30.gif]; in other words we set the constant term to unity

[Graphics:Images/legendre_gr_31.gif]
[Graphics:Images/legendre_gr_32.gif]

We may assemble the coefficients of the even powers of x into a table:

[Graphics:Images/legendre_gr_33.gif]
[Graphics:Images/legendre_gr_34.gif]

and these combine to give the even power series expansion.

[Graphics:Images/legendre_gr_35.gif]
[Graphics:Images/legendre_gr_36.gif]

The odd power terms build up from the x term.  We pull out the factor of [Graphics:Images/legendre_gr_37.gif]; in other words we set the constant term to unity

[Graphics:Images/legendre_gr_38.gif]
[Graphics:Images/legendre_gr_39.gif]

We may assemble the coefficients of the odd powers of x into a table:

[Graphics:Images/legendre_gr_40.gif]
[Graphics:Images/legendre_gr_41.gif]

and these combine to give the odd power series expansion.

[Graphics:Images/legendre_gr_42.gif]
[Graphics:Images/legendre_gr_43.gif]

The odd Legendre polynomials

(not conventionally normalised)

[Graphics:Images/legendre_gr_44.gif]
[Graphics:Images/legendre_gr_45.gif]
[Graphics:Images/legendre_gr_46.gif]
[Graphics:Images/legendre_gr_47.gif]
[Graphics:Images/legendre_gr_48.gif]
[Graphics:Images/legendre_gr_49.gif]
[Graphics:Images/legendre_gr_50.gif]
[Graphics:Images/legendre_gr_51.gif]
[Graphics:Images/legendre_gr_52.gif]
[Graphics:Images/legendre_gr_53.gif]

The even Legendre polynomials

(not conventionally normalised)

[Graphics:Images/legendre_gr_54.gif]
[Graphics:Images/legendre_gr_55.gif]
[Graphics:Images/legendre_gr_56.gif]
[Graphics:Images/legendre_gr_57.gif]
[Graphics:Images/legendre_gr_58.gif]
[Graphics:Images/legendre_gr_59.gif]
[Graphics:Images/legendre_gr_60.gif]
[Graphics:Images/legendre_gr_61.gif]


Converted by Mathematica      November 7, 1999