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PH2130 Mathematical Methods
Lab 2

Motion of a Pendulum
Introduction
You will (or at least you certainly should be) familiar with small oscillations of a
pendulum as a good example of simple harmonic motion.  You will have learned that one
of the important properties of the simple harmonic oscillator is that the period of
oscillation of an SHO is independent of the amplitude of the motion.  And in fact Galileo,
in his investigations of dynamics, used a pendulum for measuring time by counting
cycles.

The purpose of this exercise is to investigate the motion of a pendulum when the
oscillation amplitude is no longer restricted to being small.  The general equation of
motion for a pendulum is complicated. The approximation of small motion converts the
equation to the SHO equation, which is readily soluble.  The utility of Mathematica, here,
is that it can solve the more complicated, general, equation for the pendulum. The
solution is in terms of the so-called elliptic functions.  Mathematica ‘knows’ all about
these functions; it knows their properties and it can plot them.  This allows you to study
such complex systems without being an expert in ‘special functions’. Let the computer do
the hard work, while you concentrate on the physical understanding!

Some of the following exercises should be done with pen and paper.  Usually you will be
guided when to use Mathematica. Your completed assignment will include hand-written
notes and calculations together with pieces of Mathematica print-out.

1  Setting up the pendulum equations of motion
The figure shows a mass m attached to the end of a light rigid rod
of length l. The other end of the rod is held at a friction-free pivot.
The equations of motion could be obtained by equating the force
experienced by the mass to its acceleration times mass. However
this problem is much easier to tackle from a consideration of the
energy.

The first thing to decide is what variables will be used.  In
particular we need to choose what coordinate is best to use in
describing the position of the mass.  We shall use θ, the inclination

of the rod to the vertical. It is useful to note that this coordinate, an angle, is
dimensionless.

1 Show that the kinetic energy is given by

                                                      2 21

2
KE ml θ= � .

h

l

�

m



Royal Holloway University of London                                                                                                                      Department of Physics

PH2130 Mathematical Methods – Lab 2                                                                                                       2

2 Show that the potential energy may be written as
                                                 ( )1 cosPE mgl θ= − .

3 You appreciate that there is always a choice of where the zero of potential energy is
specified.  With the above expression for PE, where is the zero?

4 Use Mathematica to plot out the potential energy as a function of angle θ.
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Your picture should look something like the above.  Investigate how to embellish
your plot with an appropriate font and place sensible axis labels on the plot.  Try and
do better than I did. Include an account of the Mathematica commands in your report.

5 Conservation of energy allows you to write down the equation

                                           ( )2 21
1 cos

2
E ml mglθ θ= + −� .

This equation relates the coordinate θ and its time derivative. Thus it may be regarded
as an equation of motion, the solution of which is the time evolution ( )tθ .  Show that

the equation of motion may be written in the ‘standard’ form:

                                          2 2 2
cos 1 0

g g E

l l mgl
θ θ  

− + − = 
 

� .

6 This equation is a nonlinear, homogeneous, first order, ordinary differential equation,
with constant coefficients.  There are two reasons why the equation is nonlinear; what
are these?

7 By differentiation with respect to time, show that the equation of motion may be
written as

                                                    sin 0
g

l
θ θ+ =�� .
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This is the ‘force equation’ since it is the (angular) equivalent of Newton’s second
law equation F ma= .

8 The above equation is now nonlinear in only one respect. What is that?

2  Qualitative features of pendulum motion.
Depending on the energy of the pendulum, there are two distinct types of motion.  For
small energies there is the conventional oscillatory motion where the mass swings
backwards and forwards.  There is, however, a critical energy c 2E mgl= .  For energies

larger than Ec the pendulum travels round and round the pivot; the motion is rotation
rather than oscillation. For rotational motion the coordinate θ increases continuously
whereas for vibration the coordinate θ varies only between two extreme values.

1 Show that when cE E> the motion is rotational.

2 Show that when cE E< the motion is oscillatory and find the extreme values, cθ ,

taken by the coordinate.

3 Make rough plots, by hand, of the qualitative behaviour of θ as a function of time for
these two cases.

4 Describe what happens in the borderline case when cE E= .

3  Small oscillations
When the amplitude of the oscillations is small, then cosθ  in the energy equation and
sinθ  in the force equation can be expanded to leading order in θ. The resultant force
equation is then

                                                                0
g

l
θ θ+ =�� .

1 Show that the solution of this equation may be written
                                                      ( ) 0 cost tθ θ ω=
where 0θ is the amplitude of the oscillations and the angular frequency ω is given by

                                                         g lω = .

This result tells us that we can replace g l  by 2ω in all our equations, where ω is the
angular frequency of small oscillations.

2 Now let us turn attention to the energy equation. Show that this equation, in the small
amplitude limit, may be expressed as

                                                 2 2 2 2 2
0 0θ ω θ ω θ+ − =� .

3 We investigate integrating up this equation, so that we can then use the same method
for the general equation (not restricted to small amplitudes). Show that the equation
may be written as
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4 This may be integrated, formally, as

                                                   
2 2
0

1 d
t

θ
ω θ θ

=
−∫ .

By changing the variable of integration to 0xθ θ= show that the time is given by

                                                   
0

2

1 d

1

x
t

x

θ θ

ω
=

−∫ .

5 Use your knowledge of integration methods, or use Mathematica to do the integral,
and show that a solution of the problem is
                                                     ( ) 0 sint tθ θ ω= .

6 Can you make some comment about the constant of integration?

4  Large amplitude oscillations
When the energy of the pendulum is less than the critical value Ec, the motion is
oscillatory. The amplitude of the oscillation, θ0, is related to the critical energy.

1 Show that the amplitude of the oscillation, θ0, is given by
                                                    0 ccos 1 2E Eθ = − .

2 By integrating up the energy equation, show that the time is given by

                                              
0

1 d

2 cos cos
t

θ
ω θ θ

=
−∫ .

3 Use Mathematica together with manual simplification to do the integration, to show
that

                                  
00

2 2
EllipticF ,

2 1 cos1 cos
t

θ
θω θ

 
=  −−  

.

You don’t need to know about the elliptic function EllipticF. It is a function of two
arguments, and Mathematica knows all about it.  So Mathematica can plot the
behaviour of the system.

4 In order to plot the oscillations of this pendulum we need to remove all superfluous
factors from the equation.  Let us adopt a dimensionless time tω and let us measure
the magnitude of the oscillation in terms of the maximum displacement 0θ . In other

words, we work in terms of the dimensionless variable 0x θ θ= . Then the evolution

expression becomes
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2 1 cos1 cos

x
t

θω
θθ

 
=  −−  

.

For small θ0 we expect the evolution to be sinusoidal.
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                                   Evolution of pendulum for θ0 = 0.1

The above figure shows the behaviour of the oscillating pendulum when 0 0.1θ = .

Remember we are measuring angles in radians, so this is quite a small amplitude.
Use Mathematica to plot this evolution and compare it with the small-amplitude limit
(you will need the ArcSin[] function for this).

5 Next plot the evolution for the various amplitudes: 0 0.1,1, 2, 3θ = . Your figure

should look like this:
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                                    Evolution of pendulum for θ0 = 0.1, 1,2 and 3

0 0.1θ =
0 1θ =
0 2θ =

0 3θ =
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6 You see that as the amplitude approaches the maximum value of π, the period gets
longer. Discuss physically why this is.

7 In order to find the way the period of the motion varies with the amplitude of the
oscillation, note that the period T will be four times the time it takes for the pendulum
to travel from 0θ = to the turning point at 0θ θ= Thus

                                            
0

0 0

4 d

2 cos cos
T

θ θ
ω θ θ

=
−∫ .

Note that the period for small oscillations T0, is given by 0 2T π ω= .  Thus show that

the period for amplitude θ0 is given by

                                           
0

0 0 0

2 d

cos cos

T

T

θ θ
π θ θ

=
−∫

8 Use Mathematica, together with manual simplification to show that the period
depends on amplitude as:

                                0

0 00
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EllipticF ,
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 
=  −−  

,

and plot this function. It should look like this
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                              Period of pendulum as a function of amplitude

This shows the pendulum period increasing as the amplitude approaches the critical
value of cθ π= .

You will see some gaps in the curve; I think these are regions where Mathematica has
difficulty making evaluations of the elliptic function.

You might be inclined to investigate the period as a power series expansion in θ0. I
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don’t think Mathematica can do it. This is probably because the function is varying

too slowly at the origin; recall trying to expand 
21 xe− .

5  Rotational motion
When the energy of the pendulum is greater than the critical value Ec, the motion is
rotational and the angular coordinate θ increases continuously with time. In this case the
equation of motion is best cast in terms of the energy E and the critical energy Ec.

1 Show that the energy equation of motion can be written as

                                      
( )c

1 d

2 cos 1 2
t

E E

θ
ω θ

=
− −∫ .

2 Integrate this, using Mathematica, to obtain

                                         
1 1

EllipticF ,
2

t
ee

θω  =   
where energy is measured in multiples of Ec, that is, ce E E= .

3 Now plot this function for different values of energy. When the energy is very close
to (but greater than) the critical energy, we observe a step where the motion almost
stops at the top of the motion.  On the other hand, for large energies, the angle
increases almost uniformly with time.
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Rotational motion of pendulum

Your graph should look something like this.

4 As the energy tends to the critical energy, does the period tend to infinity or to a finite
value? Think carefully about this and/or investigate using Mathematica as

cE E tends closer to unity (from above).

c 2E E =

c 1.00000001E E =
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5 For large energies the angular velocity tends to a constant, a function of the energy.
This may be investigated by ignoring the potential energy in the energy equation.
Derive an expression for the angular velocity as a function of energy in this limit.

6  Phase Plots
A convenient way of displaying the evolution of the pendulum (and other dynamical
systems) is in terms of a phase plot, a plot of coordinate against momentum.  The
coordinate here is the angle θ, while the corresponding momentum is the angular
momentum pθ , where

                                                             2p mlθ θ= � .

In terms of this, the energy equation becomes

                                                ( )
2

2 1 cos
2

p
mgl E

ml
θ θ+ − = .

1 Use Mathematica to make a phase plot for various values of energy. Your graph
should look something like this.

           

�4 �2 2 4
T

�2

�1

1

2

pT

                                            Phase plot for pendulum

2 Explain in words why the upper and lower curves represent rotation while the inner,
closed, curve represents oscillation.

3 The curves corresponding to c 1E E =  are of particular importance.  The curves

intersect.  They intersect at points where the angular momentum, and thus the
velocity, is zero.  At what angles θ does this happen? Explain physically what is
going on at these points.

c 0.1E E =
c 1E E =

c 1E E =

c 2E E =

c 2E E =

oscillation

clockwise rotation

anticlockwise rotation


