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Fourier Transforms
Introduction
The important discovery of Fourier was that an arbitrary waveform could be constructed
as a superposition of sine (and cosine) functions. We have already considered a first
generalization of that principle – that the waveform can be constructed from a
superposition of any appropriate complete orthonormal set of functions. These
superpositions construct waveforms over a finite and predefined interval. Alternatively
we may consider functions of infinite extent that are periodic on the interval. In this
section we consider a different generalization of Fourier’s principle where the waveform
is non-repetitive and specified over an infinite range. In this case, as we shall see, the
Fourier sum of sinusoids will become a Fourier integral. There is, of course, the final
generalization where the sinusoids are replaced by other orthonormal functions; that is
not treated in this course.

Fourier series – summary of relevant knowledge
The Fourier series on the interval − ≤ ≤L x L  is given by
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where the 0n = term is subsumed in the sum. The Fourier components an and bn are
given by the Euler formulae
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The Fourier components are determined by the function ( )F x  only over the interval

− ≤ ≤L x L . Outside this interval we can say either that the function is undefined or we
can say that there is periodic behavior ( ) ( )2F x L F x+ = ; this is a matter of choice.

A slight change of notation will make closer connection with physical applications. In the
argument of the sin and cos, we can interpret n Lπ  as a wave number. Accordingly we
write the nth wave number as

nk n
L

π= .

And then we can write the Fourier series and the inversion formulae as
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and
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The Fourier Integral
We now consider the case where interval over which the function is specified becomes
indefinitely large – there is no periodicity and the function extends over all x. In other
words, we want to take the limit L →∞ .

This is not quite so simply done since the various factors 1 L will become problematic.
The key to the solution is to approximate the Fourier sum, Eq. (1.1), by an integral.

a kxk co s

n1 2 3 4 5 6 7 8 9

a kxk co s

k n∆k
                   Fourier sum: sum of heights                      Integral approximation

The Fourier sum is given by the sum of the heights of the lines. But the sum of heights
multiplied by the spacing is the area under the curve:
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And the width of the slices is
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The Fourier sum is then approximated by the integral:
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as L →∞ .

As L →∞ we see that the width of the slices tends to zero so in that limit the integral
approximation becomes more accurate. But of course in this limit the Fourier components
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tend to zero because of the 1 L pre-factor. In this case we define the Fourier sine and

cosine amplitudes ( )sf k and ( )cf k

( ) ( )c s,k kf k La f k Lb= = .

Thus ( )F x is expressed as a Fourier integral
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and the Fourier amplitudes are then given by
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Complex form of the Fourier Integral
It is often convenient to express the Fourier integral relations in complex form. We define
the complex Fourier amplitude ( )f k as

( ) ( ) ( )c sif k f k f k= +
so that
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 This result is obtained from Eq. (1.2) by substituting ( )i icos 2kx kxkx e e−= +  and

( )i isin 2ikx kxkx e e−= − .

We observe here the emergence of a symmetry between the Fourier transform relations
for ( )F x in terms of ( )f k and for ( )f k in terms of ( )F x . The position of the 2π factor is

arbitrary; by a redefinition of ( )f k one can obtain the more symmetric form of the

Fourier integrals with a pre-factor 1 2π accompanying both integrals. We have adopted
the convention most used in Physics applications. The position of the minus sign
multiplying i is also arbitrary; there is a minus in one integral and not the other.

The Fourier pair
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may be interpreted as telling us that a given function has a description in x-space as
( )F x and a description in k-space as ( )f k . These are equally valid representations of the

function.

Thus far we have considered spatial functions. The same considerations apply to
temporal functions; an arbitrary function of time may be expressed as a superposition
(integral) of different frequencies. Thus replacing x by t and k by ω we obtain the Fourier
pair
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An example of this Fourier transform pair is in the area of acoustics; any sound can be
represented as a superposition (integral) of pure tones of different frequencies.

A gun shot
A gun shot is an example of a sharp impulse. This may be approximated by a high
rectangular pulse of very short duration. We specify the magnitude of the pulse by a and
its duration by τ. We assume the pulse occurs at time 0t = .

t  =  0

−�/2 +�/2

a

�

t

F t( )

rectangular pulse approximating a gun shot

The mathematical specification of the pulse, the function ( )F t is

( ) 2 2

0 otherwise .

F t a tτ τ= − ≤ ≤
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Thus the Fourier integral expression for the spectrum ( )f ω is given by
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This is shown in the figure.

f( )�
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spectrum of a rectangular pulse

The function ( )sin x x is known as the sinc function.

When the duration of the impulse gets shorter and shorter the spectrum gets broader and
broader – a manifestation of the Uncertainty Principle. You can investigate this by
making plots using Mathematica.  be e limit 0τ → will be treated in a later section.

Idealization of the gun shot – the delta function
The duration of the gun shot, τ, is very short and its instantaneous magnitude, a, is very
large. As an idealization we may consider the limit where the duration tends to zero,
while the instantaneous amplitude tends to infinity. At the same time we shall specify a
finite value for the ‘intensity’ of the pulse, the area aτ. For simplicity we will consider a
shot of unit intensity: 1aτ = . This is a minimalist description; we strip the system down
to its bare essentials.

This idealized gun shot is thus defined as the limit of the box function ( )F x above, when
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In this limit the box becomes a ‘spike’, known as Dirac’s delta function with
symbol ( )tδ .
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delta function idealization of a gun shot

The delta function is very useful, with many interesting properties. It should be
mentioned, however that it is not a mathematically respectable function! ( )tδ  should be
understood, rather, as the limit of a sequence of functions.

The spectrum of the spike may be found from the spectrum of the box function upon
taking the appropriate limit. We found
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Since τ is small the argument of the sine is small and so a series expansion is appropriate:
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But we have the normalization condition 1aτ = , which then leads to
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and now taking the limit 0τ → , this gives
( ) 1.f ω =

f( )�

�

spectrum of delta function

This is a remarkable result. It is telling us that the spectrum of a delta function spike is a
uniform superposition of sinusoids of all frequencies. This is known as a ‘white’
spectrum by analogy with light, where white light is the result of a superposition of
colours from all regions of the visible spectrum.
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When we looked at the finite-width box function we saw that as ( )F t became narrower,

that ( )f ω became broader. This, it was stated, was an example of the Uncertainty

Principle. We now have a limiting example of this: when the width of ( )F t goes to zero,

then the width of ( )f ω becomes infinite.

Frequency response of an amplifier
The human ear responds to frequencies from about 30 Hz to about 15 kHz. An audio
amplifier needs to cover this frequency range for faithful sound reproduction. In order to
measure the frequency response of such an amplifier one would connect a signal
generator to the amplifier’s input and an AC voltmeter to the output. The amplitude of the
generator is kept constant. The generator’s frequency is varied and the voltmeter reading
is recorded as a function of the frequency.

sig n a l
g en e ra to r

A C
v o ltm e teram p lif ie r

in o u t

measuring the frequency response of an amplifier

When the gain is plotted as a function of frequency there will be a flat region
corresponding to the pass band and the gain will drop at higher and lower frequencies.

a ( )�

�
2 .3 0 H z� 2 .1 5 k H z�

amplifier frequency response

It takes time to change the generator frequency, let it settle down and then measure the
amplifier output. All the data points must be collected and then plotted. Could the process
be done quicker? Perhaps we could apply and measure all frequencies at the same time!

If we put all frequencies together then we will produce a delta function. This could be
implemented as a gun shooting in the vicinity of a microphone. Then the output, transient
response, of the amplifier contains the superposition of the responses to the constituent
sinusoids of the gun shot – all frequencies in equal measure.
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transient response of amplifier

The frequency response of the amplifier is thus given from the spectrum of sinusoids in
the transient response. To find this we need to Fourier analyze the transient response.
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t

F T

Fourier analysis of the transient response gives the frequency response

This demonstrates an alternative way of measuring the frequency response of an
amplifier. Rather than painstakingly sweeping the input frequency and recording the
output signal, we may apply a delta function input and Fourier analyze the output. In
other words we apply all sine waves together and sort them at the output.

Spectrum of a finite sine wave
A sine wave of infinite duration has a spectrum comprising a single frequency. The
lesson of Fourier theory is that a sine wave of finite duration may be synthesized by
combining a range of (infinite duration) sine waves over a range of frequencies.

0 �/2−�/2

sw itc h  o n sw itc h  o ff

a

finite duration cosine wave

We shall represent the wave form as

( ) 0i 2 2

0 otherwise .

tF t ae tω τ τ= − < <
=
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Here a is the amplitude of the cosine burst and we have chosen the complex form for
mathematical simplicity. Because of the linearity of the Fourier transform relations, the
spectrum of the cosine is found from the real part and that of the sine from the imaginary
part of the complex spectrum.

The Fourier spectrum is easily found:
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And this is integrated to give
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This is the sinc function we have encountered before. Now however, it is centred on and
peaked at 0ω ω= .

f( )Z

ZZ
�

spectrum of a finite sinusoid

The value of f(ω) at its peak at ω = ω0 is found by expanding the sin before setting
ω = ω0; this gives

( )0f aω τ= .

Very long sinusoid
Now a the amplitude of the sine wave is a finite quantity. It then follows that as the
sinusoid is of longer and longer duration, the peak f(ω0) becomes infinitely large, but at
the same time it gets narrower and narrower. In particular, when the train is of infinite
duration the height becomes infinite as the width tends to zero. But this is reminiscent of
the delta function. Let us check on the area of f(ω) to see if it remains finite. We can find
the area of f(ω) by using a trick. We start with the inverse Fourier transform, giving F(t)
in terms of f(ω):
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The area is given by the integral with t = 0. Thus we have
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But F(0) = a, so that the area is indeed finite: 2πa.

Since the area under the delta function is unity, by definition, it follows that the spectrum
for an infinite sinusoid of (angular) frequency ω0 and amplitude a is given by

( ) ( )02f aω π δ ω ω= − .

Of course writing the spectrum as a delta function is equivalent, physically, to saying that
the waveform comprises a sinusoid at a single frequency only.

Incidentally, this gives an alternative mathematical representation of the delta function as

( )
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1
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τ

δ ω ωτ
πω→

= .

A paradox
Let us return to a sine train of finite duration. We have seen how its spectrum is described
by the sinc function

( ) ( )0
0

2
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a
f ω ω ω τ

ω ω
= −

−
.

In particular, the t here indicates the duration of the train.

There is a laboratory instrument known as a spectrum analyzer. Its function is to display
the spectrum of its input signal. Now consider the following:

You have a spectrum analyzer set up in the laboratory. At a given instant you turn on a
sine wave generator connected to the analyzer. If you look at the analyzer display you
will see the signal’s spectrum. Then by studying the shape of the spectrum you can
extract the value of t. So you will know how ling the train will last, and when the signal
generator will be switched off. In other words a spectrum analyzer can enable you to see
into the future!

The paradox is resolved by appreciating that the spectrum analyzer has a frequency
resolution determined by the length of time it receives its input. An infinite duration is
required for infinite resolution. And when the signal is observed for a time t only there is
a corresponding uncertainty in the frequency resolution of ~ 1/ tω∆ , meaning that a delta
function spike is broadened by this amount. Thus the analyzer is not able to tell you when
to turn the generator off.

The Gaussian curve
One function is the Fourier transform of itself. This is the Gaussian function

( ) 2 2tF t e−= .

The Fourier transform is calculated as
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This can be evaluated by hand, by completing the square in the exponent to give

( ) 2 22f e ωω π −= .

This property is unique to the Gaussian function. You shouldn’t be concerned with the
factors of 2π which are dotted around; their precise positions are purely a matter of
convention.

Things become more interesting when we specify the width of the Gaussian curve. If we
write

( ) 2 22t aF t e−=
then a is the rms width of the curve. The Fourier transform of this can be obtained from
the previous result by a change of variables; the result is

( ) 2 22 22 af a e ωω π −= .

So when the width of F(t) is a, the corresponding width of f(ω) is 1/a.

F t( ) f( )�

∆t  =  a ∆� =  1 /a

Gaussian function and its Fourier transform

Yet again we have encountered the result that the ‘width’ of a function and of its Fourier
transform have an inverse relation between them. For the time-frequency Fourier pair we
express this as

1t ω∆ ∆ =
while for the position-wave number Fourier pair we have correspondingly

1x k∆ ∆ = .

These results hold for a Gaussian curve. Now the Gaussian has the important property
that the uncertainty product is a minimum. For general functions the uncertainty product
is greater than this. Thus in the general case we write the Fourier transform uncertainty
relations as
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Physically, this is setting a fundamental limit of resolution in any spectroscopic-type of
measurement.

Connections with Quantum Mechanics
Central to quantum mechanics are the Einstein relation and the deBroglie relation:

E

p k
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where E is energy, p is momentum, ω is angular frequency and k is wave number.

Very simply, we may substitute for ω and k in the uncertainty relations using the Einstein
and deBroglie relations to give

.
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These are the conventional quantum uncertainty relations.

We note that the wave function for a particle at a specified position x0 is the delta
function

( ) ( )0x x xδΨ = − .

This follows from the probabilistic interpretation of the wave function – the uncertainty
in x is zero. If we then ask about a momentum measurement, we must express the wave
function as a function of p. This is done using a Fourier transform.

( ) ( ) i dpxp x e xψ
∞

−∞

= Ψ∫ = .

So when Ψ(x) is a delta function then ψ(p) is a constant; the uncertainty in p is infinite.
On the other hand, if the particle has a well-defined momentum p0 then

( ) ( )0p p pψ δ= − ,

the position wave function is a constant and so the uncertainty in position is infinite.

The same arguments apply to time and energy. In particular, the time-energy uncertainty
relation tells us that energy conservation may be violated – for short times. You may
‘borrow’ a large amount of energy for a short time or a small amount for a longer time.
One also concludes that it takes a ‘long’ time to make an accurate measurement of
energy.


