UNIVERSITY OF LONDON

BSc EXAMINATION 1999

For Internal Students of

Royal Holloway

DO NOT TURN OVER UNTIL TOLD TO BEGIN

PH2130B: MATHEMATICAL METHODS

Time Allowed: TWO hours

Answer QUESTION ONE and TWO other questions

No credit will be given for attempting any further questions

Approximate part-marks for questions are given in the right-hand margin

Calculators ARE permitted

GENERAL PHYSICAL CONSTANTS

Permeability of vacuum	μ_0	=	$4\pi \times 10^{-7}$	$H m^{-1}$
Permittivity of vacuum	\mathcal{E}_0	=	8.85×10^{-12}	$F m^{-1}$
	$1/4\pi\varepsilon_0$	=	9.0×10^{9}	$\mathrm{m}\mathrm{F}^{-1}$
Speed of light in vacuum	С	=	3.00×10^{8}	m s ⁻¹
Elementary charge	е	=	1.60×10^{-19}	С
Electron (rest) mass	m _e	=	9.11×10^{-31}	kg
Unified atomic mass constant	m _u	=	1.66×10^{-27}	kg
Proton rest mass	m _p	=	1.67×10^{-27}	kg
Neutron rest mass	m _n	=	1.67×10^{-27}	kg
Ratio of electronic charge to mass	$e/m_{\rm e}$	=	1.76×10^{11}	C kg ⁻¹
Planck constant	h	=	6.63×10^{-34}	Js
	$\hbar = h/2\pi$	=	1.05×10^{-34}	Js
Boltzmann constant	k	=	1.38×10^{-23}	J K ⁻¹
Stefan-Boltzmann constant	σ	=	5.67×10^{-8}	$W m^{-2} K^{-4}$
Gas constant	R	=	8.31	J mol ⁻¹ K ⁻¹
Avogadro constant	$N_{ m A}$	=	6.02×10^{23}	mol^{-1}
Gravitational constant	G	=	6.67×10^{-11}	$N m^2 kg^{-2}$
Acceleration due to gravity	g	=	9.81	m s ⁻²
Volume of one mole of an ideal gas at STP		=	2.24×10^{-2}	m ³
One standard atmosphere	P_0	=	1.01×10^{5}	N m ⁻²

MATHEMATICAL CONSTANTS

e = 2.718 $\pi = 3.142$ $\log_e 10 = 2.303$

[4]

[4]

ANSWER ONLY FIVE sections of *Question One*

You are advised not to spend more than 40 minutes answering Question One

1. (a) The equation

$$\int_{a}^{b} \boldsymbol{\varphi}_{m}(x) \boldsymbol{\varphi}_{n}(x) \mathrm{d}x = \boldsymbol{\delta}_{mn}$$

is known as an *orthogonality integral* for the functions $\varphi_n(x)$. How may an arbitrary function f(x) be expressed in terms of the functions $\varphi_n(x)$ in the [4] range $a \le x \le b$?

- (b) The Laplacian operator ∇^2 often appears in differential equations representing physical systems. Write down the form this operator takes in rectangular Cartesian coordinates and explain briefly the physical information that ∇^2 gives about a scalar field.
- (c) Write down the Fourier transform relations for the Fourier pair f(t) and $F(\omega)$.

Outline briefly the procedure by which a differential equation may be solved using Fourier transforms.

- (d) Explain the terms *order*, *degree*, *linear*, *nonlinear*, *homogeneous*, and *inhomogeneous* as applied to differential equations. Why are linear equations so much easier than nonlinear equations to solve? [4]
- (e) Describe concisely how the power series method gives solutions to the equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y = 0$$

of the form

$$y(x) = a_0 \left(1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \right) + a_1 \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \right)$$

By examining the derivatives of the series in the brackets discuss the identification of the first and second brackets with the cosine and sine functions. [4]

(f) In the context of differential equations, explain the meaning of the term *quantisation*. Explain how boundary conditions can lead to quantisation. [4]

[3]

2. A metal bar of length *L* has both ends held at a fixed temperature θ_0 . The bar is warmer than this towards the middle; at time t = 0 the temperature distribution is

$$\theta(x) = \theta_0 + \theta_1 \sin \frac{\pi x}{L}.$$

(a) Sketch this initial temperature variation. The field variable $\Psi(x,t) = \theta(x,t) - \theta_0$ obeys the diffusion equation

$$\frac{\partial^2 \Psi(x,t)}{\partial x^2} - \frac{1}{D} \frac{\partial \Psi(x,t)}{\partial t} = 0$$

where D is the thermal diffusion coefficient.

(b) Solve the differential equation by the method of separation of variables, to show that the temperature variation follows

$$\theta(x,t) = \theta_0 + \theta_1 \sin\left(\frac{\pi x}{L}\right) e^{-D\pi^2 t/L^2}.$$
[14]

- (c) What is the mathematical form for the temperature variation of the centre point of the rod? Sketch this. [3]
- 3. The solution to the Bessel equation

$$\frac{d^2 y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + \left(1 - \frac{m^2}{x^2}\right)y = 0$$

may be expressed as a power series

$$y(x) = \sum_{r=0}^{\infty} c_r x^{r+\rho}$$

where ρ is a constant.

Show that two solutions can be found corresponding to the values $\rho = +m$ and $\rho = -m$. [4]

Determine the first four terms of each solution.

For the case where $m = -\frac{1}{2}$ find a relationship between one solution and the common trigonometric functions.

[11]

[5]

4. The sine and cosine functions satisfy the following integral relations:

$$\int_{-L}^{L} \cos\left(\frac{n\pi}{L}x\right) \cos\left(\frac{m\pi}{L}x\right) dx = L\delta_{mn}$$
$$\int_{-L}^{L} \sin\left(\frac{n\pi}{L}x\right) \sin\left(\frac{m\pi}{L}x\right) dx = L\delta_{mn}$$
$$\int_{-L}^{L} \cos\left(\frac{n\pi}{L}x\right) \sin\left(\frac{m\pi}{L}x\right) dx = 0$$
$$\delta_{mn} = 1 \quad \text{when} \quad m = n$$

= 0 when $m \neq n$

where

and the case m = n = 0 is specifically excluded.

(a) The function f(x) may be expressed as the Fourier series

$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left\{ a_m \cos\left(\frac{m\pi}{L}x\right) + b_m \sin\left(\frac{m\pi}{L}x\right) \right\}$$

over the interval $-L \le x \le L$. Show how the above integral relations allow the [7] coefficients a_m , b_m to be found from the Euler formulae:

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi}{L}x\right) dx$$
$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi}{L}x\right) dx.$$

(b) Obtain an expression for the Fourier components of the sawtooth function specified [4] by

$$f(x) = \frac{x}{L}, \quad -L \le x \le L$$

You should find that the a_n vanish; explain this.

- (c) Sketch the Fourier approximation as more terms are added to the series. [3]
- (d) Describe the behaviour of the Fourier series *outside* the interval $-L \le x \le L$. [3]
- (e) Discuss the way a Fourier series approximates a function in the region of a discontinuity. [3]

[3]

5. The Schrödinger equation for a simple harmonic oscillator may be written, in terms of a dimensionless length variable *y* as

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}y^2} + \left(\varepsilon - y^2\right)\psi = 0$$

where ε is a constant.

(a) The conventional method of solution for this differential equation is to start by making the substitution

$$\psi(y) = f(y)e^{-y^2/2}.$$

What is the purpose of this substitution?

(b) By making the substitution show that the function f(y) obeys the equation

$$\frac{\mathrm{d}^2 f}{\mathrm{d}y^2} - 2y\frac{\mathrm{d}f}{\mathrm{d}y} + (\varepsilon - 1)f = 0.$$
 [6]

- (c) The next step in the quantum oscillator problem is to solve the preceding equation for the function f(y). Explain clearly the arguments which require f(y) to be a polynomial of finite degree. [3]
- (d) Show how this leads to the energy quantisation expression

$$\varepsilon = 2n+1$$

where $n = 0, 1, 2, 3, \cdots$ [8]