UNIVERSITY OF LONDON

BSc EXAMINATION 1999

For Internal Students of
Royal Holloway

DO NOT TURN OVER UNTIL TOLD TO BEGIN

PH2130B: MATHEMATICAL METHODS

Time Allowed: TWO hours

Answer QUESTION ONE and TWO other questions
No credit will be given for attempting any further questions

Approximate part-marks for questions are given in the right-hand margin

Calculators ARE permitted

GENERAL PHYSICAL CONSTANTS

Permeability of vacuum	μ_{0}	$=$	$4 \pi \times 10^{-7}$	$\mathrm{H} \mathrm{m}^{-1}$
Permittivity of vacuum	ε_{0}	$=$	8.85×10^{-12}	F m ${ }^{-1}$
	$1 / 4 \pi \varepsilon_{0}$	=	9.0×10^{9}	mF^{-1}
Speed of light in vacuum	c	=	3.00×10^{8}	$\mathrm{m} \mathrm{s}^{-1}$
Elementary charge	e	=	1.60×10^{-19}	C
Electron (rest) mass	$m_{\text {e }}$	$=$	9.11×10^{-31}	kg
Unified atomic mass constant	m_{u}	$=$	1.66×10^{-27}	kg
Proton rest mass	$m_{\text {p }}$	$=$	1.67×10^{-27}	kg
Neutron rest mass	$m_{\text {n }}$	$=$	1.67×10^{-27}	kg
Ratio of electronic charge to mass	$e / m_{\text {e }}$	$=$	1.76×10^{11}	C kg ${ }^{-1}$
Planck constant	h	$=$	6.63×10^{-34}	J s
	$\hbar=h / 2 \pi$	$=$	1.05×10^{-34}	J s
Boltzmann constant	k	$=$	1.38×10^{-23}	J^{-1}
Stefan-Boltzmann constant	σ	$=$	5.67×10^{-8}	W m ${ }^{-2} \mathrm{~K}^{-4}$
Gas constant	R	$=$	8.31	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
Avogadro constant	$N_{\text {A }}$	$=$	6.02×10^{23}	mol^{-1}
Gravitational constant	G	$=$	6.67×10^{-11}	$\mathrm{Nm} \mathrm{m}^{2} \mathrm{~kg}^{-2}$
Acceleration due to gravity	g	$=$	9.81	$\mathrm{m} \mathrm{s}^{-2}$
Volume of one mole of an ideal gas at STP		$=$	2.24×10^{-2}	m^{3}
One standard atmosphere	P_{0}	$=$	1.01×10^{5}	N m ${ }^{-2}$

MATHEMATICAL CONSTANTS

$\mathrm{e}=2.718 \quad \pi=3.142 \quad \log _{\mathrm{e}} 10=2.303$

ANSWER ONLY FIVE sections of Question One

You are advised not to spend more than $\mathbf{4 0}$ minutes answering Question One

1. (a) The equation

$$
\int_{a}^{b} \varphi_{m}(x) \varphi_{n}(x) \mathrm{d} x=\delta_{m n}
$$

is known as an orthogonality integral for the functions $\varphi_{n}(x)$. How may an arbitrary function $f(x)$ be expressed in terms of the functions $\varphi_{n}(x)$ in the range $a \leq x \leq b$?
(b) The Laplacian operator ∇^{2} often appears in differential equations representing physical systems. Write down the form this operator takes in rectangular Cartesian coordinates and explain briefly the physical information that ∇^{2} gives about a scalar field.
(c) Write down the Fourier transform relations for the Fourier pair $f(t)$ and $F(\omega)$.

Outline briefly the procedure by which a differential equation may be solved using Fourier transfoms.
(d) Explain the terms order, degree, linear, nonlinear, homogeneous, and inhomogeneous as applied to differential equations. Why are linear equations so much easier than nonlinear equations to solve?
(e) Describe concisely how the power series method gives solutions to the equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y=0
$$

of the form

$$
y(x)=a_{0}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots\right)+a_{1}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots\right)
$$

By examining the derivatives of the series in the brackets discuss the identification of the first and second brackets with the cosine and sine functions.
(f) In the context of differential equations, explain the meaning of the term quantisation. Explain how boundary conditions can lead to quantisation.
2. A metal bar of length L has both ends held at a fixed temperature θ_{0}. The bar is warmer than this towards the middle; at time $t=0$ the temperature distribution is

$$
\theta(x)=\theta_{0}+\theta_{1} \sin \frac{\pi x}{L}
$$

(a) Sketch this initial temperature variation.

The field variable $\Psi(x, t)=\theta(x, t)-\theta_{0}$ obeys the diffusion equation

$$
\frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}-\frac{1}{D} \frac{\partial \Psi(x, t)}{\partial t}=0
$$

where D is the thermal diffusion coefficient.
(b) Solve the differential equation by the method of separation of variables, to show that the temperature variation follows

$$
\begin{equation*}
\theta(x, t)=\theta_{0}+\theta_{1} \sin \left(\frac{\pi x}{L}\right) e^{-D \pi^{2} t / L^{2}} \tag{14}
\end{equation*}
$$

(c) What is the mathematical form for the temperature variation of the centre point of the rod? Sketch this.
3. The solution to the Bessel equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(1-\frac{m^{2}}{x^{2}}\right) y=0
$$

may be expressed as a power series

$$
y(x)=\sum_{r=0}^{\infty} c_{r} x^{r+\rho}
$$

where ρ is a constant.
Show that two solutions can be found corresponding to the values $\rho=+m$ and $\rho=-m$.

Determine the first four terms of each solution.
For the case where $m=-1 / 2$ find a relationship between one solution and the common trigonometric functions.
4. The sine and cosine functions satisfy the following integral relations:

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi}{L} x\right) \cos \left(\frac{m \pi}{L} x\right) \mathrm{d} x=L \delta_{m n} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi}{L} x\right) \sin \left(\frac{m \pi}{L} x\right) \mathrm{d} x=L \delta_{m n} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi}{L} x\right) \sin \left(\frac{m \pi}{L} x\right) \mathrm{d} x=0 \\
& \delta_{m n}=1 \quad \text { when } \quad m=n \\
& =0 \quad \text { when } \quad m \neq n
\end{aligned}
$$

where
and the case $m=n=0$ is specifically excluded.
(a) The function $f(x)$ may be expressed as the Fourier series

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left\{a_{m} \cos \left(\frac{m \pi}{L} x\right)+b_{m} \sin \left(\frac{m \pi}{L} x\right)\right\}
$$

over the interval $-L \leq x \leq L$. Show how the above integral relations allow the coefficients a_{m}, b_{m} to be found from the Euler formulae:

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) \mathrm{d} x \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) \mathrm{d} x
\end{aligned}
$$

(b) Obtain an expression for the Fourier components of the sawtooth function specified by

$$
f(x)=\frac{x}{L}, \quad-L \leq x \leq L
$$

You should find that the a_{n} vanish; explain this.
(c) Sketch the Fourier approximation as more terms are added to the series.
(d) Describe the behaviour of the Fourier series outside the interval $-L \leq x \leq L$.
(e) Discuss the way a Fourier series approximates a function in the region of a discontinuity.
5. The Schrödinger equation for a simple harmonic oscillator may be written, in terms of a dimensionless length variable y as

$$
\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} y^{2}}+\left(\varepsilon-y^{2}\right) \psi=0
$$

where ε is a constant.
(a) The conventional method of solution for this differential equation is to start by making the substitution

$$
\psi(y)=f(y) e^{-y^{2} / 2}
$$

What is the purpose of this substitution?
(b) By making the substitution show that the function $f(y)$ obeys the equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} f}{\mathrm{~d} y^{2}}-2 y \frac{\mathrm{~d} f}{\mathrm{~d} y}+(\varepsilon-1) f=0 \tag{6}
\end{equation*}
$$

(c) The next step in the quantum oscillator problem is to solve the preceding equation for the function $f(y)$. Explain clearly the arguments which require $f(y)$ to be a polynomial of finite degree.
(d) Show how this leads to the energy quantisation expression

$$
\varepsilon=2 n+1
$$

where $n=0,1,2,3, \cdots$

