UNIVERSITY OF LONDON

BSc and MSci EXAMINATION 2000

For Internal Students of
Royal Holloway

DO NOT TURN OVER UNTIL TOLD TO BEGIN

PH2130B: MATHEMATICAL METHODS

Time Allowed: TWO hours

Answer QUESTION ONE and TWO other questions
No credit will be given for attempting any further questions

Approximate part-marks for questions are given in the right-hand margin

Calculators ARE permitted

GENERAL PHYSICAL CONSTANTS

Permeability of vacuum	μ_{0}	$=$	$4 \pi \times 10^{-7}$	$\mathrm{H} \mathrm{m}^{-1}$
Permittivity of vacuum	ε_{0}	=	8.85×10^{-12}	Fm^{-1}
	$1 / 4 \pi \varepsilon_{0}$	=	9.0×10^{9}	mF^{-1}
Speed of light in vacuum	c	=	3.00×10^{8}	$\mathrm{m} \mathrm{s}^{-1}$
Elementary charge	e	=	1.60×10^{-19}	C
Electron (rest) mass	$m_{\text {e }}$	$=$	9.11×10^{-31}	kg
Unified atomic mass constant	m_{u}	=	1.66×10^{-27}	kg
Proton rest mass	$m_{\text {p }}$	=	1.67×10^{-27}	kg
Neutron rest mass	m_{n}	=	1.67×10^{-27}	kg
Ratio of electronic charge to mass	$e / m_{\text {e }}$	=	1.76×10^{11}	C kg ${ }^{-1}$
Planck constant	h	=	6.63×10^{-34}	J s
	$\hbar=h / 2 \pi$	=	1.05×10^{-34}	J s
Boltzmann constant	k	=	1.38×10^{-23}	$\mathrm{J} \mathrm{K}^{-1}$
Stefan-Boltzmann constant	σ	=	5.67×10^{-8}	W m ${ }^{-2} \mathrm{~K}^{-4}$
Gas constant	R	=	8.31	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
Avogadro constant	$N_{\text {A }}$	=	6.02×10^{23}	mol^{-1}
Gravitational constant	G	=	6.67×10^{-11}	$\mathrm{Nm} \mathrm{m}^{2} \mathrm{~kg}^{-2}$
Acceleration due to gravity	g	=	9.81	$\mathrm{m} \mathrm{s}^{-2}$
Volume of one mole of an ideal gas at STP		=	2.24×10^{-2}	m^{3}
One standard atmosphere	P_{0}	=	1.01×10^{5}	$\mathrm{Nm}{ }^{-2}$

MATHEMATICAL CONSTANTS

$$
e \cong 2.718 \quad \pi \cong 3.142 \quad \log _{\mathrm{e}} 10 \cong 2.303
$$

ANSWER ONLY FIVE sections of Question One.

You are advised not to spend more than $\mathbf{4 0}$ minutes answering Question One.

1. (a) Write down the diffusion equation and the wave equation. What is the principal difference between these two equations and their solutions?
(b) In the context of differential equations, explain the meaning of the term quantisation. Explain how boundary conditions can lead to quantisation.
(c) Write down an orthogonality integral for a set of functions $\varphi_{n}(x)$. What is meant by the domain and the weight function of the orthogonality integral?
(d) The Fourier transform relation between the functions $f(t)$ and $F(\omega)$ is given by

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{i \omega t} \mathrm{~d} \omega
$$

Express $F(\omega)$ in terms of $f(t)$ and describe briefly how differential equations may be solved using Fourier transforms.
(e) With the aid of sketches, discuss briefly how the circularly symmetric vibrations of a drum head are related to the $\mathrm{J}_{0}(r)$ Bessel function.
(f) Give an example of a first-order second-degree homogeneous ordinary differential equation. Is this a linear equation?
2. Two conducting concentric spherical shells are maintained at electric potentials $V_{\text {in }}$ and $V_{\text {out }}$. In the space between the shells the potential obeys the Laplace equation.
(a) In rectangular Cartesian coordinates write down the differential equation obeyed by the potential $V(x, y, z)$ between the shells.
(b) The problem of determining the potential in the region between the shells is simplified considerably through the use of spherical polar coordinates. Explain this in terms of symmetry.
(c) In spherical polar coordinates r, ϑ, φ the laplacian operator is given by

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{\partial}{\partial \vartheta}\left(\sin \vartheta \frac{\partial}{\partial \vartheta}\right)+\frac{1}{r^{2} \sin ^{2} \vartheta} \frac{\partial^{2}}{\partial \varphi^{2}} .
$$

Show that in this coordinate system the potential between the spheres obeys the ordinary differential equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} V}{\mathrm{~d} r}\right)=0 \tag{3}
\end{equation*}
$$

(d) Find two linearly independent solutions to this equation.
(e) Using this result or otherwise, show that the potential between the plates may be expressed as

$$
\begin{equation*}
V(r)=\frac{1}{r_{\text {in }}-r_{\text {out }}}\left\{\left(r_{\text {in }} V_{\text {in }}-r_{\text {out }} V_{\text {out }}\right)-\frac{r_{\text {in }} r_{\text {out }}}{r}\left(V_{\text {in }}-V_{\text {out }}\right)\right\} \tag{5}
\end{equation*}
$$

where $r_{\text {in }}$ and $r_{\text {out }}$ are the radii of the two shells.
(f) Sketch this result and comment on its physical interpretation.
3. (a) The orthogonality of the Legendre polynomials $P_{l}(x)$ is expressed in the integral

$$
\int_{-1}^{1} P_{l}(x) P_{m}(x) \mathrm{d} x=\frac{2}{2 l+1} \delta_{l m}
$$

where $\delta_{l m}$ is the Kroneker delta symbol. A function $f(x)$ may be expressed, over the interval $-1 \leq x \leq 1$, as a linear sum of Legendre polynomials:

$$
f(x)=\sum_{n} a_{n} P_{n}(x)
$$

Show that the coefficients a_{n} may be found from the orthogonality integral as

$$
\begin{equation*}
a_{n}=\frac{2 n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) \mathrm{d} x \tag{6}
\end{equation*}
$$

(b) The first few Legendre ploynomials are

$$
\begin{aligned}
& P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right), P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)
\end{aligned}
$$

With the aid of sketches, discuss why odd functions $f(x)$ are expressed in terms of only odd-order Legendre polynomials, and even functions are expressed in terms of only even-order polynomials.
(c) A parabolic cap is specified by the equation

$$
y(x)=1-x^{2}, \quad-1 \leq x \leq 1
$$

Sketch this function.
(d) Using the orthogonality relations above, show that the function $y(x)$ can be expressed in terms of the Legendre polynomials as

$$
\begin{equation*}
y(x)=\frac{2}{3} P_{0}(x)-\frac{2}{3} P_{2}(x) \tag{7}
\end{equation*}
$$

(e) Discuss the possibility of representing the function $1 / x^{2}$ in terms of Legendre polynomials.
4. The differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{1}{2 x} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{1}{4 x} y=0
$$

has a solution which may be expressed as a simple power series

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

(a) Show that the recurrence relation for the coefficients a_{n} may be written as

$$
a_{n}=-\frac{a_{n-1}}{2 n(2 n-1)} .
$$

(b) Identify this solution with $\cos \sqrt{x}$.
(c) A second order differential equation must have two independent solutions. However the simple series method has given only one solution.
The other solution is actually $\sin \sqrt{x}$. Why has this solution not been found?
(d) Outline a way in which this solution could be found.
5. Euler's gamma function may be defined through the integral

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t
$$

and its behaviour is shown in the graph.

(a) Demonstrate through integration by parts that the gamma function satisfies the recurrence relation

$$
\begin{equation*}
\Gamma(x)=(x-1) \Gamma(x-1) \tag{4}
\end{equation*}
$$

(b) For integer n show that the gamma function is connected with the factorial function through

$$
\begin{equation*}
\Gamma(n)=(n-1)! \tag{4}
\end{equation*}
$$

(c) By using the recurrence relation, discuss the behaviour of the gamma function for negative integer arguments.
(d) Given that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$, find values for $\Gamma\left(-\frac{1}{2}\right)$ and $\Gamma\left(\frac{3}{2}\right)$.
(d) Outline briefly one way in which the gamma function for large arguments may be approximated.

