## **UNIVERSITY OF LONDON**

## **BSc and MSci EXAMINATION 2000**

For Internal Students of

Royal Holloway

# **DO NOT TURN OVER UNTIL TOLD TO BEGIN**

#### PH2130B: MATHEMATICAL METHODS

Time Allowed: TWO hours

Answer QUESTION ONE and TWO other questions

No credit will be given for attempting any further questions

Approximate part-marks for questions are given in the right-hand margin

Calculators ARE permitted

### GENERAL PHYSICAL CONSTANTS

| Permeability of vacuum                    | $\mu_0$               | = | $4\pi \times 10^{-7}$  | $H m^{-1}$                          |
|-------------------------------------------|-----------------------|---|------------------------|-------------------------------------|
| Permittivity of vacuum                    | $\mathcal{E}_0$       | = | $8.85 \times 10^{-12}$ | $F m^{-1}$                          |
|                                           | $1/4\pi\varepsilon_0$ | = | $9.0 \times 10^{9}$    | m F <sup>-1</sup>                   |
| Speed of light in vacuum                  | С                     | = | $3.00 \times 10^{8}$   | m s <sup>-1</sup>                   |
| Elementary charge                         | е                     | = | $1.60 \times 10^{-19}$ | С                                   |
| Electron (rest) mass                      | me                    | = | $9.11 \times 10^{-31}$ | kg                                  |
| Unified atomic mass constant              | m <sub>u</sub>        | = | $1.66 \times 10^{-27}$ | kg                                  |
| Proton rest mass                          | $m_{ m p}$            | = | $1.67 \times 10^{-27}$ | kg                                  |
| Neutron rest mass                         | m <sub>n</sub>        | = | $1.67 \times 10^{-27}$ | kg                                  |
| Ratio of electronic charge to mass        | $e/m_{\rm e}$         | = | $1.76 \times 10^{11}$  | C kg <sup>-1</sup>                  |
| Planck constant                           | h                     | = | $6.63 \times 10^{-34}$ | J s                                 |
|                                           | $\hbar = h/2\pi$      | = | $1.05 \times 10^{-34}$ | Js                                  |
| Boltzmann constant                        | k                     | = | $1.38 \times 10^{-23}$ | J K <sup>-1</sup>                   |
| Stefan-Boltzmann constant                 | σ                     | = | $5.67 \times 10^{-8}$  | $W m^{-2} K^{-4}$                   |
| Gas constant                              | R                     | = | 8.31                   | $J \text{ mol}^{-1} \text{ K}^{-1}$ |
| Avogadro constant                         | $N_{ m A}$            | = | $6.02 \times 10^{23}$  | $mol^{-1}$                          |
| Gravitational constant                    | G                     | = | $6.67 \times 10^{-11}$ | $N m^2 kg^{-2}$                     |
| Acceleration due to gravity               | 8                     | = | 9.81                   | $m s^{-2}$                          |
| Volume of one mole of an ideal gas at STP |                       | = | $2.24 \times 10^{-2}$  | m <sup>3</sup>                      |
| One standard atmosphere                   | $P_0$                 | = | $1.01 \times 10^{5}$   | $N m^{-2}$                          |

### MATHEMATICAL CONSTANTS

 $e \cong 2.718$   $\pi \cong 3.142$   $\log_e 10 \cong 2.303$ 

#### ANSWER ONLY FIVE sections of *Question One*.

You are advised not to spend more than 40 minutes answering Question One.

- 1. (a) Write down the diffusion equation and the wave equation. What is the [4] principal difference between these two equations and their solutions?
  - (b) In the context of differential equations, explain the meaning of the term [4] *quantisation*. Explain how boundary conditions can lead to quantisation.
  - (c) Write down an orthogonality integral for a set of functions  $\varphi_n(x)$ . What is meant by the *domain* and the *weight function* of the orthogonality integral? [4]
  - (d) The Fourier transform relation between the functions f(t) and  $F(\omega)$  is given by

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} \mathrm{d}\omega.$$

Express  $F(\omega)$  in terms of f(t) and describe briefly how differential [4] equations may be solved using Fourier transforms.

- (e) With the aid of sketches, discuss briefly how the circularly symmetric [4] vibrations of a drum head are related to the  $J_0(r)$  Bessel function.
- (f) Give an example of a first-order second-degree homogeneous ordinary [4] differential equation. Is this a linear equation?

[4]

- 2. Two conducting concentric spherical shells are maintained at electric potentials  $V_{in}$  and  $V_{out}$ . In the space between the shells the potential obeys the Laplace equation.
  - (a) In rectangular Cartesian coordinates write down the differential equation [2] obeyed by the potential V(x, y, z) between the shells.
  - (b) The problem of determining the potential in the region between the shells is simplified considerably through the use of spherical polar coordinates. [3] Explain this in terms of symmetry.
  - (c) In spherical polar coordinates  $r, \vartheta, \varphi$  the laplacian operator is given by

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) + \frac{\partial}{\partial \vartheta} \left( \sin \vartheta \frac{\partial}{\partial \vartheta} \right) + \frac{1}{r^2 \sin^2 \vartheta} \frac{\partial^2}{\partial \varphi^2}.$$

Show that in this coordinate system the potential between the spheres obeys the *ordinary differential equation* 

$$\frac{\mathrm{d}}{\mathrm{d}r} \left( r^2 \frac{\mathrm{d}V}{\mathrm{d}r} \right) = 0.$$
 [3]

- (d) Find two linearly independent solutions to this equation.
- (e) Using this result or otherwise, show that the potential between the plates may be expressed as

$$V(r) = \frac{1}{r_{\rm in} - r_{\rm out}} \left\{ (r_{\rm in} V_{\rm in} - r_{\rm out} V_{\rm out}) - \frac{r_{\rm in} r_{\rm out}}{r} (V_{\rm in} - V_{\rm out}) \right\}$$
[5]

where  $r_{in}$  and  $r_{out}$  are the radii of the two shells.

(f) Sketch this result and comment on its physical interpretation. [3]

3. (a) The orthogonality of the Legendre polynomials  $P_l(x)$  is expressed in the integral

$$\int_{-1}^{1} P_{l}(x) P_{m}(x) dx = \frac{2}{2l+1} \delta_{lm}$$

where  $\delta_{lm}$  is the Kroneker delta symbol. A function f(x) may be expressed, over the interval  $-1 \le x \le 1$ , as a linear sum of Legendre polynomials:

$$f(x) = \sum_{n} a_n P_n(x).$$

Show that the coefficients  $a_n$  may be found from the orthogonality integral as

$$a_{n} = \frac{2n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) dx.$$
 [6]

(b) The first few Legendre ploynomials are

$$P_0(x) = 1, P_1(x) = x, P_2(x) = \frac{1}{2}(3x^2 - 1), P_3(x) = \frac{1}{2}(5x^3 - 3x),$$
  

$$P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3), P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x).$$

With the aid of sketches, discuss why odd functions f(x) are expressed in terms of only odd-order Legendre polynomials, and even functions are [3] expressed in terms of only even-order polynomials.

(c) A parabolic cap is specified by the equation

$$y(x) = 1 - x^2, \quad -1 \le x \le 1.$$

Sketch this function.

(d) Using the orthogonality relations above, show that the function y(x) can be expressed in terms of the Legendre polynomials as

$$y(x) = \frac{2}{3}P_0(x) - \frac{2}{3}P_2(x).$$
 [7]

(e) Discuss the possibility of representing the function  $1/x^2$  in terms of [2] Legendre polynomials.

[2]

[6]

$$\frac{d^2 y}{dx^2} + \frac{1}{2x}\frac{dy}{dx} + \frac{1}{4x}y = 0$$

has a solution which may be expressed as a simple power series

$$y(x) = \sum_{n=0}^{\infty} a_n x^n .$$

(a) Show that the recurrence relation for the coefficients  $a_n$  may be written as

$$a_n = -\frac{a_{n-1}}{2n(2n-1)}.$$
 [6]

- (b) Identify this solution with  $\cos \sqrt{x}$ .
- (c) A second order differential equation must have two independent solutions. However the simple series method has given only one solution. [3] The other solution is actually  $\sin \sqrt{x}$ . Why has this solution not been found?
- (d) Outline a way in which this solution could be found. [5]

5.

Euler's gamma function may be defined through the integral

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \mathrm{d}t$$

and its behaviour is shown in the graph.



(a) Demonstrate through integration by parts that the gamma function satisfies the recurrence relation

$$\Gamma(x) = (x-1)\Gamma(x-1).$$
 [4]

(b) For integer n show that the gamma function is connected with the factorial function through

$$\Gamma(n) = (n-1)!$$
<sup>[4]</sup>

(c) By using the recurrence relation, discuss the behaviour of the gamma function for negative integer arguments. [4]

(d) Given that 
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
, find values for  $\Gamma\left(-\frac{1}{2}\right)$  and  $\Gamma\left(\frac{3}{2}\right)$ . [4]

(d) Outline briefly one way in which the gamma function for large arguments [4] may be approximated.