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First and Second Order Linear Ordinary Differential Equations
with Constant Coefficients

This is revision material. Its purpose is to remind you of various topics relevant to this course, while
emphasising the language and terminology associated with differential equations

1  Differential Equations as models for the Dynamics of Physical
Systems

1.1  Mechanical systems
The dynamics of mechanical systems are determined by Newton’s second law
                                                              mx F�� = .                                                      (1.1)
Here m is the mass of the object, x is its displacement from some origin, and F is the
force experienced by the body.

Friction is modelled by a force proportional to, and in opposition to, the velocity �x :
                                                           F xf = −λ� .                                                       (1.2)
Here λ is the friction constant. (It is usually stated that taking the friction force
proportional to the velocity is simply an approximation to reality.  A deeper
discussion, together with a justification of the linear assumption is contained in BPC’s
book Classical Mechanics.)

A spring, obeying Hook’s law, provides a restoring force proportional to, and in
opposition to, the displacement from an equilibrium position.  Taking the equilibrium
position at the origin then allows us to write
                                                              F kxs = −                                                      (1.3)
and k is known as the spring constant.

The mass might also be subject to an externally impressed force Fx , which may well
depend on time.
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Mechanical model of a damped oscillator

Combining these forces into the Newton law expression gives the equation of motion
                                                       mx x kx F�� �+ + =λ x .                                              (1.4)
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By convention the dependent coordinate x together with its derivatives is placed on
the left and the external force is placed on the right hand side of the equation: cause
on the right, effect on the left.

We observe that our equation of motion is a
• linear
• inhomogeneous
• second order
• ordinary
• differential equation, with
• constant coefficients.

If there is no external force, Fx = 0 then the equation of motion becomes
                                                        mx x kx�� �+ + =λ 0 .                                              (1.5)
This is now a homogeneous equation, a

• linear
• homogeneous
• second order
• ordinary
• differential equation, with
• constant coefficients.

We note that the homogeneous equation describes a free or isolated system.  It is the
source Fx  of the inhomogeneous equation that accounts for the interaction with the
external force.

1.1.1  Special cases
1 No spring; just the friction; no external force
Here the equation of motion is

mx x�� �+ =λ 0 ,
which can be rewritten in terms of the velocity as

mv v� + =λ 0 .
This is a first order equation in the velocity.

2 No friction; just the spring force; no external force
Here the equation of motion is

mx kx��+ = 0 .
This is the equation for the (undamped) simple harmonic oscillator.

1.2  Electrical systems
We consider, specifically, a series LCR circuit.  The voltage – current relations for the
inductor, resistor and capacitor are:
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Including an externally applied voltage Vx , which might depend on time, the voltages
are added to give the ‘equation of motion’

                                                    LI RI
C

I t V� + + =�
1

d x .                                         (1.7)
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Driven series LCR circuit

The equation is brought into “standard form” by differentiating once, giving:

                                                     LI RI
C

I V�� � �+ + =1
x .                                             (1.8)

As in the mechanical case we have a
• linear
• inhomogeneous
• second order
• ordinary
• differential equation, with
• constant coefficients.

If there is no external voltage (or a constant voltage), �Vx = 0 then the equation of
motion becomes

LI RI
C

I�� �+ + =1
0 .

I

L C R

Free LCR circuit

This is now a homogeneous equation, a
• linear
• homogeneous
• second order
• ordinary
• differential equation, with
• constant coefficients.

We note that the homogeneous equation describes a free or isolated system.  It is the
source Vx  of the inhomogeneous equation which accounts for the interaction with the
external voltage.
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1.2.1  Special cases
The LR and RC circuits are described by first order equations and the LC circuit is
described by the second order SHO equation with no damping (friction).

2  Solutions

2.1  First order equations
The “standard form” for the first order ordinary differential equation with constant
coefficients is
                                                         ( )x x f tγ+ =� .                                                 (2.1)

2.1.1  Homogeneous equation
The homogeneous equation is
                                                           0x xγ+ =�                                                       (2.2)
and this is described in terms of one parameter γ.  Note that the dimensions of the
parameter γ is 1/time.

The solution to this equation is
                                                             tx Ae γ−=                                                       (2.3)
where A is a constant.  Since this is a first order equation there is just one adjustable
constant; this may be determined from the initial conditions: the state at t  =  0.

Observe that the solution satisfies time translation invariance: wherever the origin of
time is taken, the solution has the same mathematical form

2.1.2  Inhomogeneous equation
The inhomogeneous equation
                                                        ( )x x f tγ+ =�                                                    (2.4)

has a solution which is the sum of:
• the complementary function CF and
• the particular integral PI.

The complementary function is the solution of the corresponding homogeneous
equation. The fact that the CF can be added to any solution follows from the linearity
of the equation.

The particular integral is a solution that depends explicitly on the source f t� � .

We have seen above that the complementary function is
CF = −Ae tγ

The particular integral may be expressed as
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                                            (2.5)

So the general solution to the inhomogeneous first order equation is

                                             ( ) ( )d
t

tx t e A e fγ γτ τ τ−  = +  ∫ .                                   (2.6)
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2.1.3  Physical interpretation of the Complementary Function and the Particular
Integral

The Complementary Function is:
• independent of the source and
• depends on the initial conditions.

Thus it contains the transient behaviour which follows from the way the system was
“started off”.  On physical grounds this will die away after sufficient time.

The Particular Integral is
• independent of the initial conditions, and
• it depends on the source.

This is the form of the solution at times sufficiently long that the initial transients
have died out.  When the source is some sort of continuous function the particular
integral may be referred to as a steady state solution.

Questions for thought:
a  Why Differential Equations?
Derivatives are that natural way to describe changing states – dynamics, when the
change occurs “smoothly”.

b  Why Second order equations?
The answer is probably in two parts. First order equations can only describe growth
and decay; they cannot describe “steady state”, repetitive behaviour (time translation
invariance) such as sines and cosines. But why don’t we need higher order equations.
This might be understood by appealing to Occam’s razor. Newton’s law is
fundamentally second order.                                                                                          

2.2  Second order equations
The “standard form” for the second order ordinary differential equation with constant
coefficients is
                                                      �� �x x x f t+ + =λ ω 0

2 � � .                                           (2.7)

2.2.1  Homogeneous equation
The homogeneous equation is
                                                       �� �x x x+ + =λ ω 0

2 0                                                 (2.8)

and this is described in terms of two parameters λ and ω 0 .  The reason for the form of
the coefficient of x will become apparent.  Note that the dimensions of both
parameters λ and ω 0  must be 1/time. (mathematically convenient)

A special case of this equation occurs when there is no friction term λ.  Then we have
the SHO equation

��x x+ =ω 0
2 0

and this has solution
                                                x A t B t= +cos sinω ω0 0 ,                                         (2.9)
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or equivalently
                                                     ( )0cosx C tω ϕ= + .                                           (2.10)

Alternatively we might express the solution in complex form
                                                     0 0i it tx De Eeω ω−= + .                                            (2.11)

This is a second order equation so there are two adjustable constants; these may be
determined from the initial conditions, ( )0x  and ( )0x�  or from the value of x at two

different times.

The solutions above indicate the significance of ω 0  as the angular frequency of the
(friction-free) oscillations.

2.2.2  General second order homogeneous equation
We now consider the equation in standard form

�� �x x x+ + =λ ω 0
2 0 .

(Clearly the solution must reduce to the above friction-free case in the limit λ → 0 .)

The general solution is found through the substitution x e pt∝ . Then the derivatives
are found as

� , ��x px x p x= = 2 .

These are substituted into the (differential) equation of motion to give the algebraic
equation

p p2
0
2 0+ + =λ ω

whose solutions are

                                                   
2 2

04

2
p

λ λ ω
±

− ± −
= .                                       (2.12)

We have two solutions corresponding to the two signs of the square root in the
expression for p and the general solution is

p t p tx Ae Be+ −= + .

2.2.3  Light damping
In this case λ is small; λ ω<< 0  so that the square root is imaginary. It is then better
to express p as

                                                
p = − ± −

= − ± −

λ ω λ

λ ω λ

2 2

2
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0
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0
2 2

i
4

i � � .
                                      (2.13)

The solutions are of the form
                                                    e e e et t t t− − −τ ω τ ωi i, ,                                         (2.14)
or the linear combinations
                                                cos , sint te t e tτ τω ω− −                                       (2.15)
where

                                            τ λ ω ω λ= = −2 20
2 2

, � �                                 (2.16)
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and the general solution is
                                           ( ) { }cos sintx t e A t B tτ ω ω−= + .                                (2.17)

We see that λ (the coefficient of �x ) determines the time constant τ of the decay.
The oscillation angular frequency is determined mainly by ω 0  (the coefficient of x),
but there is a small reduction in this frequency caused by the damping. Often this
may be neglected.

2.2.4  Q factor (quality factor)
The Q factor is a dimensionless quantity, which may be used to quantify the
dissipation (damping) of an oscillator. This is called the quality factor, or sometimes
the selectivity. High Q means low damping and vice-versa.

The dimensions of the damping parameter λ are the same (1/time) as those of the
angular frequency ω 0 . Thus the ratio ω λ0 is dimensionless. We define the Q factor
by

                                                              Q = ω
λ

0 .                                                   (2.18)

We see that Q is high for small damping.

Incorporating the Q factor, the damped oscillator differential equation may be
parameterised in terms of the two quantities ω 0  and Q. Then the damping time
constant and the oscillation (angular) frequency may be expressed as

                                           τ
ω

ω ω= = −
�
��
�
�	

2
1

1

20
0

2
Q

Q
, .                                (2.19)

2.2.5  Properties of Q
We list two important properties of the Q factor. After considering forced oscillations
we shall be in a position to list some more.

• The number of oscillation cycles for the amplitude to decrease to 1/e of its
value is Q π .

• Q  =  2π × stored energy / energy lost per cycle.

It is often convenient to parameterise an oscillator in terms of its resonant frequency
and its Q factor. This casts the description in abstract/general terms.

2.2.6 Frequency shift
The expression for the frequency shift is

ω ω= −
�
��
�
�	0

2

1
1

2Q
 .

For large-ish Q we can expand the oscillation frequency in inverse powers of Q.  In
this way we have

                                                  ω ω= − +
�
��

�
�	0 21

1

8Q
� .                                         (2.20)
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So even for a modest Q factor of  ~ 10, the shift in the oscillation frequency is very
small. Thus in many practical applications ω0 is taken to be the angular frequency,
with negligible error.

1.2.7 Heavy damping
When the damping is large, then λ ω>> 0 . In that case the two values of p are real and
unequal:

p =
− ± −λ λ ω2

0
24

2
.

This means that there is no oscillation.  One value of p will be close to λ while the
other will be very small. These values are best expressed in terms of Q, which is now
very small.  Since

                                                    p
Q

=
− ± −λ λ 1 4

2

2

,                                         (2.21)

by expanding in powers of Q we obtain

                                                     
p Q

p Q

1
2

2
2

1= − − +

= − +

λ

λ

�

�


 �

.
                                          (2.22)

In the limit of very small Q we see that p1 will tend to λ while p2 will tend to zero.
The general solution
                                                    x t Ae Bep t p t� � = +1 2                                              (2.23)

will tend to the limit of the solution to the first order equation
�x x+ =λ 0 ,

namely
x t Ae t� � = −λ .

This happens by the coefficient B going to zero.

2.3  Forced oscillations
We now return to the standard form second order ordinary differential equation with
constant coefficients in inhomogeneous form: that is, with a source term ( )f t

�� �x x x f t+ + =λ ω 0
2 � � .

We know that the general solution is the sum of the complementary function and a
particular integral. And we know the complementary function may be written

{ }cos sinte A t B tτ ω ω− + .

The new problem is to find the particular integral, a function of the driving force
( )f t . For long times ( t τ� ) the transient behaviour of the CF will have decayed

away and the remaining behaviour will be solely that of the PI.

2.3.1  Sinusoidal driving force
For a general driving force the motion ( )x t will be complicated. We will not, here,

discuss the general procedures for finding the PI for a general source term.  Instead
we will examine the solution corresponding to a sinusoidal driving force. We take
                                                       ( ) 0 cosf t f tω= .                                              (2.24)

It is important to note that here ω is a general angular frequency; it is not the free
oscillation frequency of above.
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We are looking for a steady solution to the equation
                                                  2

0 0 cosx x x f tλ ω ω+ + =�� � .                                      (2.25)

The linearity of this equation means that the solution ( )x t will be a steady oscillation

at the driving angular frequency ω. And the amplitude will be proportional to the
magnitude of the force f0.

There is a choice of ways to represent this solution. The two most important
representations are the amplitude/phase and the in-phase/quadrature descriptions.

2.3.2  In-phase/quadrature description
In this case the solution is written as

                                       ( ) ( ) ( ){ }0 cos sinx t f A t B tω ω ω ω= + .                           (2.26)

The cos and sin give the time dependence. The ‘constants’ A and B will depend on the
driving frequency.

By substituting this general solution into the original equation and solving for A and
B, one finds

                   
( )

( ) ( ) ( ) ( )

2 2
0

2 22 22 2 2 2
0 0 0

cos sin
x t

t t
f

ω ω λωω ω
ω ω λω ω ω λω

−= +
− + − +

.        (2.27)

The coefficient of cos tω , that is ( )A ω , gives the part of the response that is in-phase

with the excitation 0 cosf tω . The coefficient of sin tω , that is ( )B ω , gives the

response that is in quadrature with the excitation: the part that is 90° out of phase
with the excitation. Thus we write

                                              

( ) ( )
( ) ( )

( )
( ) ( )

2 2
0

2 22 2
0

2 22 2
0

.

A

B

ω ω
ω

ω ω λω

λωω
ω ω λω

−
=

− +

=
− +

                                   (2.28)

 These are plotted, for a Q factor of 10, in the figure.
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2.3.3  Amplitude/phase description
In this case the solution is written as

                                          ( ) ( ) ( )( )0 cosx t f C tω ω ϕ ω= +                                    (2.29)

and here we must determine the functions ( )C ω  and ( )ϕ ω . This is most simply

done in terms of the response functions ( )A ω and ( )B ω already found. We have

                                              
( ) ( ) ( ){ }
( ) ( ) ( )( )

1 22 2

1tan

C A B

B A

ω ω ω

ϕ ω ω ω−

= +

=
                                    (2.30)

and these are plotted in the figure.
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amplitude / phase description of oscillator

The phase ϕ is zero at resonance; this is often used as a criterion for resonance. As
one sweeps through resonance the phase moves from 2π  through zero to 2π− . One

should also observe that the width of ( )C ω  is greater than the width of ( )A ω in the

vicinity of resonance. Clearly the height of ( )C ω is the same as that of ( )A ω at

resonance.

2.3.4  More properties of Q
In the frequency domain Q measures the sharpness of the resonance. The Q factor is
the reciprocal fractional width of the resonance

                                                              0Q
ω

ω
=

∆
,                                                   (2.31)

where the resonance width ω∆ is (for a sharp resonance) the frequency difference
between the points that

• the phase ( )ϕ ω is ±45° of its value (zero) on resonance, or

• the amplitude response ( )C ω  drops to 1 2 of its value on resonance, or

• the in-phase response ( )A ω  drops to half its value on resonance.

( )   in radiansϕ ω

( )  arb. unitsC ω
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2.3.5  Complex representation
In making contact with the real world one expects to be working with real coordinates

( )x t and forces ( )f t . The linearity of the equations we have been considering allows

us to exploit the mathematical convenience of complex variables. At the simplest
level it is clear that if a complex ( )x t arises as the mathematical solution from a

complex ( )f t , then the response to a force which is the real part of this complex

( )f t will be the real part of the corresponding complex ( )x t .

There is, however, a very useful generalisation of this idea that relies on the deMoivre
relation

icos isin e ϕϕ ϕ+ = .
The response to the force
                                                        ( ) 0 cosf t f tω=                                               (2.32)

is the displacement
                                              ( ) ( ) ( )0 cosx t f C tω ω ϕ= + .                                     (2.33)

Similarly, the response to a force
                                                        ( ) 0 sinf t f tω=                                               (2.34)

will be the displacement
                                               ( ) ( ) ( )0 sinx t f C tω ω ϕ= + .                                    (2.35)

Thus applying the linearity rule above implies that the (mathematical) response to the
complex force

                                                
( ) 0 0

i
0

cos i sin
t

f t f t f t

f e ω

ω ω= +

=
                                    (2.36)

is the complex displacement

                 

( ) ( ) ( ) ( ) ( )
( ) ( )

( )

0 0

i
0

i i
0

cos i cos

.

t

t

x t f C t f C t

f C e

f C e e

ω ϕ

ϕ ω

ω ω ϕ ω ω ϕ

ω

ω

+

= + + +

=

=

                               (2.37)

This expression may be interpreted as saying that the response to the force
                                                          ( ) i

0
tf t f e ω=                                                  (2.38)

is the displacement
                                                     ( ) ( ) i

0
tx t f C e ωω= � .                                            (2.39)

Here we are using a complex response function ( )C ω�

where

                                                  
( ) ( )

( ) ( )

i

i .

C C e

A B

ϕω ω

ω ω
=

= +

�

                                        (2.40)

We see that both amplitude and phase information are contained in the complex
response function. And of course the mathematics of complex exponentials is so
much simpler than that of sines and cosines continually converting into each other.


